
A Performance Comparison of
Open-Source Stream Processing Platforms

Martin Andreoni Lopez, Antonio Gonzalez Pastana Lobato, Otto Carlos M. B. Duarte
Universidade Federal do Rio de Janeiro - GTA/COPPE/UFRJ - Rio de Janeiro, Brazil

Email: {martin, antonio, otto}@gta.ufrj.br

Abstract—Distributed stream processing platforms are a new
class of real-time monitoring systems that analyze and extract
knowledge from large continuous streams of data. These type
of systems are crucial for providing high throughput and low
latency required by Big Data or Internet of Things monitoring
applications. This paper describes and analyzes three main open-
source distributed stream-processing platforms: Storm, Flink,
and Spark Streaming. We analyze the system architectures and
we compare their main features. We carry out two experiments
concerning threats detection on network traffic to evaluate the
throughput efficiency and the resilience to node failures. Results
show that the performance of native stream processing systems,
Storm and Flink, is up to 15 times higher than the micro-batch
processing system, Spark Streaming. However, Spark Streaming
is robust to node failures and provides recovery without losses.

I. INTRODUCTION

Sensor monitoring, network traffic analysis, cloud manage-
ment [1], and security threats detection are applications that
generate large amount of data to be processed in real time.
These stream applications are characterized by an unbounded
sequence of events or tuples that continuously arrive [2]. The
advent of the Internet of things (IoT) increases the need of real-
time monitoring. The estimate number of sensors networked
by 2025 is around 80 billion [3]. Hence, data with this order
of magnitude cannot always be processed centrally.

The main method to analyze big data in a distribute fash-
ion is the MapReduce technique with Hadoop open-source
implementation. Nevertheless, the platforms based on this
technique are inappropriate to process real-time streaming
applications. Applications processed by Hadoop correspond
to queries or transactions performed in a stored and passive
database and without real-time requirements, data elements are
synchronized having an exact answer. Real-time monitoring
applications require distributed stream processing that substan-
tially differs from current conventional applications processed
by distributed platforms. Monitoring normally requires the
analysis of multiple external stream sources, generating alerts
in abnormal condition. The real-time feature is intrinsic to
stream processing applications and a big amount of alerts
is normally expected. The stream data are unbounded and
arrive asynchronously. Besides, the stream analysis requires
historical data rather than only the latest reported and the
data arrive. In cases of high entrance rates is common to
filter the most important data discarding others and, therefore,
approximate solutions are required, such as sampling methods.
Hence, to meet these applications requirements, distributed

processing models have been proposed and received attention
from researchers.

Real-time distributed stream processing models can benefit
traffic monitoring applications for cyber security threats detec-
tion [4]. Current intrusion detection and prevention systems
are not effective, because 85% of threats take weeks to be
detected and up to 123 hours for a reaction after detection to
be performed [5]. New distributed real-time stream processing
models for security critical applications is required and in
the future with the advancement of the Internet of Things,
their use will be imperative. To respond to these needs,
Distributed Stream Processing Systems have been proposed to
perform distributed processing with minimal latency and open-
source general-purpose stream processing platforms are now
available, meeting the need of processing data continuously.
These open-source platforms are able to define custom stream
processing applications for specific cases. These general-
purpose platforms offer an Application Programming Interface
(API), fault tolerance, and scalability for stream processing.

This paper describes and analyzes two native distributed real
time native stream processing systems, the Apache Storm [6]
and the Apache Flink [7], and one micro-batch system,
the Apache Spark Streaming [8]. The architecture of each
analyzed systems is discussed in depth and a conceptual
comparison is presented showing the differences between these
open-source platforms. Furthermore, we evaluate the data
processing performance and the behavior of systems when a
worker node fails. The experiments consider a real-time threat
detection application developed by the authors [9]. The results
are analyzed and compared with the conceptual model of each
evaluated platform.

The remainder of this paper is organized as follow. In
Section II we describe related work. We detail the Stream
processing concept in Section III. Analyzed Platforms are
presented in Section IV. Experimental results are shown in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Distributed real-time stream processing systems is a recent
area and performance evaluations and comparisons between
systems are fairly unexplored in the scientific literature. A few
number of older and discontinued stream processing systems
such as Aurora [10], and the project developed by Yahoo
Apache S4 [11] served as base for most current systems.
Google Millwheel [12], InfoSphere Streams IBM [13], among



others are examples of proprietary solutions, but, in this paper,
we focus on open-source systems.

