
Towards a Pluralist Internet Using a Virtual Machine Server
for Network Customization

Rafael dos Santos Alves?, Miguel Elias M. Campista?,�,
Luís Henrique M. K. Costa?, and Otto Carlos M. B. Duarte?

? Universidade Federal do Rio de Janeiro � UPMC Sorbonne Universités
GTA/COPPE-PEE/Del-Poli NPA/LIP6

Rio de Janeiro, Brasil Paris, France
{santos,miguel,luish, otto}@gta.ufrj.br Miguel.Campista@lip6.fr

ABSTRACT
The Internet success is frequently credited to its basic pil-
lars, the end-to-end argument and the TCP/IP protocol stack.
Nevertheless, this simple architecture does not facilitate the
addition of new services such as mobility, security, and qual-
ity of service support. As a consequence, virtual networks
are often being used as a tool to experiment with new pro-
tocol architectures. In this work, we propose a Virtual Ma-
chine Server (VMS) to manage virtual networks that are cus-
tomized upon user needs. The proposed VMS uses the idea
of machine virtualization within the networking context. In-
stead of managing virtual machines, the VMS manages vir-
tual routers and uses them to build virtual networks. The re-
sult of the proposed approach is the possibility to experiment
with pluralist architectures for the future Internet, which are
neither as radical as the “clean-slate” approach nor as con-
servative as the evolutionary approach. In addition, the pro-
posed VMS is flexible enough to allow the interaction of
users, or intelligent software agents, with the network re-
sources. The server is implemented using web services and
a prototype with Xen stations is currently operational. Our
experimental results show that the operation of the VMS is
simple and motivates larger implementations.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Com-
puter Communication Networks—Network Architecture
and Design; C.5.5 [Computer Systems Organiza-
tion]: Computer System Implementation—Servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AINTEC’12, November 14–16, 2012, Bangkok, Thailand.
Copyright 2012 ACM 978-1-4503-1814-3/12/11 ...$10.00.

General Terms
Design, Experimentation.

Keywords
Virtual Machine Server, Virtualization, Future Inter-
net.

1. INTRODUCTION
Many future Internet challenges are related to emerg-

ing requirements not originally foreseen, such as secu-
rity, mobility, and quality of service. As of today, the
networking community has been trying to find solu-
tions to those requirements but, many in this commu-
nity agree that the Internet architecture itself should
be revisited and projects on this theme are flourishing.
A consensus has not yet been achieved but two oppo-
site views can be identified [1]: the “clean-slate” [2]
and the evolutionary approaches. The former proposes
the Internet recreation considering all the experiences
to date, whereas the latter argues that a drastic change
is not economically viable and the Internet must keep
continuously evolving. Both approaches involve huge
challenges. The clean-slate approach aims at finding
a totally new architecture that could support as many
service requirements as possible, whereas the evolution-
ary approach has to come up with a proposal that also
considers conflicting requirements, but builds on top of
the current TCP/IP stack.

In this work, we do not engage into the debate of
which one, evolutionary or clean-slate, is the most suit-
able architecture for the future Internet. Instead, we
aim at using virtualization as the basis for a pluralist
architecture, where multiple virtual networks coexist [3]
and can be experimented with, no matter if they are
clean-slate or evolutionary. By virtualizing the physi-
cal substrate, the Internet becomes one of the virtual
networks and wide-scale experiments can be conducted
without affecting production traffic. This characteristic
renders the pluralist architecture backwards compati-

1

bility, which cannot be achieved with the clean-slate
approach alone.

Enabling the pluralist architecture, however, requires
a practical tool to manage the virtual networks. In this
work, we propose and implement a Virtual Machine
Server (VMS)1 to support the creation of customized
virtual networks upon users’ requests. These virtual
networks run in parallel using the same principles of ma-
chine virtualization in the networking case. The VMS
simplifies virtual networking management tasks such as
creation, deletion, or initialization of a virtual network,
and provides an interface to different sorts of clients.
These clients can be accessed via a web interface used
by users, ranging from skilled personal to home users.
The VMS provides support for different virtualization
platforms. Moreover, it can also interact with users to
build virtual networks according to their requirements.
We analyze different possibilities for virtual network
creation, which introduces a tradeoff between flexibil-
ity and performance as shown in our experiments.

