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Abstract

Participatory Sensing (PS) is a known paradigm of collaborative networks which

provides incentives for users to participate in sensing tasks of Regions of Interest

(RoIs). A challenge in wireless networking, however, is to balance the amount

of data collected by users without imposing excessive load to the network. In

this direction, this paper proposes a centralized system to adapt the sampling

rate assigned to each crowdsourcing participant sensor. The sampling rate is

computed based on the standard deviation of samples collected from a given

RoI. The results obtained via simulations show a tradeoff between the sampling

rate and the number of crowdsourcing participants. The more crowdsourcing

participants, the lower must be the individual sampling rate and the amount

of data transferred. This strategy can increase the data delivery rate taking

into account the available short contact times, even though it requires a larger

number of sensors.
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1. Introduction

Participatory Sensing (PS) [1] introduces large-scale distributed sensing sys-

tems capable of collecting huge amounts of data from Regions of Interest (RoI).
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These systems count on users’ resources, such as smartphones, to provide low-

cost data sensing at high sampling rates. Users’ resources, however, are not5

free to use. In this case, even though applications can improve performance

using data from multiple sources, participatory sensing systems must deal with

user incentives to become feasible [2]. Tasks and incentive mechanisms can be

combined in a central entity that identifies RoIs and users eligible to handle

the required sensing tasks. For instance, Waze offers information about traffic10

conditions using the data provided by users, who receive points to rank up in

the application [3].

A large number of data sources and their dynamics can lead to networking

issues concerning bandwidth and connectivity. Such issues are, respectively, a

consequence of the significant amount of generated data and the intermittent15

Internet connectivity of sensing devices. These challenges are similar to those

from Vehicular Ad Hoc Networks (VANETs) [4]. In the era of the Internet of

Things (IoT), the VANET has evolved to a new paradigm, known as the Internet

of Vehicles (IoV) [5]. In IoV, besides users, smart sensors and actuators can be

installed on vehicles and vehicular infrastructure [6]. Consequently, the service20

provided depends on the ability of geo-distributed nodes, mobile or not, to

receive data from or to send data to a central entity on the Internet. The volume

of data generated by the devices, the constraints of the devices, and the vehicular

mobility, make PS even more challenging in IoV scenarios. Therefore, we can

reduce the number of samples collected by each participant in a given RoI,25

adjusting individual sampling rates according to the number of participants.

The more participants, the lower the individual sampling rates without accuracy

loss.

Several PS systems have been proposed in the literature for IoV scenar-

ios. SensingBus, for instance, improves weather monitoring in a city using sen-30

sors embedded in urban buses [7]. The idea is to gratuitously complement the

data collected by meteorological stations with finer-grained data from buses, as

they move around the city. Similarly to SensingBus, Mohan et al. [8] propose

Nericell, which uses sensors embedded in smartphones, such as accelerometer,
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microphone, and GPS, to determine road and traffic conditions. Yet, Zhou et35

al. [9] propose a collaborative system to predict the position of buses along their

trajectory. To this end, they use the signal power between cellular towers and

mobile devices. Even though these works focus on collecting data using mobile

crowdsourcing participants, none of them uses adaptive sampling rates. This

means that, whenever participants perform a sensing task, they collect data at a40

fixed sampling rate. The As-Air application [10] and the work from Weinschrott

et al. [11] are, however, two counterexamples. As-Air measures the air quality,

which varies over time, using adaptive sampling rates. Depending on the air en-

vironment, As-Air adapts each node sampling rate using reinforcement learning

to allow optimized air quality monitoring. Following a similar idea, Weinschrott45

et al. propose a system to discover mobile objects that can increase the sam-

pling rate for the sake of robustness. Higher sampling rates are used to increase

the probability of detecting an object of interest. Adaptive sampling is, indeed,

a technique that has been used so far. As far as we know, however, there is still

a gap concerning combining the adaptive sampling within IoV systems based50

on Participatory Sensing.

This paper proposes a participatory sensing system that differs from the

aforementioned works [10, 11]. We investigate the feasibility of embedding in

the participatory system a functionality to adapt the individual sampling rates

of participants, according to both temporal and spatial aspects of IoV systems.55

Moreover, our proposed participatory system addresses both the control of in-

consistent data and the sampling rate used to sense the RoI. To this end, we

assume the existence of a centralizing node, in the cloud, with elastic capac-

ity. This central node receives the data collected by all participants and sets

the sampling rate of each one in each RoI accordingly. The key idea is to re-60

duce the sampling rate of each participant by distributing the sensing task to

all participants in the same RoI. This reduces the amount of energy spent per

participant; at the same time, it maintains the measurement accuracy. In this

paper, we assume that the system is used to evaluate the traffic conditions of a

city and, thus, that crowdsourcing participants are vehicles providing samples65
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of instantaneous speed. If the collected data vary significantly on a road seg-

ment in the RoI, we consider that erroneous measurements are likely to occur

and, therefore, the sampling rate per participant is increased. Similarly, if the

variability on a road segment is small, the system considers the possibility of

reducing the sampling rate. We use as sample values the registers from a one-70

day dataset of the city bus fleet of Seattle, USA [12], assuming that the sensed

data is the bus speed. We show that higher data loads can be delivered only if a

small number of nodes is competing to access the wireless medium. Besides, we

conclude that it is possible to compensate for lower individual sampling rates

with a higher number of nodes, depending on the sensed data variability on a75

given segment. This approach reduces the load on each crowdsourcing partic-

ipant, saving energy, improving the delivery rate, and avoiding the transfer of

large data volume. Moreover, results indicate that the adaptive sampling rate

can reduce sampling errors without impacting the data load.

This paper is organized as follows. Section 2 introduces the notions of par-80

ticipatory sensing. Section 3 describes the network architecture considered and

proposes the sensing system with an adaptive sampling rate. In Section 4 we

characterize the datasets used in this paper, whereas in Section 5, we analyze

our participant system proposal. Finally, Section 6 concludes this paper and

discusses future research directions.85

2. Participatory Sensing Overview

Currently, the sensing power embedded in vehicles or even in personal mobile

devices grows at a fast pace. This is a consequence of the evolution of mobile

technology and the miniaturization of electronic components. If these devices

are used together for sensing tasks, it is possible to build more robust, scalable,90

and low-cost sensing systems. Consequently, more sophisticated applications

can be developed, such as the ones for Smart Cities [13]. Combining the partial

data collected by each user, we compose a complete view of the entire RoI.