Hesse and Lorenz compare the Apache Storm, Flink, Spark
Streaming, and Samza platforms [14]. The comparison is
restricted to description of the architecture and its main
elements. Gradvohl et. al analyze and compare Millwheel,
S4, Spark Streaming, and Storm systems, focusing on the
fault tolerance aspect in processing systems [15]. Nevertheless,
these two cited paper are restricted to conceptual discussions
without experimental performance evaluation. Landset et. al
perform a summary of the tools used for process big data [16],
which shows the architecture of the stream processing systems.
However, the major focus is in batch processing tools, which
use the techniques of MapReduce. Roberto Colucci et. al show
the practical feasibility and good performance of distributed
stream processing systems for monitoring Signalling System
number 7 (SS7) in a Global System for Mobile communi-
cations (GSM) machine-to-machine (M2M) application [17].
They analyze and compare the performance of two stream
processing systems: the Storm and Quasit, a prototype of
University of Bologna. The main result is to prove Storm
practicability to process in real time a large amount of data
from a mobile application.

Nabi et. al compare Apache Storm with IBM InfoSphere
Streams platform in an e-mail message processing applica-
tion [18]. The results show a better performance of InfoSphere
compared to Apache Storm in relation to throughput and CPU
utilization. However, IBM owns InfoSphere system and the
source code is unavailable. Lu et. al propose a benchmark [19]
creating a first step in the experimental comparison of stream
processing platforms. They measure the latency and through-
put of Apache Spark and Apache Storm. The paper does not
provide results in relation to Apache Flink and the behavior
of the systems under failure.

Dayarathna e Suzumura [20] compare the throughput, CPU
and memory consumption, and network usage for the stream
processing systems S, S4, and the Event Stream Processor
Esper. These systems differ in their architecture. The S system
follows the manager/workers model, S4 has a decentralized
symmetric actor model, and finally Esper is software running
on the top of Stream Processor. Although the analysis using
benchmarks is interesting, almost all evaluated systems are al-
ready discontinued or not currently have significant popularity.

Unlike the above-mentioned papers, the following sections
describe the architectural differences of open-source systems
Apache Storm, Flink, and Spark Streaming. Moreover, we
provide experimental performance results focusing on the
throughput and parallelism in a threat detection application
on a dataset created by the authors. They also evaluated the
response and tolerance of the systems when one worker node
fail. Finally, we conducted a critical overview of the main
characteristics of each analyzed systems and discussed how
the characteristics influence in the obtained results.

III. THE STREAM PROCESSING

Data stream processing is modeled by a graph that contains
data sources emitting continuously unbounded samples. The
sources emit tuples or messages that are received by Process-
ing Elements (PE). Each PE receives data on its input queues,
performs computation using local state and produces an output
to its output queue. The set of sources and processing nodes
creates a logical network connected in a Directed Acyclic
Graph (GAD). GAD is a graphical representation of a set of
nodes and the processing tasks.

Stonebraker et.al. [2] highlight the most important re-
quirements for distributed stream processing platforms. The
data mobility identifies how it moves through the nodes. In
addition, data mobility is a fundamental aspect to maintain low
latency, since blocking operations, as done in batch processing
platforms, such as Hadoop, decrease data mobility. Due to
the large volume, data should be separated in partition to
treat it in parallel. High availability and fail recovery are also
critical in stream processing systems. In low latency applica-
tions, the recovery should be quick and efficient, providing
processing guarantees. Thus, the stream processing platforms
must provide resilience mechanisms against imperfections,
such as delays, data loss, or out of order samples, which are
common in data stream. Moreover, processing systems must
have a highly optimized execution engine to provide real-time
response for applications with high data rates. Thus, the ability
to process millions of messages per second with low latency,
within microsecond, is essential. To achieve a good processing
performance, platforms shall minimize communication over-
head between distributed processes in data transmission.