Our main contributions are (i) the proposal and im-
plementation of a virtual machine server to manage vir-
tual networks; (ii) the utilization of open programming
interfaces, general libraries, and standardized protocols
to manage virtual networks over different physical sub-
strates; and (iii) the reinforcement of the pluralist ar-
chitecture as an alternative for the future Internet. In
this work, however, we do not aim at proposing a new
Internet. Instead, we look forward moving one step
ahead, showing that the pluralist architecture must be
considered as, at least, an intermediate approach. We
conduct experiments in a testbed to evaluate the time
to create a virtual router and the processing capacity
required from clients, considering possible virtual router
image transfers and different physical machines.

This paper is organized as follows. In Section 2, we
overview machine virtualization. Section 2.1 introduces
the network model as well as describes the proposed
VMS architecture and implementation. Section 3 shows
our results and Section 4 presents related work. Finally,
Section 5 concludes this work and identifies future di-
rections.

2. VIRTUALIZATION OVERVIEW
Machine virtualization decouples from the above lay-

ers the underlying physical machine resources (CPU,
memory, and I/O devices), inserting a virtualization
layer in-between. This layer manages the access from
the different virtual machines to the physical resources,
hiding from them the underlying resource sharing. Ma-
chine virtualization is highly flexible allowing different
operating systems to run in parallel. The tradeoff, how-
ever, is the software overhead needed to arbitrate above-
layer calls for the shared resources. New technologies to
1Available at http://www.gta.ufrj.br/~santos/vms.

Figure 1: Evolution in time of the system oper-
ation.

assist virtualization at the hardware level, such as direct
I/O, are being developed to improve performance.

We define a virtual network as a set of virtual ma-
chines playing the role of routers and the virtual links
connecting them. Virtualization, then, must be able
to correctly identify packets to and from each virtual
network. An example of utilization is the possibility
to setup on demand a customized wireless network by
virtualizing access points.

2.1 Virtual Machine Server
Figure 1 shows the system evolution over time. The

first step, represented in the figure by (1), consists of a
client request for a service to the Virtual Machine Server
(VMS). Client c sends a service call ac to the VMS. To
this end, it creates a message containing the service re-
quired and sends it by using a communication protocol
encapsulating an XML (eXtensible Markup Language)
file, as represented in the figure by (2). Upon receiving
the message, the VMS identifies the virtualized system,
as indicated in the received message, and sends a re-
quest for an action to the corresponding system. The
VMS uses the management library provided by the vir-
tualized system to interact with it. The command is-
sued by the VMS triggers a sequence of actions which
will lead the virtualized system to a state according to
the request of client c. After step (2), in step (3), the
virtualized system sends a response to the VMS indicat-
ing the final operation result. The VMS finally encap-
sulates the response in a meta-data format and sends it
to the client, as represented by step (4).

2.2 Implementation overview
The main task of the Virtual Machine Server (VMS)

is the management of virtual networks upon users’ re-
quests using the available physical infrastructure. The
VMS must also yield virtual link configuration to guar-
antee network connectivity. Using the VMS, users can
have virtual networks customized according to their ap-

2

plication requirements. The virtual network is then cre-
ated from pre-built virtual router disk images, which
combine the best possible settings and protocols to fit
the needs of the user. The level of freedom users can
deal with is controlled by the VMS programming inter-
face, which is available for users through VMS clients.
The VMS operation on the physical substrate is trans-
parent for users, who can only have access to the infor-
mation provided by VMS clients.