Hence, relying on the participation of users to sense the environment, using their
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personal devices, is the focus of the research paradigm known as Participatory95

Sensing (PS). Several applications have been developed for PS, such as natural

resources management [14], urban planning and monitoring [15, 8], and public

healthcare [16].

In a PS system, tasks are assigned to users’ devices to allow data collection

in the RoI [17], analytics, and sharing. PS systems enable to collect data in100

more extensive areas due to the number of crowdsourcing participants and their

mobility, thus increasing the knowledge about the RoI. The data collected by all

participants needs processing, which can be performed on an external central

entity. Hence, a resource-rich server in the cloud can play the role of processing

entity of a PS system, also providing storage capacity. The use of cloud resources105

has been often considered to support PS systems [18].

User participation in data collection and transfer is stimulated through in-

centive mechanisms. In PS systems, depending on the reward, a user can be

motivated to collect a large volume of data during a short interval. For instance,

users can inform their speed to the system in exchange for discounts on services110

or targeted advertising, according to their profiles. The system can also yield,

as reward, useful information obtained from the processed data collected by the

crowdsourcing participants, such as traffic information, as in Google Maps or

Waze. Exhaustion of users’ resources can lead to the collection of faulty data.

Hence, there must exist a tradeoff between the quantity and the quality of the115

collected data.

PS can be applied in a multitude of scenarios. In this paper, we focus on

Vehicular Ad Hoc Networks (VANETs), exploring the areas of urban planning

and monitoring. In this scenario, PS can be used to plan a new traffic de-

tour, to create a new bus stop, or to design the expansion of roads, to cite a120

few examples. Data is inserted into the system by crowdsourcing participants,

whose participation is fundamental. Nevertheless, this participation can incur

on networking issues. If a large volume of data is collected within the RoI,

the transfer between participants’ devices (On-Board Units - OBUs) and Road

Side Units (RSUs) can be an issue due to short contacts. If external servers125
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do not entirely receive the data, the system performance may become at least

temporarily impaired. In this paper, we use a dataset from the city of Seattle

(Section 4) as the basis of our PS system scenario. In this dataset, we assume

that the city buses are the crowdsourcing participants and each bus contributes

to the system with information about its own speed. It is worth mentioning130

that other datasets could be used without loss of generality.

3. Adaptive Sampling Approach for Participatory Sensing Systems

One of the main challenges for PS systems is to efficiently cover an RoI

without overloading both participants and the system itself. A possible solution

could be to increase the bandwidth available for collected data transfers or to135

increase the number of available RSUs. As a consequence, participants would

need to upload fewer data at each RSU, if we assume that the number of contacts

increases proportionally. The shortcoming of these solutions, however, is an

increased cost of implementation and maintenance. Hence, instead of increasing

the number of RSUs, or the available bandwidth to transmit the collected data,140

this paper investigates the feasibility of a participatory sensing system based

on adaptive sampling rate, which varies according to each segment condition

in an RoI. The sampling rate depends on the sensed data standard deviation

on a given road segment within an RoI. The idea is to increase the sampling

rate overtime on each segment if the standard deviation is high or to reduce145

it otherwise. Such adaptability is vital to minimize the overall sampling error,

considering the entire RoI, which is obtained from the consolidated data. The

sampling rate dynamics must be taken into account so that: (i) the RoI is

entirely sensed providing accurate measurements compared with real values and

(ii) neither the participating users nor the wireless or the access network can150

become overloaded. This section presents the network scenario considered in

this paper and describes the PS system proposed with an adaptive sampling

rate.
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3.1. Vehicular network scenario

We consider a vehicular network composed by a central server, access points155

(Roadside Units - RSUs), and participants equipped with sensing-enabled de-

vices (On-board Units - OBUs), as shown in Figure 1. The central server is

responsible for processing the data collected by the crowdsourcing participants.

Based on the information obtained from the processed data, the central server

offers services to external users, such as information about traffic conditions.160

This server must have elastic capacity to support the system and, thus, it is

located in the cloud, so as not to act as a bottleneck. The RSUs are connected

to the Internet through an access network, which is typically wired. Finally,

the OBUs cannot communicate using cellular infrastructure and, thus, they can

reach the central server only through the RSUs. This communication uses the165

IEEE 802.11p standard.

Authentication and security issues related to the proposed system are out

of the scope of this paper in its current version. Therefore, we assume for the

sake of simplicity that participants do not collude. Hence, the central server

is only capable of validating received samples taking into account that most170

Figure 1: The vehicular network scenario considered in this paper. Crowdsourcing participants

start collecting data as they receive a sensing task at the RoI entrance from an ingress RSU.

Afterward, the participants deliver the collected data to an egress RSU when leaving the RoI.
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participants are legitimate. To avoid collusion attacks, we could envision exten-

sions to our system with current directions found in the literature. In general, to

avoid the participation of malicious users, the participatory sensing system must

use authentication, authorization, and access control mechanisms. The central

server is a trusted authority, and it communicates directly to RSUs. These175

RSUs could be used to authenticate participants, based on efficient VANET

authentication protocols, such as RAISE [19]. This protocol can be adapted to

our system to verify message authenticity. Whenever a participant enters an

area covered by an RSU, the RSU assigns a unique shared symmetric secret key

and a pseudo ID with her. The symmetric key is used by the participant to gen-180

erate a symmetric message authentication code, which will be further attached

to all its messages. As all the RSUs know the key for generating this code, any

RSU could be used to verify the message. Upon authenticating participants,

the system can avoid inside outbreaks by tracking the actions of each partic-

ipant by using a reputation scheme. The system must maintain a reputation185

score associated with each participant, based on the participant performance in

sensing tasks [20]. The trustworthiness of each participant is then evaluated,

and the system can consider only the contribution from trusted participants.

It is possible to combine our proposal with the reputation system proposed by

Huang et al. [21]. The central server in our scenario operates as the application190

server in the proposal of Huang et al., which associates a reputation score to

each participant. This score reflects the level of trust perceived by the central

application server about the data uploaded by the participant over time. Trust

can also be provided in a hardware-like solution. For instance, Dua et al. [22]

propose to use a trusted sensing peripheral to attest the sensor data integrity at195

the source, making the system resilient to collusion, as local integrity check is

inherently resilient to it. It is worth mentioning that detecting collusion attacks

is a complex research area in wireless networking as a whole, given the network

dynamics [23].