A. Methods of Data Processing

Data processing is divided in three main approaches: batch
processing, micro-batch processing and stream processing.
The analysis of large sets of static data, which are col-
lected over previous time periods, is done with batch pro-
cessing. However, this technique has large latency, with re-
sponses greater than 30 seconds, while several applications
require real-time processing, with responses in microsecond
order [21]. Despite, this technique can perform near real-
time processing by doing micro-batch processing. Micro-batch
treats the stream as a sequence of smaller data blocks. For
small time intervals, the input is grouped into data blocks and
delivered to the batch system to be processed. On the other
hand, the third approach, stream processing, analyzes massive
sequences of unlimited data that are continuously generated.

In contrast to batch processing, stream processing is not
limited by any unnatural abstraction. Further, latency of stream
processing is better than micro-batch, since messages are pro-
cessed immediately after arrival. Stream processing performs
better in real time, however, fault tolerance is more costly,
considering that it must be performed for each processed
messages. In batch and micro-batch processing, some func-
tions, such as join and split are hard to implement, because
the system handles an entire batch at time. However, unlike
stream processing, fault tolerance and load balancing are much



simpler, since the system sends the entire batch to a worker
node, and if something goes wrong, the system can simply
use another node.

B. Fault Tolerance

High availability is essential for real-time stream processing.
The stream processing system should recover from a failure
rapidly enough without affecting the overall performance.
Hence, guaranteeing the data to be processed is a major
concern in stream processing. On large distributed computing
systems, various reasons lead to failure, such as node, network,
and software failure. In batch processing systems, latency is
acceptable and, consequently, the system does not need to
recover quickly from a crash. However, in real-time systems
without failures prevention, failures mean data loss.

Exactly once, at least once, and at most once are the three
types of message delivery semantics. These semantics relate
to the warranty that system gives to process or not a sample.
When a failure occurs, the data can be forwarded to other
processing element without losing information. The simplest
semantic is at most once in which there is no error recovery,
that is, either the samples are processed or lost. In at least
once semantic, the error correction is made jointly for a group
of samples, this way, if an error occurs with any of these
samples, the entire group is repeated. This semantics is less
costly than exactly once, which requires an acknowledgment
for each sample processed.

IV. ANALYZED PLATFORMS

A. Apache Storm

Apache Storm [6] is a real-time stream processor, written
in Java and Clojure. Stream data abstraction is called tuples,
composed by the data and an identifier. In Storm, applications
consists of topologies forming a directed acyclic graph com-
posed of inputs nodes, called spouts, and processing nodes,
called bolts. A topology works as a data graph. The nodes
process the data as the data stream advance in the graph.
A topology is analog to a MapRedude Job in Hadoop. The
grouping type used defines the link between two nodes in the
processing graph. The grouping type allow the designer to set
how the data should flow in topology.

Storm has eight data grouping types that represent how data
is sent to the next graph-processing node, and their parallel
instances, which perform the same processing logic. The main
grouping types are: shuffle, field, and all grouping. In shuffle
grouping, the stream is randomly sent across the bolt instances.
In field grouping, each bolt instance is responsible for all
samples with the same key specified in the tuple. Finally, in
all grouping, samples are sent to all parallel instances.

Figure 1 shows the coordination processes in a Storm
cluster. The manager node, Nimbus, receives a user-defined
topology. In addition, Nimbus coordinates each process con-
sidering the topology specification, i.e., coordinates spouts and
bolts instantiation and their parallel instances. Each Worker
node runs on a Java Virtual Machine and execute one or more

Figure 1: Nimbus receives topologies and communicates to
Supervisors which coordinate process in workers, all the
coordination between Nimbus and Supervisor is made by
Zookeeper who store the cluster state.

tasks, also called processes. The Supervisors monitor the pro-
cesses of each topology and inform the state to Nimbus using
the Heartbeat protocol. Zookeeper is used as a coordinator
between Nimbus and Supervisors. Nimbus and Supervisor are
stateless, granting to Zookeeper all state management.

Apache Storm uses an upstream backup and acknowledg-
ments mechanism to ensure that tuples are re-processed after
failure. For each processed tuple, an acknowledgment (ACK)
is sent to the acker bolt. Every time a tuple enters the topology,
the spout add an id, then send the id to the acker bolt. The
acker bolt saves all ids and when a bolt processes the tuple,
the bolt sends an ACK to the acker bolt. When tuples exit the
topology, the acker bolt drops the ids. If a fault occurs, not
all acknowledgments have been received or the ACK timeout
expired. This guarantee that each tuple is either processed
once, or re-processed in the case of a failure, known as delivery
at-least-once.

