
Improvements in FSM Evolutions from Partial
Input/Output Sequences

Sérgio G. Araújo, A. Mesquita, Aloysio C. P. Pedroza

Electrical Engineering Dept.
Federal University of Rio de Janeiro

C.P. 68504 - CEP 21945-970 - Rio de Janeiro - RJ - Brazil
Tel: +55 21 2260-5010 - Fax: +55 21 2290-6626

{granato,aloysio}@gta.ufrj.br mesquita@coe.ufrj.br

Abstract. This work focuses on the synthesis of finite-state machines
(FSMs) by observing its input/output behaviors . Evolutionary
approaches that have been proposed to solve this problem do not
include strategies to escape from local optima, a typical problem found
in simple evolutionary algorithms , particularly in the evolution of
sequential machines. Simulations show that the proposed approach
improves significantly the state space search.

1 Introduction and Related Works

The task of modeling existing systems by exclusively observing their input/output
(I/O) behavior is of interest when the purpose is (1) to uncover the states of natural
systems, (2) to model synthetic systems implemented from scratch, in an ad hoc
manner or for which the documentation has been lost and (3) to generate automata
from scenario (trace) specifications, a fruitful area in the telecommunications domain.
At present, most of these problems are outside the scope of conventional techniques.

Evolutionary Algorithms (EAs), and variations, have been used in the synthesis of
sequential machines to explore the solutions space. Early attempts dating back to the
60’s [1] used some of the today EAs concepts such as population, random
initialization, generation, mutation and reproduction (cloning) to evolve an automaton
that predicts outputs based on known input sequences. However, these early
approaches have shown poor performance by lack of the crossover operator [7].

More recent attempts have been successful in synthesizing sequential systems
with the aid of Genetic Algorithms (GAs) [2, 3, 4]. In [1] an approach to synthesize
synchronous sequential logic circuits from partial I/O sequences by using technology-
based representation (a netlist of gates and flip-flops) is presented. The method is able
to synthesize a variety of small FSMs, such as serial adders and 4-bit sequence
detectors. With the same purpose other works [3, 4] used technology-independent
state-based representation in which the next -state and the output, corresponding to
each current-state/input pair of the state-transition table, are coded in a binary string

defined as the chromosome . Because, in this case, the number of states of the finite-
state automaton is unknown, a large number of states must be used at the start.

The proposed approach differs from the previous ones by the use of the fitness
gradient to improve the system performance in the presence of evolutionary
stagnation phenomenon. Stagnation problems refer to a situation in which the
optimum seeking process stagnates before finding a global optimal solution.
Stagnation at local optima where all the neighboring solutions are non-improving is
frequently found in simple EAs [13], particularly in the evolution of complex systems
such as state-machines. This gap in the automata evolution may persevere for
thousandths of generations due to an “unproductive” population. To overcome this
problem, the proposed approach penalizes the best individual and its variants and a
new population emerges in order to surpass the previous best fitness value.
Simulations show that the proposed approach improves significantly the state space
search.

2 Definitions

2.1 FSMs

Finite-state machines (FSMs) are commonly used for specifying reactive systems due
to its simplicity and precise definition of the temporal ordering of interactions [5]. From
the two traditional Moore/Mealy FSMs models it is found that in the Mealy machines,
since the outputs are associated with the transitions, some behaviors can be imple-
mented with fewer states than Moore machines.

The Mealy FSM model M is formally defined as a 7-tuple {Q,V,t,q0,V’,o,D} where Q
� Ø is a finite set of states of M, V is a finite input alphabet, t is the state transition
function, q0 ∈∈ Q is the initial state, V’ is a finite output alphabet, o is the output
function and D is the specification domain, which is a subset of Q × V. t and o together
characterize the behavior of the FSM, i.e., t(q,v): Q × V � Q and o(q,v): Q × V � V’. If D
= Q × V, then t and o are defined for all possible state/input combinations and
therefore the FSM is said to be completely specified. Deterministic and completely
specified FSMs are preferred strategies for automata modeling since they tell it exactly
how to react in every situation it perceives [11].

2.2 Evolutionary Computation

Evolutionary Computation (EC) concerns the design and analysis of probabilistic
algorithms inspired by the principles of Darwinian natural selection. The Genetic
Algorithm (GA) and the Genetic Programming (GP) are the most familiar instances of
EC algorithms.