Figure 1 shows a participant node that, upon entering the Region of Interest200

(RoI), has the opportunity to receive requests to contribute with the participa-
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tory sensing system. The central server sends this request, and it is delivered

to the user through an RSU at the RoI entrance (ingress RSU). To simplify, an

RoI is composed of road segments delimited by RSUs. In our scenario, there

are no RSUs within the RoI and, because OBUs do not communicate with the205

cellular network, the update of the sampling rate does not happen continuously.

This is, in fact, an assumption we make for the sake of offloading data traffic

from mobile networks [24, 25, 26]. Nevertheless, this is not a requirement as

the server may contact the participant node at the RoI entrance and collect the

data at the RoI exit, assuming it tracks the participant with data from a GPS210

embedded in the vehicle, for instance.

In the RoI, a participant periodically collects sample measurements, respect-

ing the sampling rate defined by the central server for a given road segment.

When the crowdsourcing participant leaves the RoI, she delivers the collected

data to the central server through an RSU at the exit (egress RSU). The RSU215

sends to the central server the collected data from different participants in the

same RoI. The central server, in turn, consolidates the received data and pos-

sibly offers services to external users. In this paper, incentive mechanisms are

not addressed, even though we assume that users are rewarded somehow if they

participate in the sensing system.220

3.2. Operation of the adaptive PS system

In this paper, the crowdsourcing participants know the adapted rate at which

they collect samples on each segment in their trajectory. The trajectory con-

sidered is the one falling within the Region of Interest (RoI), as observed in

Figure 1. The rate adaption depends on the sampling error of each segment,225

which is periodically measured by a central server. According to this error, the

central server calculates the value of the sampling rate on each segment that will

reduce the overall error in the RoI. Then, the central server sends requests to the

RSUs in the system, containing the recommended sampling rate for each seg-

ment. When a participant enters the RoI, the RSU at the entry point forwards230

a request to the participant, so that she can adapt her sampling rate according
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to the needs of each segment within the RoI. We represent a RoI, R, by a set of

segments ςj , i.e., R = {ς1, . . . ,ςm}, where m is the number of segments within

R. The set of crowdsourcing participants pi is denoted as P = {p1, . . . ,pn},

where n is the total number of users in the system. Each user pi ∈ P collects235

samples that contain the position, the timestamp, and the value of the sampled

measurement. Then, each user pi registers the sample tuple in a data trace Ti,

which is further transferred to the egress RSU. In our scenario, each sample

stores the value of the vehicle speed. We highlight that the proposed sensing

system does not lose generality if other sensors or other scenarios are used.240

When entering the RoI at the ingress RSU, a participant pi has the oppor-

tunity to receive a vector π(∆t)π(∆t)π(∆t) = 〈π(∆t)
1 , . . . ,π

(∆t)
m 〉 containing the description

of the sensing task to be performed in the RoI during the interval ∆t, as shown

in Figure 1. Figure 2 illustrates the vector π(∆t) and provides further details

about the content of its corresponding elements.245

vector π(∆t)π(∆t)π(∆t)

π
(∆t)
1

π
(∆t)
2

. . .

π
(∆t)
m

in more details

〈(Xj
init, Y

j
init); (Xj

final, Y
j
final); r

(∆t)
j 〉

〈(0, 1); (0, 2); 10〉

〈(0, 2); (0, 3); 15〉

. . .

〈(3, 5); (3, 5); 10〉

Figure 2: The vector π(∆t)π(∆t)π(∆t) = 〈π(∆t)
1 , . . . ,π

(∆t)
m 〉 and, in more details, the content of each

element in π(∆t)π(∆t)π(∆t), composed of the initial and the final coordinates of a segment ςj in the RoI

and its corresponding recommended sampling rate (r
(∆t)
j ). The values for the coordinates as

well as for the recommended sampling rates are integers for the sake of simplicity.

Figure 3(a) shows the interaction between the participant and the RSU. The

participant pi requests vector π(∆t)π(∆t)π(∆t) to the RSU upon entering the RoI. Partici-

pant pi receives vector π(∆t)π(∆t)π(∆t) from the RSU as a data structure, composed by a

list of tuples that describes the segments of the RoI and their respective recom-

mended sampling rates. Each segment ςj in π(∆t)π(∆t)π(∆t) is represented by its initial250

and final coordinates, denoted by (Xj
init,Y

j
init) and (Xj

final,Y
j
final), respectively.

The participant knows her own trajectory and uses only the sampling rates that
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(a) Process executed on the OBU of a participant.

(b) Process executed on the Central Server (CS).

Figure 3: Flowchart of the processes executed on the central server and on the participant’s

OBU. Participants request vector π∆tπ∆tπ∆t to an RSU when entering an RoI and collects data

according to the sample rates and segments information provided in π∆tπ∆tπ∆t. The central server

communicates with the participant’s OBU via the RSUs, sending the sensing tasks and re-

ceiving data. Upon receiving a new trace TiTiTi from a crowdsourcing participant pipipi, the central

server executes the actions shown in the flowchart.

correspond to the segments through which she travels. Hence, before each col-

lection task, the participant continuously checks the current segment, ςj , and

verifies if it is the last segment, ςm, received in vector π(∆t)π(∆t)π(∆t). If it is not, pi255

checks if vector π(∆t)π(∆t)π(∆t) contains a sampling rate for the current segment, r
(∆t)
j , so

that pi can collect and store the sampling data. When the participant reaches
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the last segment described by vector π(∆t)π(∆t)π(∆t), i.e., π
(∆t)
m , and there is a sampling

rate for this segment within the vector, the participant collects the data and

store it to further create trace Ti. If there is no sampling rate for the segment,260

the participant creates trace Ti with the previously stored data. Upon creation

of trace Ti, the participant contacts the RSU to deliver the trace.

It is noteworthy that, if the system knows the route of each participant pi,

vector π(∆t)π(∆t)π(∆t) can be summarized to contain only the segments through which

pi will travel. Even in the more general case, not necessarily all the segments265

of pi’s trajectory need to be described in vector π(∆t)π(∆t)π(∆t). If the sampling rates

of two consecutive segments are the same, and if they have the same direction

and sense, the system can aggregate both segments in a single tuple. The

collected data is offloaded through the egress RSU. It should be noted that,

although vector π(∆t)π(∆t)π(∆t) is individual for each vehicle, consecutive vehicles arriving270

with a ∆t + ε difference in time, where ε > 0, can receive vectors with the

same description and recommended sampling rates if no change is observed in

the segments of the RoI. Nevertheless, if a modification happens, consecutive

vehicles receive different vectors.