B. Apache Flink

Apache Flink [7] is a hybrid processing platform, sup-
porting both stream and batch processing. Flink core is the
stream processing, making batch processing a special class of
application. Analytics jobs in Flink compile into a directed
graph of tasks. Apache Flink is written in Java and Scala.
Figure 2 shows Flink architecture. Similar to Storm, Flink
uses a master-worker model. The job manager interfaces with
clients applications, with responsibilities similar to Storm
master node. The job manager receives client applications,
organizes the tasks and sends them to workers. In addition,
the job manager maintains the state of all executions and the
status of each worker. The workers states are informed through
the mechanism Heartbeat, like in Storm. Task manager has a
similar function as a worker in Storm. Task Managers perform
tasks assigned by the job manager and exchange information
with other workers when needed. Each task manager provides
a number of processing slots to the cluster that are used to
perform tasks in parallel.

Stream abstraction is called DataStream, which are se-
quences of partially ordered records. DataStreams are similar
to Storm tuples. The DataStreams receive stream data from
external sources such as message queues, sockets, and others.
The DataStreams support multiple operators or functions, such
as map, filtering and reduction, which are applied incremen-



Figure 2: Architecture of Flink system. The Job manager
receives jobs from clients, divides the jobs into tasks, and
sends the tasks to the workers. Workers communicate statistics
and results.

tally to each sample generating a new DataStreams. Each
operator or function can be parallelized, running instances
on different partitions of the respective stream. This method
allows distributed execution on the streams.

Flink fault tolerance approach is based on snapshot over dis-
tributed checkpoints that maintain the status of jobs. Snapshots
act as consistency checkpoints to which the system can return
in case of failure. Barriers are injected in source elements and
flow through the graph together with the samples. A barrier
indicates the beginning of a checkpoint and separates records
into two groups: records that belong to current snapshot and
others that belongs to the next snapshot. Barriers trigger new
snapshots of the state when they pass through operators.
When an operator receives a barrier, it stores the status of
the corresponding stream snapshot and sends the checkpoint
coordinator to the job manager. In case of software, node,
or network failure, Flink stops the DataStreams. The system
immediately restarts operators and resets to the last successful
checkpoint stored. All records processed in the restart of a
stream are guaranteed not to have been part of the previous
checked state, ensuring delivery of exactly-once.

C. Apache Spark Streaming

Spark is a project initiated by UC Berkeley and is a
platform for distributed data processing, written in Java and
Scala. Spark has different libraries running on the top of
the Spark Engine, including Spark Streaming [8] for stream
processing. The stream abstraction is called Discrete Stream
(D-Stream) defined as a set of short, stateless, deterministic
tasks. In Spark, streaming computation is treated as a series
of deterministic batch computations on small time intervals.
Similar to MapReduce, a job in Spark is defined as a parallel
computation that consists of multiple tasks, and a task is a unit
of work that is sent to the Task Manager. When a stream enters
Spark, it divides data into micro-batches, which are the input
data of the Distributed Resilient Dataset (RDD), the main class
in Spark Engine, stored in memory. Then the Spark Engine
executes by generating jobs to process the micro-batches.

Figure 3 shows the layout of a Spark cluster. Applications
or jobs within the Spark run as independent processes in
the cluster which is coordinated by the master or Driver
Program, responsible for scheduling tasks and creating the
Spark Context. The Spark Context connects to vari-
ous types of cluster managers, such as the Spark StandAlone,

Figure 3: Cluster architecture of Spark Streaming system.

Mesos or Hadoop YARN (Yet Another Resource Negotiator).
These cluster managers are responsible for resource allocation
between applications. Once connected, Spark executes task
within the task managers, which perform processing and
data storage, equivalent to Storm workers, and results are
then communicated to the Spark Context. The mechanism
described in Storm, in which each worker process runs within
a topology, can be applied to Spark, where applications or
jobs are equivalent to topologies. A disadvantage of this
concept in Spark is the messages exchange between different
programs, which is only done indirectly such as writing data
to a file, worsen the latency that could be around seconds in
applications of several operations.