The chromosome is the basic component of the GA [6]. It represents a point (an
individual) in the problem solution space. The fitness value measures how close the

individual is to the solution. By iteratively applying the genetic operators (fitness
evaluation, fitness-based selection, reproduction, crossover and mutation) to a
randomly started population of individuals, it evolves in order to breed at least one
offspring with a given target behavior. GAs usually employ fixed length chromosome
strings in which one or more parameters are coded. GA solutions are best applied to
poorly understood or highly non-linear problems for which deterministic solutions are
not available. GP [7] is a branch of the GA, the solutions representation being the main
difference. Unlike GA, GP can easily code chromosomes of variable length, which
increases the flexibility in structure production.

3 Methodology

The proposed methodology is aimed to solve the problem of finding a completely
specified deterministic FSM consistent with a given sample of I/O sequences called
training sequences (TSs). A TS is defined as a finite sequence of correct input-output
pairs < v1/v1’, v2/v2’… vL/vL’ >, where v ∈ V, v’ ∈ V’ and L is the length of the sequence
(L inference is discussed in subsection 3.1). The methodology execution flow is shown
in Fig. 1a. The population of FSMs supplied by the GP is evaluated for the fitness by
means of the TSs; if at least one individual reproduces the I/O behavior specified by
the TSs, the algorithm stops. The resulting FSM describes the observed system.

The black-box approach depicted in Fig. 1b is adopted for fitness evaluation. In
this case the automaton to be evolved interacts with the environment through an
event-driven interface. In each evolutionary step (generation) the system probes a
population of FSMs with input sequences and records the corresponding output
sequences. These output sequences are compared with the correct (desired) output
sequences (the outputs of the TSs) and a fitness value is assigned to each candidate
solution.

BNF

GP
(generation of

new population)

I/O
Constraints
Satisfied ?No

Yes

FSM

Initial
Population

Fitness
Evaluation

(for each individual)
Training

Sequences

Training
Sequences

Automaton to
be Evolved

Input Sequences

Output Sequences

a) b)

Event-Driven Interface

Fig. 1. a) Execution flow of the methodology; b) Model for fitness evaluation

Unlike other approaches [3, 4], the proposed methodology includes a heuristic to
help the algorithm to evade from local optima. One of the main causes of premature
convergence is loss of genetic diversity due to selection pressure [13]. Moreover,
population diversity tends to get worst at local optima. To support the emergence of
new populations, carrying out alternative solutions, the heuristic penalizes the fitness
of the best individual and of its variants each time a local-optimum condition is
detected. The penalty applied to outstanding fitness FSMs is defined by a penalty
factor Pf (0.0 ≤ Pf < 1.0) and variants of the best individual are defined by a similarity
factor based on the Hamming distance concept. The classic binary Hamming distance
was extended to a more adequate notation system, being redefined as the number of
components (genes) by which two vectors (chromosomes) differ. Given a reference
chromosome with K-genes, CR, the similarity factor Sf of any chromosome with respect
to CR is defined as Sf = (K-H)/K, where H is the Hamming distance, in K-dimensional
Hamming space, between them. For instance, the similarity factor between 130212
012001 140120 (CR coding a 3-state FSM) and 130102 012023 140122 is Sf = (18-5)/18 =
0.72.

The intention of the heuristic is to eliminate the building blocks (or schemas), which
push the individuals to the local optimum, from the current population. Pf is triggered
as the gradient of the best individual fitness (GR) drops below a pre-defined threshold.
At this time, the system reduces diversity-decreasing operators (i.e., crossover and
cloning - see [12]) rate and raises the mutation probability (pm) to increase the
population diversity. Pf remains active for sufficient time to break the “bad” building
blocks. However, the genetic operators only return to their original values as the
system breeds a solution improving the previous best fitness value.

3.1 Training Sequence (TS) Length

The TSs must be long enough to exercise all paths of the FSM that describes the
observed system. Ref. [2] gives an approximation formula to estimate the length of the
TSs that yields a correct FSM, based on the waiting times in sampling problem
solution [10]. This formula defines the length of the input sequence as L = E(S) × E(I),
where E(S) and E(I) are the expected number of state transitions and expected number
of inputs, respectively. As example, E(N) can be computed using E(N) = N (1+ 1/2 + …
+ 1/N). However, since the number of states S required to describe the system is
unknown, it must be overestimated a priori.

3.2 Chromosome Coding

The chromosome, which encodes a FSM, uses state-based representation (SBR). The
resulting string (chromosome) with S states and I inputs is shown in Fig. 2.

Next State Output Next State Output

Input 1 Input 2

State 1

Next State Output

State 2

...