The central server verifies whether the samples have inconsistencies, which275

can happen due to failures on the sensing system or malicious actions1, upon

receiving a trace Ti from participant pi. After validating the received samples,

i.e., checking if the values are feasible for the RoI, the central server computes

the standard deviation of the samples received for each segment ςi and updates

the standard deviation vector considering the time interval ∆t. The updated280

standard deviation vector is denoted as σ(∆t)σ(∆t)σ(∆t) = 〈σ(∆t)
1 , . . . ,σ

(∆t)
m 〉. It is note-

worthy that σ
(∆t)
j , corresponding to the standard deviation of segment ςj , is

calculated considering the samples received in the previous traces in the same

interval ∆t plus the samples received in the last trace. The standard devia-

tion is then used to infer the measurement error for each segment, as this error285

cannot be obtained directly. Based on this error, if at least one segment with

1The problem of data consistency is addressed in our technical report available at [27]
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high or low standard deviation exists, the sampling rate for this segment must

be better adapted. Thus, we define the vector r(∆t)r(∆t)r(∆t) = 〈r(∆t)
1 , . . . ,r

(∆t)
m 〉, which

contains the recommended sampling rate for all segments in R during the time

interval ∆t. Note that a sampling rate r
(∆t)
j is recommended for the segment290

ςj . Figure 3(b) shows the process executed by the central server to update the

standard deviation σ(∆t)σ(∆t)σ(∆t) and the recommended sampling rate r(∆t)r(∆t)r(∆t) vectors. To

investigate the feasibility of using adaptive sampling rate in the participatory

system, in our evaluations, we use at most three different sampling rates, i.e.,

cminR, R, cmaxR, where cmin < 1 and cmax > 1 are constants selected accord-295

ing to the measured standard deviation. The mechanism to dynamically choose

the values of cmin and cmax is not in the scope of the current work.

Each application running on the system is responsible for setting the thresh-

olds that define the lower and upper limits of the standard deviation. The

thresholds are set according to the tolerated sampling error on each road seg-300

ment, which depends on upstream application requirements. As discussed by

Lee and Hoh [28], different applications may have different minimum acceptable

accuracy levels. Hence, if the application requires higher accuracy, the central

server must be able to adjust the sampling rate of each participant accordingly.

Upon processing the collected data, the central server can infer if the sampling305

error leads to the accuracy required by the current application. Then it can ad-

just, again, the data collection with higher or lower sampling rates. This closes

the data collection loop without the participation of external users, who play

only the role of data consumers. In our paper, we consider that external users

are only aware of the quality of the application provided by the central server310

and that the data collection process is totally transparent to them. In addition,

we assume that the central server is able to maintain the required application

accuracy by adjusting the sampling rate of each participant. If the maximum

sampling rate achievable by all participants does not satisfy the application re-

quirements, the system will need more participants. This problem, however, is315

not exclusive of our proposal as it can affect any PS system.
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4. Dataset

We analyze the impact of the sampling rate adaption in a city according

to requests from the central server. To this end, we use the Ad Hoc City [12]

dataset, which contains the daily movement of the bus fleet of Seattle, in Wash-320

ington, USA. The dataset was collected for one month, from October 31st, 2001,

to December 2nd, 2001, totaling 125 MB of data. The dataset represents the

real movement of city buses. The mobility events of each bus idbus traveling

on route idroute are registered as a 6-tuple as follows: 〈d; t; idbus; idroute; (x, y)〉,

where (x,y) are the Cartesian coordinates of the bus position on date d at time325

t. The bus route is composed of consecutive segments in the RoI.

In this paper, we select a typical case within those available on the trace to

validate our proposal. The goal is to show that increasing, or even reducing, the

number of samples collected in the RoI is feasible and can improve the PS system

without overloading the participants. Hence, we analyze the trace of a typical330

Wednesday, October 31st, 2001, which includes the mobility of n buses (which in

our case represent the set P of participants) on 236 segments. The bus speed is

not provided in the original dataset. We use the Euclidian distance to compute

bus speeds as the segments in the analyzed scenario are mainly straight. Hence,

we consider the bus position and the time interval between two consecutive tu-335

ples of the same bus. Then, if we have the tuples 〈d; t1; idbus; idroute; (x1, y1)〉

and 〈d; t2; idbus; idroute; (x2, y2)〉 from bus idbus, the speed magnitude can be

approximated to

√
(x2−x1)2+(y2−y1)2

t2−t1
. This speed is appended to the second mo-

bility tuple, obtained at instant t2. The same procedure is repeated considering

instants t2 and t3, and so on until the last tuple of bus idbus. In the end,340

we compute all speeds to all buses, enriching the dataset with this additional

information.

Considering buses as the participants of the PS system, we can think of

each tuple as the contribution of a participant to the PS system. As such, the

dataset has 376,491 samples, with an average of avg samples per participant345

bus and an average of 1,595 samples per route. Figure 4 shows the Cumulative
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Figure 4: CDF of the number of samples per route on October 31st, 2001, provided by the

Ad Hoc City dataset used in this paper.

Distribution Function (CDF) of the number of samples per route in the dataset.

We observe that if we gather together 90% of the routes, we obtain only 4,000

samples, approximately. This means that approximately 93 routes concentrate

the majority of samples. The route with the highest number of samples is350

Route 007 (idroute = 007), which provides 15,601 samples. Hence, in this paper,

we analyze only this route. The methodology and the results can be reproduced

for any other route.

The speeds of buses are calculated based on the displacement registered in

the original data, as mentioned before. The obtained results reveal some unreal355

values, which are not taken into account (Figure 3). The unreal values ap-

pear because of communication issues involving the GPS receiver and the GPS

satellite constellation. Communications may fail because of a temporary lack of

connectivity, caused by non-line-of-sight links, just to cite one typical problem.

This would incur unreal positions and consequently unreal speed values. These360

speeds are not considered in our results, as they would also affect the sampling

rate variation, possibly adding complexity to the analysis. We removed such

unreal speeds from the dataset before running simulations and, therefore, our

results remain impartial. To disregard the unreal values, the set of samples of

each route is submitted to a validation process. We first verify whether the bus365

position given by the sample is within the coordinates of the city of Seattle.

Then, we verify if the estimated speed, vi, for the sample is within the interval
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Figure 5: Total number of contributions per bus in Route 007 on October 31st, 2001.

[0,vmax km/h], which defines the reasonable range of speeds for the scenario.