The Spark has Streaming delivery semantics exactly-once.
The idea is to process a task on various worker nodes. During
a fault, the micro-batch processing may simply be recalcu-
lated and redistributed. The state of RDDs are periodically
replicated to other worker nodes, in case of node failure.
Tasks are then discretized into smaller tasks that run on any
node without affecting execution. Thus, the failed tasks can be
launched in parallel evenly distributing the task without affect-
ing performance. This procedure is called Parallel Recovery.
The semantics of exactly-once reduces the overhead shown in
upstream backup in which all tuples are acknowledge like in
Storm. However, micro-batch processing has disadvantages.
Micro-batch processing takes longer in downstream opera-
tions. The configuration of each micro-batch may take longer
than conventional native stream analysis. Consequently, micro-
batches are stored in the processing queue.

Table I presents a summary of features underlined in the
comparison of the stream processing systems. The program-
ming model can be classified as compositional and declarative.
The compositional approach provides basic building blocks,
such as Spouts and Bolts on Storm and must be connected
together in order to create a topology. On the other hand,
operators in the declarative model are defined as higher-order
functions, that allow writing functional code with abstract
types and the system will automatically create the topology.

V. RESULTS

Fault tolerance and latency requirements are essential in
real-time stream processing. This section evaluates the pro-
cessing throughput and the behavior during node failure of
the three presented systems: Apache Storm version 0.9.4,
Apache Flink version 0.10.2 and Apache Spark Streaming
version 1.6.1, with micro-batch size established in 0.5 seconds.



Table I: Overview of the comparison between Stream Process-
ing Systems.

Storm Flink Spark
Streaming

Stream
Abstraction Tuple DataStream DStream

Build
Language Java/Closure Java/Scala Java/Scala

Messages
Semantic At least once Exactly one Exactly one

Failure
Mechanism

Upstream
Backup Check-point

Parallel
Recovery

API Compositional Declarative Declarative
Failures
Subsistem

Nimbus,
Zookeeper No No

We perform the experiments in an environment with eight
virtual machines running on a server with Intel Xeon E5-2650
processor at 2.00 GHz and 64 GB of RAM. The experiment
topology configuration is one master and seven worker nodes
for the three evaluated systems. We calculate the results with
confidence interval of 95%. To enter data at high rates in
the stream processing systems, we use a message broker
that operates as a publish/subscribe service, Apache Kafka
in version 0.8.2.1. In Kafka, samples or events are called
messages, name that we will use from now on. Kafka abstracts
message stream into topics that act as buffers or queues,
adjusting different production and consumption rates.

The dataset used in the experiments is the one from an threat
detection application created by the authors [9]. The dataset
is replicated to assess the maximum processing throughput
at which the system can process. The application tested was
a threat detection system with a neural network classifier
programmed in Java.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2
x 10

7

Parallelism

P
ro

c
e
s
s
e
d
 M

e
s
s
a
g
e
s

p
e
r 

M
in

u
te

 

 

Flink

Spark Streaming

Storm

Figure 4: Throughput results of the platforms in terms of
number of messages processed per minute in function of the
task parallelism.

The first experiment measures the performance of the
platforms in terms of processing throughput. The data set is
injected into the system in its totality and replicated as many
times as necessary. The experiment calculates the consumption

and processing rate of each platform. It also varies the paral-
lelism parameter, which represents the total number of cores
available for the cluster to process samples in parallel. Figure 4
shows the results of the experiment. Apache Storm has a
better throughput than the others do. For a single core, i.e.,
without parallelism, Storm already shows better performance
compared to Flink and Spark Streaming in at least 50%. Flink
has a completely linear growth, but with values always below
the Apache Storm. The processing rate of the Apache Spark
Streaming, when compared to the Storm and Flink, is much
lower, this is due to the use of micro-batch, as each batch is
grouped before processing. Apache Storm behavior is linear
until the parallelism of four cores. Then, the processing rate
grows until parallelism of six, where the system saturates. This
behavior was also observed in Apache Spark Streaming with
the same six-core parallelism.

0 100 200 300
0

1

2

3

4

5

6
x 10

4

Seconds

M
e
s
s
a
g
e
s
/s

e
c

Constant 
Rate

Process
Redistribution

Messages
Recovery

Node
 Failure

(a) Storm behavior under node failure.