Input I

State S

Next State

Input 1

... Output

Input I
//

//

gene 1 gene 2 gene 2 x I x S

Fig. 2. Chromosome coding using SBR

The GP Kernel (GPK) [8], a complex G3P (Grammar-Guided GP) system [9], was used

in the present work to evolve automata encoded as syntactic trees. GPK system
requires a Backus-Naur form (BNF) for chromosome structuring. The BNF that allows
the generation of chromosomes representing six-state FSMs is defined as:

S := <stat>;
<stat> :=
<in_even><in_even>><in_even>><in_even>><in_even>><in_even>;
<in_even> := <next_st><out> <next_st><out> <next_st><out>

<next_st><out>
<next_st><out> <next_st><out>;

<next_st> := "0"|"1"|"2"|"3"|"4"|"5";
<out> := "0"|"1"|"2"|"3"|"4"|"5"|"6";

Note that <in_even> fixes the number of input events (six, in the above BNF, each
one yielding a next -state/output pair, i.e., <next_st> <out>). In contrast to the classic
GA, where genes are simple bit-sequences and crossover may be performed at any
point, GPK only permits crossover by swapping sub-trees (of a couple) starting with
the same non-terminal symbols (i.e., symbols between corner brackets). Moreover, the
mutation operation is implemented as a crossover operation between the selected
individual and a temporary random-derived tree.

3.3 Fitness Evaluation

The fitness value assigned to a given FSM behavior, here evaluated through an
input/output sequence perspective, is defined by the fitness function F in the form:

F = ∑
=

N

i
iHiw

1
 (1)

Where wi is a weighting factor for fitness case i, N is the number of fitness cases
(TSs) and Hi is the number of output hits due to the fitness case i (TSi). Hi is evaluated
as follows. Initially, the FSM must be in the reset (idle) state. In the sequence, for each

input of the TSi, its output is compared with the correct output and an output hit is
signed in case of a match.

4 EXPERIMENT

The goal is to generate a protocol entity specification, in FSM model, for the sender
entity of a connection-oriented protocol (PSSND) from given I/O event samples. The TS
length was evaluated using six inputs (see coding table of Fig. 4) and an estimated
value of five for S, leading to a 168-input/output TS (see subsection 3.1). Moreover, it
is desirable to have multiple TSs to improve the performance of the learning system
(see [4]). In fact, eighteen TSs (N = 18) were used, each with 32 bits in length, which
corresponds to more than three 168-length sequences. wi was set to 1 for all i since the
TSs have the same length.

The population size (M) was set to 200 and the maximum number of generations
(GMAX), 5,000. The crossover (two-point shaped), the mutation and the reproduction
probabilities were set to pc = 0.65, pm = 0.05 and pr = 0.30, respectively. Linear rank
selection was used considering the elitist strategy. The population of FSMs was
shaped using the BNF described in subsection 3.2, which defines six-states FSMs.

Individuals with Sf ≥ 0.38 were defined as the variants of the best individual and,
therefore, will be penalized at local optima. Sf comprised only next -state genes (see Fig.
2). In fact, the heuristic did not consider the similarity factor with respect to output
genes, since they have no influence in the state-machine graph. GR was evaluated
over 50 generations and GR threshold for heuristic activation was set to 0.1. In case of
heuristic activation, the system works with pm = 0.15, pc = 0.60 and pr = 0.25. At
generation corresponding to 95% of the maximum fitness value the heuristic was
disabled since at this evolution stage GR is naturally close to zero. Pf was defined as
0.5 (fitness value penalized in 50%), remaining active throughout the next 50
generations.

Fig. 3 depicts the fitness curves of the best FSM of a typical run for three setups: 1:
full heuristic, 2: change genetic operators only at local optima (no penalty applied) and
3: without heuristic. As noted, until G = 266 the three curves are the same, as the
heuristic isn’t yet activated. For setup 1 (full heuristic), from G = 290 to G = 1028, as GR
drops below 0.1 five times, the fitness value of the best FSM “backtracks” five times
(at G = 268, G = 560, G = 760, G = 904 and G = 1028) and the system finally converges to
global optimum (FMAX = 576) at G = 1230. For setup 2, the system only converges to
global optimum at G = 2944. For setup 3, the system did not escape from local optimum
(F = 554) considering GMAX = 5,000.

The resulting FSM using the full heuristic, which successfully describes the PSSND,
is given using state-transition graph (STG) in Fig. 4, after 576 output hits at G = 1230
(note: label v/v’ represents an edge eij between two states qi and qj iff o(qi,v)=qj and
t(qi,v)=v’). This FSM has one redundant state (state 4) and one unreachable state
(state 1). Conventional methods may be used for state minimization. Table 1 compares
the performance among the three setups. It shows that the full heuristic, which

penalizes the best individual and its variants, yields 38 global optimum convergences
(using Sf > 0.27) among 50 runs, each evolving up to a maximum of 1,500 generations.
This result improves setups 2 and 3 in 46% and 280%, respectively. This table also
indicates that the heuristic is quite sensitive to Sf.