The maximum bus speed allowed in the metropolitan area of Seattle2 is approx-

imately 56 km/h. In this paper, however, we consider vmax = 110 km/h, which370

is the maximum speed allowed in the entire city of Seattle2. The validation

process applied to Route 007 results in the exclusion of 55 samples, which are

equivalent to 0.35% of the total number of samples, being thus, negligible.

4.1. Characterization of Route 007

We characterize Route 007, considering its entire extent, which is approxi-375

mately 15.45 km. The average duration of each trip in this route during week-

days is 44 minutes. Figure 5 shows the number of samples for each bus in

Route 007, organized in decreasing order of number of samples. The x-axis rep-

resents the bus identification (idbus), while the y-axis is the number of samples

for the x bus. The average number of samples is shown in this figure by the380

horizontal red line, and it is equal to 305 samples. The Route 007 had 51 buses

moving around on October 31st, 2001, and the buses that collected the largest

number of samples are idbus = {4004, 4026, 4042}, participating with 1,304, 931,

and 848 samples each, respectively. The buses with the poorest participation

are idbus = {2391, 3562, 5055}, with 9, 19, and 22 samples each, respectively.385

The average speed along the day in Route 007 is 19.91 km/h. Aiming to

2Information available on the Seattle department of transportation website, http://www.

seattle.gov/transportation/sdotfaqs.htm, accessed in July 2017
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Figure 6: Average bus speed on Route 007 obtained from the subdivision of this route into

segments of 100 m in length. The ingress RSU is at x = 0 and the egress RSU is at x =

17,400 m.

evaluate this route in more detail, we divide the route into smaller segments of

100 m in length, and we compute the average speed during the day for each

segment. Figure 6 shows the average speed obtained for each segment. We

observe that the maximum average speed on Route 007 is 34 km/h. Moreover,390

buses do not move at their maximum allowed speed in the city of Seattle2 on

any segment of Route 007 during the entire day. This indicates the presence

of traffic jams, bus stops, or several traffic lights in the area. We also observe

in Figure 6 that some segments present a significantly lower average speed,

indicating that there must be a higher concentration of traffic lights, bus stops,395

or a more intense traffic jam.

Figure 7(a) shows the number of buses and samples per hour in Route 007

on October 31st, 2001. The x-axis represents the time interval of the day, while

the y-axis gives the total number of buses at the x interval. The color grid

shows the total number of samples at each interval. The darker the blue, the400

higher the number of samples. This figure shows that the number of buses that

contributes to the sampling system varies between 3 and 31 buses, depending

on the time interval analyzed. The number of samples obtained at each time

interval is not proportional to the number of buses participating in the sensing

system at that time interval. For instance, we observe that 31 buses participate405

in the system between 17 and 18 hours and that they collect 998 samples.

The highest number of samples, however, is obtained between 10 and 11 hours,
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(b) Average number of samples overtime.

Figure 7: (a) Number of buses and samples per hour in Route 007, on October 31st, 2001.

(b) Average number of samples per bus at each hour of the day.

totaling 1,240 samples collected by 19 buses. Between 3 and 4 hours, we have the

poorest participation, totaling 265 samples collected by 3 buses. The average

number of buses per hour on the analyzed day is 19, and the average number410

of samples per hour is 777 samples.

Figure 7(b) shows the average number of samples per bus at each hour of

the day. The total average is 58 samples per bus, and the interval between

2 and 3 hours has the highest average per bus, totaling 199 samples per bus

on average. This happens because at this time of the day there are very few415

buses that are responsible for a significant number of samples, as shown in

Figure 7(a). Between 10 and 11 hours, the interval with the highest number

of samples, the average number of samples per bus is 59. Smaller averages are

interesting because this means that the volume of data sent by a single bus to an

RSU is not high. Nevertheless, the average value cannot be very small because420

the samples together must remain a representative for the entire RoI.

5. Evaluation of the Proposed Sensing System

The proposed system considers both temporal and spatial aspects of the RoI.

The spatial aspect is taken into account as we divide the RoI into segments, ςi,

while the temporal aspect is considered when we divide time into intervals,425

∆t. To evaluate the proposed sensing system, first, we need to define the most
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(b) Sliding window.

Figure 8: Analysis of the size of the time window ∆t∆t∆t comparing the fixed-time and sliding

window approaches.

suitable value for the time window, ∆t, to be considered for the evaluation.

Then, using the chosen time window, we can evaluate the performance of our

system in terms of delivery rate, data load, network load, and sampling error.

5.1. Time window evaluation430

The time window ∆t is important to obtain the average speed of the buses

and the number of collected samples per interval. As these features depend on

∆t and they are essential to the operation of the system, we investigate which

∆t is the most suitable for the size of the time window. To this end, we consider

sliding and fixed-time windows. In both approaches, we assume that the first435

window begins at time 0 h and the last window finishes at time 20 h, which is

the total duration of the trace for route idroute = 007 on October 31st, 2001.

We investigate the size of the time window, ∆t, varying the range of possible

values from 5 to 60 minutes and considering time steps of 5 minutes. Figure 8(a)
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shows the result for the fixed-time window approach and Figure 8(b), for the440

sliding window approach. In these figures, the color of each pair (x,y) represents

the average speed calculated at time x using a time interval of y minutes. In both

approaches, we observe that shorter windows capture greater and finer variations

in the average speed. The behavior obtained for both approaches is very similar,

but there is some difference at the moment of transition between two consecutive445

fixed-time windows compared to the corresponding interval using the sliding

window approach. It is noticeable that when we increase the window size in

both approaches, we have a reduction in information granularity. Besides, when

using the fixed-time window approach, there is also a loss of information at each

transition. Nevertheless, the loss of information does not change, significantly,450

the interpretation of the current state of the route. Even when considering a

fixed-time window of 60 minutes, we can still observe the same overall behavior

of the sliding window with ∆t > 35 minutes. Without loss of generality and

because fixed-time windows are easier to implement, in the remaining of this

paper, we use a fixed-time window of 60 minutes to evaluate our proposed455

sensing system.

5.2. Performance evaluation

We evaluate the performance of the proposed sensing system in terms of

data delivery rate, sampling error, and data and network loads. The collected

measurement is the speed of buses on a predefined segment of the route. The460

network administrator defines these segments. In our scenario, we consider that

Route 007 is divided into segments of 100 m. The mobility and communication

in the scenario are simulated using the network simulator NS-3, version 3.263.