0 100 200 300
0

0.5

1

1.5

2

2.5

3
x 10

5

Seconds

M
e
s
s
a
g
e
s
/s

e
c

Messages
Recovery

Constant
RateNode

Failure

Process
Redistribution

(b) Flink behavior under node failure.

Figure 5: A failure is produced at 50 seconds. a) Storm and b)
Flink system behavior after detecting the failure and consisting
of process redistribution and message recovery procedures.

0 100 200 300
1000

2000

3000

M
e

n
s
s
a

g
e

s
/s

e
c

Seconds
0 100 200 300

0

5000

10000

T
im

e
 B

e
tw

e
e

n
 M

e
s
s
a

g
e

s
*1

0
0

Node
 Failure

Constant
Rate

(a) Spark behavior under node failure.

Storm Flink Spark 
0

5

10

15

20

25

30

M
e
s
s
a
g
e
s
 L

o
s
s
e
s
 (

%
)

 

 

0%

12,8%

22,2%

Spark 
Streaming

Flink

Storm

(b) Messages losses during node failure

Figure 6: a) The Spark system behavior under failure, indi-
cating that it keeps stable and does not lose messages. b)
Percentage of message losses.

The second experiment shows the system behavior when a
node fails. Messages are sent at a constant rate to analyze the
system behavior during the crash. The node failure is simulated
by turning off a virtual machine. Figures 5a, 5b and 6a show
the behavior of the three systems before and after a worker
node failure at 50 seconds. Apache Storm takes some time in
the redistribution processes after the fault was detected. This
time is due to communication with the Zookeeper. Zookeeper
has an overview of the cluster and reports the state for Nimbus
in Storm, which reallocates the processes on other nodes. Soon
after this redistribution, the system retrieves Kafka messages
at approximately 75 seconds. Although the system can quickly
recover from node failure, during the process there is a



significant message loss. A similar behavior is observed in
Apache Flink. After detecting the failure at approximately
50 seconds, the system redistributes the processes for active
nodes. Flink does this process internally without the help of
any subsystem, unlike Apache Storm that uses Zookeeper.

Figure 5b shows that time period in which Flink redis-
tributes processes is much greater than the time spent in
Apache Storm. However, message recovery is also higher,
losing some messages during the process redistribution. Fig-
ure 6a shows Spark streaming behavior during a failure. When
a failure occurs at approximately 50 seconds, the system
behavior is basically the same as before. This is due to the use
of tasks with micro-batch that are quickly distributed without
affecting performance. Spark Streaming shows no message
loss during fail. Thus, despite the low performance of Spark
Streaming, it could be a good choice in applications where
resilience and processing all messages are necessary.

Figure 6b shows the comparison of lost messages between
Storm, Flink and Spark. It shows that Spark had no loss during
the fault. The measure shows the percentage of lost messages
by systems, calculated by the difference of messages sent by
Apache Kafka and messages analyzed by the systems. Thus,
Apache Flink has a smaller loss of messages during a fault
with about a 12.8% compared to 22.2% in Storm. We obtain
the result with 95% confidence interval.

VI. CONCLUSION

This paper describes and compares the three major open
source distributed stream processing systems: Apache Storm,
Apache Flink, and Apache Spark Streaming.The systems are
similar in some characteristics, such as the fact that tasks run
inside a Java Virtual Machine and the systems use master-
worker model. A performance analysis of stream systems in
a threat detection experiment by analyzing network traffic
was carried out. The results show that Storm has the highest
processing rate when the parallelism parameter, in number of
processing cores, is changed, getting shorter response time, up
to 15 times lower.

We also performed another experiment to show the behavior
of the systems the during node failure. In this case, we show
that Spark streaming, using micro-batch processing model, can
recover the failure without losing any messages. Spark Stream-
ing stores the full processing state of the micro-batches and
distributes the interrupted processing homogeneously among
other worker nodes. On the other hand, the stream processing
native systems, Storm and Flink, lose messages despite using
more complex recovery mechanisms. Apache Flink, using a
checkpoint algorithm, has a lower message loss rate, about a
12.8% during the redistribution process after a failure. Storm
loses 10% more, about 22.2% of messages since it uses a
subsystem, Zookeeper, for nodes synchronization. Therefore,
in order to select a platform, the user should take into account
the application requirements and balance the compromise
between high processing rates and fault tolerance.