100
150
200
250
300
350
400
450
500
550
600
650

1 10 100 1000 10000

generation

fi
tn

es
s

without heuristic

change gen op only
full heuristic

max. fitness

Fig. 3. Fitness curves of the best individual for three setups

 INPUT OUTPUT

 C_Req - 0 C_Conf - 0
 D_Req - 1 D_Ind - 1
 cr - 2 cc - 2
 dr - 3 dr - 3
 R_Req - 4 R_Conf - 4
 rr - 5 ra - 5

 Null - 6

Coding Table

Chromosome: 524146464646 524146464643 264326412634 364336412536 524146464646 564330415656

state5
(Wait_Acc)

state3
(Active)

state 0
(Idle)

0/2

2/0

2/6

3/1

3/1

1/3

1/1

2/6

0/6

0/6

state 2
(Wait_Reinit)

4/6

5/6

5/4

4/5

4/6

5/6
1/33/1 5/6

3/6

2/6

0/6

state4

1/3

0/2

state 4

4/6

state
1

0/2

1/1
2/6

3/6
4/6
5/3

1/12/6
3/6

4/6
5/6

Fig. 4. PSSND, using STG, of the fittest individual

Table 1. Comparison among three different setups

Setup 3:
Without
heuristic

Setup 2: Change
genetic

operators only

Setup 1: Full heuristic
Penalty (Pf = 0.5) applied to:

 heuristic operators only Sf > 0.16 Sf > 0.27 Sf > 0.38 Sf > 0.55

Convergence
to Global

Optimum for
GMAX = 1,500

(50 runs)

10 26 32 38 32 27

5 CONCLUSION

A methodology for generating state machines from given input/output sequences was
proposed. Application fields range from reverse engineering approaches, focusing on
creating representations for already implemented systems, to forward engineering
ones, by moving from high-level abstractions (e.g., specifications by means of user
cases or traces) to physical implementations of the system.

The proposed approach has as distinctive feature a specific strategy for escaping
from local optima. Preliminaries results show improvements of about 46% in the
convergence to the global optimum, considering a maximum number of generations.
However, the right most values for the penalty and similarity factors, as well as for the
number of generations the penalty factor is maintained active, still has to be chosen
upon experiments. Our main focus on the future is to quantify these parameters
regarding to the problem size. In addition, improvements that may be done on the
presented search algorithm contemplate a heuristic with memory cells to retain all
previous penalized schemas, guiding new populations to explore a refined state space.

REFERENCES

[1] L. Fogel, Autonomous Automata, Industrial Research, 4:14-19, 1962.
[2] C. Manovit, C. Aporntewan and P. Chongstitvatana, Synthesis of Synchronous

Sequential Logic Circuits from Partial In put/Output Sequences, ICES’98, pp. 98-
105, 1998.

[3] R. Collins and D. Jefferson, Representation for Artificial Organisms, in Proc. of the
1st Int. Conf. on Simulation of Adaptive Behavior, MIT Press, 1991.

[4] P. Chongstitvatana and C. Aporntewan, Improving Correctness of Finite-State
Machine Synthesis from Multiple Partial Input/Output Sequences, in Proc. of the
1st NASA/DoD Workshop on Evolvable Hardware , pp. 262-266, 1999.

[5] G. Bockmann and A. Petrenko, Protocol Testing: A Review of Methods and
Relevance for Software Testing, ISSTA'94, ACM, Seattle, U.S.A., pp. 109-124,
1994.

[6] J. Holland, Adaptation in Natural and Artificial Systems, The University of
Michigan, 1st Edition, 1975.

[7] J. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, 1992.

[8] H. Hörner, A C++ Class Library for Genetic Programming, Release 1.0 Operating
Instructions, Viena University of Economy, 1996.

[9] P. Whigham, Grammatically-Based Genetic Programming, in Proc. of the
Workshop on G.P.: From the Theory to Real-World Applic ations, pp. 33-41,
Morgan Kaufman, 1995.

[10] W. Feller, An Introduction to Probability Theory and its Applications, Vol. I,
Wiley, pp. 224-225, 1968.

[11] W. Spears and D. Gordon, Evolving FSM Strategies for Protecting Resources, in
Proceedings of the, 2000.

[12] W. Langdon, Evolution of Genetic Programming Populations, University College
London Technical Report RN/96/125, 1996.

[13] R. Ursem, Diversity-Guided Evolutionary Algorithms. In Proceedings of Parallel
Problem Solving from Nature VII (PPSN-2002), p. 462-471, 2002.