5.3. Data delivery rate

The evaluation of the data delivery rate verifies the tradeoff between the465

number of nodes and the volume of data transferred per node. The goal is

3Available on https://www.nsnam.org/overview/780what-is-ns-3/, accessed in July

2017
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(a) Egress RSU (RSU at distance x =

17,300 m, seen in Figure 6).
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seen in Figure 6).

Figure 9: Delivery rate at each RSU located at the egress and ingress points on Route 007,

varying the number of crowdsourcing participant buses and the data load produced by each

one.

to deliver the data collected by buses within the Region of Interest (RoI) to

the RSUs. To accomplish that, we analyze the network capacity and calculate

the data delivery rate through simulations. We vary the number of buses and

the number of samples per bus to be transferred to an RSU placed at the left470

extremity (ingress RSU at distance x = 0 m) and another RSU placed at the

right extremity (egress RSU at distance x = 17,300 m) of Route 007, as seen in

Figure 6.

Figure 9 presents the relation between the delivery rate, the average load

transferred from buses to RSUs, and the number of buses competing to access475

the medium during the data transfer. The delivery rate at the egress RSU is

higher when the average load per bus is lower, e.g., 1,000 samples per bus. The

delivery rate decreases as the average load increases, reaching up to ≈ 60% for

a data load of ≈ 2,500 samples per bus. This can be due to the short duration

of contacts between the buses and the RSU, which may not be sufficient to480

transfer the entire data completely. The number of buses contending for the

medium also reduces the delivery rate. For instance, considering the same load,

1,500 samples per bus, the delivery rate is ≈ 65% if we have ≈ 25 buses, and

≈ 80% for ≈ 10 buses. This reduction can be due to the increase in the number

of collisions when more than one bus tries to transfer data simultaneously to485
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Figure 10: Average contact time between buses and RSUs placed at each 100 m. It is clear

that buses contacting the egress RSU (x = 17,300) have much longer lasting contact times

than the ones contacting the ingress RSU (x = 0).

the same RSU. It is noteworthy that, for higher loads, above 3,500 samples per

bus, data delivery has higher rate when very few buses contend for the medium.

At the ingress RSU, both the number of buses and the load per bus similarly

influence the delivery rate. Even for lower loads and fewer buses, the delivery

rate is low. The difference between the behaviors observed for the egress and490

ingress RSUs is a consequence of the shorter contact time between buses and

the ingress RSU. Figure 10 shows the average contact time along Route 007 to

corroborate the expectation. The average contact time with the ingress RSU is

much shorter than with the egress RSU. This is justified by the higher speed

observed for buses traveling on the road segments closer to the ingress RSU495

(Figure 6). At both ingress and egress RSUs, data delivery of higher loads

happens only when the number of buses contending for the medium is small.

For instance, to have a chance to succeed in the data delivery, the number of

buses must be lower than 5 when more than 3,500 samples per vehicle exist.

At the ingress RSU, however, this delivery is highly inefficient due to the short500

contact time between the few buses and the RSU.

Considering the egress RSU, where the average contact time is sufficient

to have high delivery rates, we can conclude that higher delivery rates can be

obtained when several buses participate in the system and the individual data

load of each bus is low. Hence, it is not interesting to overload buses, requesting505

them to sample a high volume of data individually. This is important because
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Figure 11: Standard deviation of the speeds along Route 007 taking into account all possible

samples in the raw scenario.

it confirms that the PS system operation is improved when the data load is

distributed among the participants. Moreover, even considering the participant

viewpoint, data overloading is not attractive because it can quickly deplete

participants’ resources.510

5.4. Sampling error

In an ideal scenario, the participatory sensing system knows precisely the

volume of data needed to reproduce the sensed information with small error.

This is advantageous, as this knowledge would avoid under or oversampling.

Consequently, we could avoid estimation errors and waste of resources, respec-515

tively. As such ideal condition does not exist, we consider that, even though the

proposed system cannot determine the exact volume of data required for exact

results, it can observe regions needing more or less samples. This is based on

the analysis of the data variability, i.e., the standard deviation of the samples

considered throughout the different segments. Figure 11, for instance, shows520

the standard deviation of the speed along Route 007 taking into account all

possible samples. It is quite easy to observe that in some segments the standard

deviation is higher whereas in other it is lower. Hence, the system must be able

to define upper and lower tolerated levels to determine regions requiring more

or less samples. In this paper, as discussed next, we define this regions by visual525

inspection.

Unlike Figure 11, Figure 12 shows the variability of the average speed mea-
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(a) Raw sensing system, all segments have a constant average sampling rate equal to R.
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(b) Proposed sensing system working on the segments with higher variability (filled in gray),

the sampling rates in the gray regions are equal to 2R.
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(c) Proposed sensing system working on the segments with lower (filled in white) and higher

variability (filled in gray), the sampling rates in the white regions are equal to 0.5R and in

the gray regions, 2R.

Figure 12: Normalized average speed of one bus (“1-heavyweight”) and 21 buses that collect

the same volume of data as the 1-heavyweight bus (“21-lightweights”) on the 100-meter-long

road segments. The gray region represents the segments with greater differences in the average

speed of buses.
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Table 1: Buses within the “1-heavyweight” and “21-lightweight” bus groups.

Group Bus identification

1-heavyweight 4004

21-lightweights
2309, 2334, 2338, 2352, 2391, 2399, 2457, 2459, 3549, 3562, 3582,

3584, 3588, 4005, 4006, 4009, 4010, 4022, 4028, 4043, 5055

surements with and without the proposed sensing system, considering that not

all buses collect all possible samples. Instead, we consider only the bus that

collects the largest number of samples, called hereinafter “1-heavyweight”, and530

the set of buses that sum up the same number of collected samples compared

to the “1-heavyweight” bus, hereinafter called the “21-lightweights”, which in-

cludes 21 buses. The identification of the buses in each set is shown in Table 1.

This separation is important to find out if it is better to assign the task to

only one participant with many resources or to divide the task into smaller ones535

distributed among several participants with limited resources. In Figure 12,

the averages are normalized by the average speed considering all the samples in

the dataset for each 100 m segment. The adaption of the sampling rate occurs

when the system determines that more samples must be collected in a given

region where higher variability is observed, or when the system detects a region540

with lower variability and reduces the sampling rate. The regions with higher

variability are filled in gray, meaning that the variability around the horizontal

line, representing the normalized average speed (equals to 1), is greater; whereas

the regions with lower variability are filled in white. Even though in this paper

we determine these regions by visual inspection for the sake of simplicity, other545

techniques could fit well. We first show the result of the raw sensing system,

i.e., without our proposal, in Figure 12(a). Then we apply our proposal only to

the higher variability regions to obtain the result shown in Figure 12(b). For

last, we apply our proposal to both variability regions, obtaining the result in

Figure 12(c).550

Figure 12(a) shows the results considering an average sampling rate, R,

where R =
# of samples
# of segments

, approximately equal to 7.5 in all segments. This
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Figure 13: CDF of the normalized average speeds considering the entire Route 007.

means that 1,304 samples are collected throughout the 174 segments of Route 007.