ACKNOWLEDGMENT

This work was supported by CNPq, CAPES, and FAPERJ.

REFERENCES

[1] B. Dab, I. Fajjari, N. Aitsaadi, and G. Pujolle, “VNR-GA: Elastic virtual
network reconfiguration algorithm based on genetic metaheuristic,” in
IEEE GLOBECOM, Dec 2013, pp. 2300–2306.

[2] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of
real-time stream processing,” ACM SIGMOD Record, vol. 34, no. 4, pp.
42–47, 2005.

[3] P. Clay, “A modern threat response framework,” Network Security, vol.
2015, no. 4, pp. 5–10, 2015.

[4] M. Andreoni Lopez, D. M. F. Mattos, and O. C. M. B. Duarte, “An
elastic intrusion detection system for software networks,” Annals of
Telecommunications, pp. 1–11, 2016.

[5] I. Ponemon and IBM, “2015 cost of data breach study: Global analysis,”
www.ibm.com/security/data-breach/, may 2015, accessed: 16/04/2016.

[6] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy, “Storm@twitter,” in ACM SIGMOD International Confer-
ence on Management of Data. ACM, 2014, pp. 147–156.

[7] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas, “Lightweight
asynchronous snapshots for distributed dataflows,” Computing Research
Repository (CoRR), vol. abs/1506.08603, 2015.

[8] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,” in
XXIV ACM Symposium on Operating Systems Principles. ACM, 2013,
pp. 423–438.

[9] A. Lobato, M. A. Lopez, and O. C. M. B. Duarte, “An accurate
threat detection system through real-time stream processing,” Grupo de
Teleinformática e Automação (GTA), Univeridade Federal do Rio de
Janeiro (UFRJ), Tech. Rep. GTA-16-08, 2016.

[10] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: A
new class of data management applications,” in 28th International
Conference on Very Large Data Bases, 2002, pp. 215–226.

[11] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in IEEE International Conference on Data
Mining Workshops (ICDMW). IEEE, 2010, pp. 170–177.

[12] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: Fault-
tolerant stream processing at internet scale,” Proc. VLDB Endow., vol. 6,
no. 11, pp. 1033–1044, Aug. 2013.

[13] C. Ballard, O. Brandt, B. Devaraju, D. Farrell, K. Foster, C. Howard,
P. Nicholls, A. Pasricha, R. Rea, N. Schulz et al., “IBM infosphere
streams,” Accelerating Deployments with Analytic Accelerators, ser.
Redbook. IBM, 2014.

[14] G. Hesse and M. Lorenz, “Conceptual survey on data stream process-
ing systems,” in IEEE 21st International Conference on Parallel and
Distributed Systems, 2015, pp. 797–802.

[15] A. L. S. Gradvohl, H. Senger, L. Arantes, and P. Sens, “Comparing
distributed online stream processing systems considering fault tolerance
issues,” Journal of Emerging Technologies in Web Intelligence, vol. 6,
no. 2, pp. 174–179, 2014.

[16] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey
of open source tools for machine learning with big data in the hadoop
ecosystem,” Journal of Big Data, vol. 2, no. 1, pp. 1–36, 2015.

[17] R. Coluccio, G. Ghidini, A. Reale, D. Levine, P. Bellavista, S. P.
Emmons, and J. O. Smith, “Online stream processing of machine-
to-machine communications traffic: A platform comparison,” in IEEE
Symposium on Computers and Communication (ISCC), June 2014, pp.
1–7.

[18] Z. Nabi, E. Bouillet, A. Bainbridge, and C. Thomas, “Of streams and
storms,” IBM White Paper, 2014.

[19] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking
modern distributed stream computing frameworks,” in IEEE/ACM 7th
International Conference on Utility and Cloud Computing, 2014, pp.
69–78.

[20] M. Dayarathna and T. Suzumura, “A performance analysis of system S,
S4, and Esper via two level benchmarking,” in Quantitative Evaluation
of Systems. Springer, 2013, pp. 225–240.

[21] M. Rychly, P. Koda, and P. Smrz, “Scheduling decisions in stream pro-
cessing on heterogeneous clusters,” in Eighth International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS), Jul.
2014, pp. 614–619.