The VMS has two main modules: the database and
the virtual machine image repository. The database
stores physical and virtual network status, such as the
available physical resources and traces that allow mea-
suring the performance of virtual networks. The VM
image repository maintains pre-built virtual router im-
ages to be used according to users’ requirements. For
example, a user may request an image stored in the
repository and have it transferred to chosen physical
routers in order to create a virtual network. Note that
the repository can be moved to each physical router or
to a location where they can directly access through the
local network. This alternative may impose the exis-
tence of multiple copies of the same images throughout
the network and limits the virtual network to a local
area (LAN), revealing a tradeoff between flexibility and
performance. Keeping the repository in the VMS sim-
plifies new virtual router image creation and does not
limit virtual networking to a local scope. Nevertheless,
it has to cope with transferring virtual router images
to physical routers before creating the virtual network.
An intermediate solution could cache in physical routers
the most used images, computed according to statistics
on the VMS database. Creating a virtual network also
involves with physical to virtual network interface map-
ping and network address configuration.

2.3 Service primitives
In addition to the basic services, the proposed VMS

also implements services to control the amount of phys-
ical resources (memory and CPU) allocated to a virtual
router, if it becomes a bottleneck. Table 1 summarizes
the services provided by the VMS.

The service createVirtualMachine creates virtual
machines. It uses the parameters passed as input by the
service requisition to create a virtual node on a specific
physical network node. This service has two variations.
The VMS can send the file used as virtual disk to the
physical machine which will host the new virtual ma-
chine. Alternatively, the virtual disk can be accessible
to the physical machine which will host the new virtual
machine. The service createVirtualNetwork creates a
set of virtual nodes in network physical machines. Addi-
tionally, to guarantee that the virtual machines created
compose a network, the mapping between the indicated
physical interface and the new virtual interface is done,

besides the configuration of the network addresses.
When a virtual machine creation is requested with

the variation for virtual disk transfer, the details con-
cerning the operating system to be used must be de-
fined. Some of the VMS services provide the clients
with information on the virtual routers available. Ser-
vice getAvailableOSes presents the available operat-
ing systems (Linux, Windows, MacOs, etc.), service
getAvailableArch presents the available architectures,
and service getAvailableKernelVersions presents the
kernel versions available.

The service destroyVirtualMachine can be used to
destroy a virtual machine, for instance, when the net-
work in which it was created to operate is no longer
needed. In some cases, the virtual machine will have
to be turned off to be rebooted afterwards. The ser-
vice shutdownVirtualMachine can be used with this
goal. The services getPhysicalServerStatus as well
as getVirtualMachineStatus are used to obtain gen-
eral information, such as memory and number of proces-
sors, regarding a physical or a virtual machine, respec-
tively. This information can be used by a knowledge
plane during a decision making process. The service
for migration (migrateVirtualMachine) can be used
to move a virtual machine from a physical node to an-
other, when a given physical node is overcharged, for
instance.

In multitask operating systems, CPU schedulers are
used to divide processing resources among processes.
Similarly, Xen uses CPU schedulers to share resources
among virtual machines. Xen originally implemented
three different schedulers, the Credit Scheduler [4], BVT
(Borrowed Virtual Time) [5], and SEDF (Simple Earli-
est Deadline First) [6]. Currently, the default sched-
uler of Xen is the Credit Scheduler. The scheduler
used by the virtual machine can be get by the get-

VirtualMachineSchedulerType service. In addition,
the scheduler parameters of a virtual machine can be ob-
tained via the service getVirtualMachineScheduler-

Parameters and can be modified via the service set-

VirtualMachineSchedulerParameters of VMS.
Initially, the virtual machine server is totally unaware

of the physical machines which it has access to. To guar-
antee that the virtual machine server has knowledge
about these nodes, the service registerNodes allows
that a given node is registered in the server for future
administration, i.e., the name, the public key, and the
IP addresses are sent to the server which stores this in-
formation locally. The registered nodes can be accessed
by using the service getRegisteredNodes.