Note that the averages have higher variability on the road segments filled in gray.

If the sampling rate is twice as fast, i.e., 2R = 15, only for the segments with555

higher variability (filled in gray), we already observe an improvement, as shown

in Figure 12(b). The adaption of the sampling rate can also be performed in seg-

ments with lower variability (white region). In this case, it is possible to reduce

the volume of data collected in lower variability regions, simultaneously avoid

oversampling and save participants’ resources. Figure 12(c) shows the result560

considering a sampling rate of 0.5R in segments with lower variability (white

region) and sampling rates of 2R in regions with higher variability (gray region).

We can verify that reducing the volume of data collected in the lower variability

region results in data variability similar to the one shown in Figure 12(b), and

we still have a significant reduction of the measurement error compared with the565

original configuration with adaptive sampling. Hence, we verify the possibility

to compensate for the higher sampling rate in higher variability regions, using

fewer data in lower variability regions, but without losing information.

Figure 13 shows the CDF of the normalized average speeds using different

combinations of the following sampling rates: 1R, 1.5R and 2R for the higher570

variability regions (gray regions), and 1R and 0.5R for the lower variability

regions (white regions). This is equivalent to plot all the normalized average

speeds shown in the y-axis of Figure 12 as a CDF, separating the results obtained
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for the 1-heavyweight and the 21-lightweights. As such, the closest to a step

function in x = 1 is the CDF curve, the smaller is the difference between the575

real and the measured values of the average speed. Table 2 shows how the

sampling rates are combined to obtain the results in Figure 13. We observe

that, when the sampling rate in the gray regions is increased from 1R to 1.5R

or 2R, maintaining the sampling rate in the white region constant at 1R, the

differences of average speeds are reduced (closer to a step function at x = 1)580

for both the 1-heavyweight bus, Figure 13(a), and the 21-lightweight buses,

Figure 13(b). This is represented by the configurations 1.5R : 1R and 2R : 1R.

Such a reduction is small because the sampling rate is increased only for the

gray region, which represents only a few segments. The same trend is observed

for configuration 2R : 0.5R, even though the result for 21-lightweight buses is585

quite similar to the original configuration, as we will explain shortly.

If we isolate only the segments with higher variability, as shown in Figure 14,

we observe more clearly that the differences between average speeds reduce when

the sampling rate increases, even for the configuration 2R : 0.5R. Note that the

measured average speeds become closer to the ones existing in the dataset as590

the CDF curve approaches a step curve at x = 1. Hence, measured values lower

than x = 1 represent average speeds lower than the ones found in the dataset,

whereas measured values higher than x = 1 represent average speeds higher

than the ones found in the dataset. The difference is more significant to the

1-heavyweight group, seen in Figure 14(a). Further analyzing the 21-lightweight595

Table 2: Combination of the sampling rates used in the simulation of the proposed system.

Name
Segments with higher

variability (gray regions)

Segments with lower

variability (white

regions)

Without the proposal 1R 1R

1.5R : 1R 1.5R 1R

2R : 1R 2R 1R

2R : 0.5R 2R 0.5R
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Figure 14: CDF of the normalized average speeds in the segments with higher variability (gray

regions).
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Figure 15: CDF of the differences of average speed in the segments with lower variability

(white region).

group, we observe that the impact is smaller because the samples are randomly

picked within the region with higher variability. Hence, the number of picked

samples may not cover all the segments in the gray region equally. This explains

the performance of the configuration 2R : 0.5R for the 21-lightweight buses seen

in Figure 13.600

Isolating the CDF only for the segments with lower variability, as seen in

Table 3: RMSE of average speeds considering the entire Route 007.

Group without proposal 1.5R : 1R1.5R : 1R1.5R : 1R 2R : 1R2R : 1R2R : 1R 2R : 0.5R2R : 0.5R2R : 0.5R

1-heavyweight 0.422 0.342 0.290 0.264

21-lightweights 0.441 0.387 0.366 0.350
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Figure 15, the behavior of the CDF curve with the rate adaption is similar to

the curve without the adaption, i.e., without the proposed system. Note that

the configurations 1.5R : 1R and 2R : 1R have the same result because they

only modify the sampling rate in regions with higher variability (gray regions).605

The configuration 2R : 0.5R, which applies the 0.5R sampling rate to the white

region, can maintain the measurement error low for both 1-heavyweight and

21-lightweight groups. It is important to highlight that, as the variability in the

white region is smaller, inserting a little bit more variability is tolerable as a

tradeoff to save participants’ resources.610

Table 3 confirms the results showing the reduction of the Root Mean Square

Error (RMSE) of the average speeds compared with those found at the original

dataset. It is noticeable that the error tends to reduce in the entire route

when the sampling rate is increased on the segments with higher variability

(gray regions). The RMSE is even smaller when we simultaneously decrease the615

sampling rate of the segments with lower variability (white regions) and increase

the sampling rate to 2R in the segments with higher variability (gray regions).

This result is very interesting if we compare it with the results of the 2R : 1R

configuration. We claim that this is a consequence of the samples used.

We would like to emphasize that, even using only two gray regions, which620

were visually chosen, we can prove the feasibility of the proposed PS system.

The same conclusion could be possible even for different types of collected data,

e.g., we could be interested on road luminosity and not on vehicular speeds.

More elaborated strategies, not based only on data variability, could also be

used to improve the system. Nevertheless, we chose to maintain the simplicity625

of the system to prove that even relying on simple choices, an adaptive PS

system for a highly dynamic environment such as IoV is feasible.

5.5. Data load

We investigate the volume of data carried by each participant, as this volume

can increase in road segments with higher variability (gray region) and can630

reduce in road segments with lower variability (white region). In Route 007,
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Figure 16: Performance comparison of the data load over buses and in road segments in the

raw and in the proposed systems.

there is a total of 51 buses traveling through 174 road segments. Not all of

them adapt the sampling rate and, moreover, not all segments need higher

sampling rates. Figure 16 shows a comparison between the data load with and

without the adaptive system for both 1-heavyweight and 21-lightweight buses,635

according to the scenarios described in Table 2.