2.4 VMS client
In this work, we also developed a client class, called

HorizonXenClient, to facilitate the interaction with
the VMS. All the services offered by the VMS are called

3

Table 1: Services provided by the Virtual Machine Server.
Service Description

createVirtualMachine Service for virtual machine creation

createVirtualNetwork Service for virtual network creation

destroyVirtualMachine Service for virtual machine destruction

getAvailableArch Service for obtaining available virtual machine architectures

getAvailableOSes Service for obtaining available operating systems for virtual machines

getAvailableKernelVersions Service for obtaining available kernel version for virtual machines

getPhysicalServerStatus Service for obtaining information of a physical machine

getRegisteredNodes Service for obtaining the list of registered nodes

getVirtualMachineSchedulerParameters Service for obtaining virtual machine scheduling parameters

getVirtualMachineSchedulerType Service for obtaining the virtual machine scheduling type

getVirtualMachineStatus Service for obtaining a given virtual domain

migrateVirtualMachine Service for virtual machine migration

registerNodes Service for node registration

sanityTest Service for server sanity check

setVirtualMachineSchedulerParameters Service to set virtual machine scheduling parameters

shutdownVirtualMachine Service to shutdown a virtual machine

by the client using specific methods. These methods
are provided as the client class API, which can be used
to build software systems capable to interact with the
VMS. These software systems can be as simple as a web
page with a floating menu for human interaction or even
more sophisticated systems such as intelligent agents
for autonomous operation. Listing 1 summarizes the
API provided by the developed client class. Note that
all methods return an object of the class OMElement,
which are used as the content of SOAP (Simple Ob-
ject Access Protocol) messages. The OMElement object
returned also reports execution failures to clients.

The createVirtualMachine method has as input pa-
rameters the virtual router name (vmName), the name of
the physical router or its IP address (phyServer), the
IP address of the virtual router (vmIP), and the RAM
size (vmRAM).

Concerning the parameters employed by the methods
described in Listing 1, the vmName refers to the virtual
machine name. This name will be the name accessible
via Xen system administration resources and shall be
used for future interactions with the VMS. The param-
eter phyServer refers to the name externally accessible
via DNS of the physical node or its IP address. The
parameters vmIP and vmRAM are related, respectively, to
the IP address and to the RAM size destined to the new
virtual domain. Parameters Weight and Cap are used
to configure the Credit Scheduler [7].

There are also specific parameters for virtual machine
migration: sourcePhyServer and destPhyServer de-
fine, respectively, the source and destination physical
nodes of the virtual machine to be migrated; the pa-
rameter live, which can receive boolean values, defines
if the migration should be conducted live, i.e. without

the interruption of the virtual machine operation.
Some services can operate upon a set of physical and

virtual machines. In these cases, the parameters ex-
pected are vectors and the semantics are similar to those
already pointed out. The VMS also implements a san-
ity check method which has a testString as param-
eter. This parameter defines the string which will be
part of the test message body and will be sent back by
the server, in case it is not working properly.

It is worth mentioning that the utilization of the
HorizonXenClient class is not mandatory. Instead, the
client can be build without using this library and even
without limiting the programming language. Because
it is based on a web service, it allows such flexibility.
The only requirement is the support for SOAP and the
use of a valid XML container for correct parsing. This
provides enough flexibility to the development of dif-
ferent clients, which could replace the utilization of the
HorizonXenClient.

2.5 Implementation details
The virtualized systems managed by the VMS have as

their only requirement to run a virtualization platform,
which must provide public programming interfaces and
support open-source libraries for management. We use
the Libvirt library v.0.7.5, which supports different
programming languages and virtualization platforms,
e.g. Xen, VMware, OpenVZ, QEMU, since they all pro-
vide the same set of basic management tasks. Thus, the
VMS supports different virtualization platforms. An
important remark has to be done on the location of
the virtual router hard disk image. This file must con-
tain the operating system and all functions required by
users to provide their service. For example, if the virtual

4

Listing 1: API provided by the HorizonXenClient

class.
public OMElement

createVirtualMachinePayload (St r ing
phyServer , S t r ing vmName, S t r ing vmIP ,
S t r ing vmRAM) ;

public OMElement
createVirtualNetworkPayload (Vector<
Str ing> phyServers , Vector<Str ing>
VMNames, Vector<Str ing> IPs , Vector<
Str ing> RAMs, Vector<Str ing>
n e t I n t e r f a c e) ;

public OMElement
destroyVirtualMachinePayload (St r ing
phyServer , S t r ing vmName) ;

public OMElement
getPhys i ca lServerStatusPay load (St r ing
phyServer) ;

public OMElement getRegisteredNodesPayload
() ;

public OMElement
getVirtualMachineSchedulerParameters−
Payload (St r ing phyServer , S t r ing
VMName) ;

public OMElement
getVirtualMachineStatusPayload (St r ing
phyServer , S t r ing vmName) ;

public OMElement
migrateVirtualMachinePayload (St r ing
sourcePhyServer , S t r ing destPhyServer ,
S t r ing vmName, S t r ing l i v e) ;

public OMElement reg i s te rNodesPay load (
Vector<Phys i ca lServer> phyServers) ;

public OMElement sanityTestPayload (St r ing
t e s t S t r i n g) ;

public OMElement
setVirtualMachineSchedulerParameters−
Payload (St r ing phyServer , S t r ing
VMName, S t r ing Weight , S t r ing Cap) ;

public OMElement
shutdownVirtualMachinePayload (St r ing
phyServer , S t r ing vmName) ;

router will run IPv4 and RIP (Routing Information Pro-
tocol), the image must be built from an operating sys-
tem supporting these protocols. We use Xen [8] as our
virtualization platform since it is open-source, provides
public APIs (XenAPI), and has many adepts worldwide.

The VMS is written in Java and uses the Tomcat

v.6 as the web server. Both VMS and an implemented
client use the open-source library Axis2 v.1.5.1 to com-
municate. Users interact with the client, which invokes
methods to create XML containers with their requests.
Axis2 implements the Simple Object Access Protocol
(SOAP) to encapsulate XML containers in SOAP mes-
sages, which will be sent from the client to the VMS
and vice-versa. All services provided by the VMS are
publicly available for clients and are accessible via an
object defined in Axis2, the Object Model Element

(OMElement). The OMElement is instantiated in the
client, inserted in the XML container with the respec-
tive user request, and sent to the VMS using SOAP.

If a new service not yet implemented is required,
adding it is simple. Each service is implemented as a
method of the main class VirtualMachineServer of the
VMS. Every service must be implemented as a public
method, which receives an object of the class OMElement
and returns another object of the same OMElement class.
The OMElement class is offered by the Axis2 library and
has as its main characteristic the capacity to encapsu-
late XML messages, i.e., after converted to a string, an
object OMElement becomes a tag of a XML message.
In this case, the element received as a parameter is the
content of a SOAP message and the OMElement received
back is also the content of a SOAP message sent as a
response by the Virtual Machine Server.

3. EXPERIMENTS
Our testbed is composed of four PCs connected via a

switch in a star topology, as depicted in Figure 2. One
of them is the VMS (vms) whereas the others (xen1,
xen2, and xen3) are physical routers with the hardware
listed in Table 2. Another PC is used as a client.

Figure 2: Testbed topology.

3.1 Results
We create a JAR (Java ARchive) and a JSP (Java-

Server Pages) client to permit service requests from
command lines and web pages, respectively. We show
the average result and the standard deviation of each
experiment.