Figure 16(a) shows the comparative results for buses. The x-axis represents

the bus identification, and the y-axis represents the number of samples per

segment for the x bus. We observe a reduction of the number of samples on

each segment when the proposed sensing system is used with the configuration640

2R : 0.5R, meaning that the data load for each bus decreases. This happens

because the rate assigned in the white region (0.5R) compensates the higher

rate applied in the gray region (2R). This is true only for the 21-lightweight

group because they present a data load distributed among the participants,
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compared to the 1-heavyweight bus (idbus = 4004). Again, we confirm that645

by distributing the sampling task, we can save individual resources. Using

configurations 1.5R : 1R and 2R : 1R, the number of samples per segment

grows, consequently increasing the load for each bus, as we only change the

sampling rate in the higher variability region (gray region).

Figure 16(b) compares the load per bus on each road segment. In the x-axis,650

we have the distance the segment is from the ingress RSU of Route 007, and the

y-axis shows the number of samples per bus. The measurements are normalized

according to the results obtained without the proposal. In the configuration

2R : 0.5R, we obtain, for most of the segments, a more significant reduction of

the number of samples per bus. The only segment that presents a higher load655

is the one at 15,400 m, where there exists a greater concentration of samples

owned by the 1-heavyweight bus. This segment is also in the region of higher

variability, meaning that the 1-heavyweight bus was in charge of collecting a

great number of samples, incurring a high data load. This problem could be

mitigated if more buses collected samples in this segment as proposed in the660

21-lightweight alternative.

We show in Table 4 the summary of important observations related to the

system configuration with the best results found for the configuration 2R : 0.5R.

Concerning the crowdsourcing participants (buses), we observe that 43.14%

of them changed their sampling rate. Among these, ≈ 95.46% reduced their665

sampling rate. This adjustment represents a ≈ 67.49% reduction in the data

load of participants. Besides, in ≈ 57.46% of the segments, there is a sampling

rate change. In most of them, the system configuration reduced the sampling

rate in ≈ 86%, showing that the adaption of the sampling rate is important for

routes similar to Route 007. This result confirms that in most cases, considering670

either buses or segments, the sampling rate is over-dimensioned and can be

reduced to save participants’ resources.

It is also important to discuss the performance of the proposed system when

the RSU fails to update the sampling rates assigned to a participant. Partici-

pants execute only the sampling rates received in the vector π(∆t)π(∆t)π(∆t) at the time675
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Table 4: Comparison of the volume of data with and without the proposed sensing system,

considering the point of view of buses and segments and using the configuration 2R : 0.5R.

Point of view
Sampling rate

change

Decreased

sampling rate

Reduced

data load

Bus 43.14% 95.46% 67.49%

Segment 57.46% 86.00% 67.49%

interval ∆t. After the time interval ∆t and also out of the segments listed in the

vector π(∆t)π(∆t)π(∆t), participants do not contribute to the participatory system. This

could lead to participants that could not contribute because of lack of reliability,

which is an effect mitigated at a global picture by the total number of partic-

ipants per segment. The sampling error can be maintained at an acceptable680

value, as a consequence of crowdsensing.

5.6. Network load

It is important to highlight that the sampling rate could be increased for the

entire route if needed, as the system is still far from the maximum number of

samples in the dataset and the maximum capacity of the network, as illustrated685

in Figure 9. The Route 007 has a total of 15,546 samples, but in the experiment

with the smallest RMSE (2R : 0.5R), as few as 1,696 samples are collected,

representing a reduction of 67.49% in the number of samples, as presented in

Table 4. This value does not represent a problem, as it is smaller than the

total number of samples in the dataset and still has a high probability of being690

successfully delivered to the RSU during the contact.

6. Conclusions and Future Work

The main goal of this paper was to investigate and to present a mechanism

to adjust the data sampling rate in a Region of Interest (RoI) and to show

that it is possible to perform this adjustment in a Participatory Sensing (PS)695

system developed for high mobility RoIs, such as Vehicular Ad Hoc Networks
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(VANETs). Hence, this paper proposed an adaptive participatory sensing sys-

tem that concerns about data consistency and considers both spatial and tem-

poral characteristics of an RoI. At the same time, the proposed sensing system

guarantees a reduction of the sampling error. This reduction is achieved for700

segments within regions of higher data variability. In regions of lower variabil-

ity, decreasing the sampling rate can increase the sampling error. Nevertheless,

such growth is not significant. To evaluate the proposed sensing system, we di-

vide the RoI into segments, and we assume that the measurements vary within

a time interval ∆t. In our Participatory Sensing system, participants collect705

samples obeying a sampling rate defined by a central server, and the accuracy

of the system depends on this sampling rate. The higher the sampling rate, the

better the results. Increasing the sampling rate indefinitely, however, is not a

smart approach to participatory sensing systems, which depend on the partic-

ipants’ devices to collect data. There must be a tradeoff between the system710

accuracy, the volume of data transferred to the communication infrastructure,

and the data load imposed to the crowdsourcing participants. The consistency

of the collected data must also be verified before the processing server can use

it to generate useful information. Hence, the PS system proposed in this paper

tackles these problems, considering the adjustment of the sampling rate on each715

segment as a function of the variability of the measurements. Segments with

higher variability shall have higher sampling rates, whereas segments with lower

variability can have lower sampling rates.

Our system is evaluated using a real dataset that registers the location of city

buses. We consider that buses are responsible for collecting samples about their720

own speeds, in order to determine the average speed experimented along the

analyzed route. The results showed that higher data volume can be successfully

delivered only if there is a small number of buses competing for the medium.

This shows that distributing sensing tasks is indeed the most appropriate so-

lution for data sensing. Besides, the adaptive sampling rate reduces sampling725

errors and further decreases the volume of data that needs to be transferred

to the processing server. Changing the sampling rate of as much as ≈ 43% of
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buses, the proposed system reduces 67.49% of the data load on the system.

As future work, we intend to evaluate more routes and other scenarios con-

sisting of different types of vehicles, such as personal vehicles and taxis. The730

idea is to automate the identification of the best sampling rate per segment for

each participant. We also intend to develop a framework that can consolidate

and manage the data of a participatory sensing system. Finally, we will also

consider reliability as a requirement for communications between crowdsourcing

participants and RSUs.735
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