Table 3 presents the time needed to create a virtual
router on physical routers, considering the possibility
of transferring or not the disk image. Although not
transferring the disk image is more efficient, it limits
the virtual network to a local scope. Results show that
the total creation time is less than one minute with im-
age transfer and less than 10s, otherwise. Both results
are encouraging since they can still be improved using
specific hardware. Considering the whole process with
image transfer comprised of the time for client-VMS

5

Table 2: Configuration of the testbed machines.
PC Architecture Processor RAM Kernel

vms i386 Core2 2.13 GHz 2 GB 2.6.30-2

xen1 amd64 Core2 Duo 2.53 GHz 4 GB 2.6.32-5-xen

xen2 i386 Celeron 2.8 GHz 3 GB 2.6.32-5-xen

xen3 i386 Pentium4 HT 3.4 GHz 2 GB 2.6.32-5-xen

Table 3: Virtual router creation time in seconds.
PC With image transfer Without image transfer

xen1 42.20±1.62 5.72±0.37

xen2 43.77±1.35 6.86±0.25

xen3 46.62±5.80 7.05±1.74

communication, disk image transfer, and virtual router
initialization, we have separately measured the time for
image transfer. Figure 4 shows the time elapsed for
image transfer, which represents a large amount of the
total time. Comparing the performance of the differ-
ent hardware, we note that the best result is always
achieved with the best configuration (xen1).

Table 5 presents the processing time consumed by the
client when creating a virtual router on each machine.
We observe that the amount of CPU resources required
is similar and low, independent of the hardware used.
As a consequence, devices with limited processing power
can also be used, including smartphones and intelligent
agents.

3.2 Discussion
Considering the number of virtual routers per vir-

tual network equal to the number of virtual networks
(n), a virtual network creation is finished after creat-
ing all its virtual routers in sequence or in parallel. In
the first case, virtual router creation starts only after
the previous one, leading to a Θ(n) problem; whereas
in the second case, the virtual router creation starts si-
multaneously, leading to a Θ(1) problem. Combining
the Internet hierarchical organization with the paral-
lel approach, the virtual networking creation problem
scales in a log-based fashion. In the first step, the VMS
creates in parallel the virtual routers within its local
network, including border routers. The border routers
repeat the same procedure within their networks on be-
half of the VMS, as a second step. Thus, the proce-
dure is recursively repeated until the virtual network
is complete. We assume that the VMS is aware of the
available physical resources, otherwise we should also
consider the virtual router allocation problem [9, 10].

4. RELATED WORK
New future Internet architectures, following either

evolutionary or clean-slate approaches, have been pro-

posed. On the one hand, proposals based on the evo-
lutionary approach are less radical and, therefore, have
been used in the Internet so far, e.g. DNS (Domain
Name System) [11], NAT (Network Address Transla-
tion) [12], IPv6 [13]. The clean-slate approach [2], on
the other hand, requires deeper modifications into the
current Internet. The role-based architecture is an ex-
ample which does not rely on the widely known In-
ternet multi-layered architecture. The goal is to allow
improvements without requiring cross-layer violations.
Hence, in the role-based architecture, modules are em-
ployed to replace layers to permit modular protocol de-
sign. The major difference compared with the multi-
layered counterpart is the existence of hierarchical levels
among roles. In addition, it is worth mentioning that
the roles are built based on blocks of standardized struc-
tures to allow the creation of well-defined services. The
Content-based Networking (CBN) [14] is another ar-
chitecture based on the clean-slate approach, which as-
sumes that Internet users are not interested from whom
or from where they can obtain a given content. In-
stead, they are only interested in timely response for
content requests. Following the CBN idea, the Inter-
net would change from station centered architecture, to
data centered. DONA (Data-Oriented Network Archi-
tecture) [15] is a content-based proposal which does not
use DNS requisitions for destination name resolution
into IP address. In DONA, anycast primitives based
on names are inserted above the network layer for con-
tent acquisition and, thus, IP addresses are not used.
The VMS can store evolutionary- and clean-slate-based
proposals for experiments using the pluralist network.

Feamster et al. propose CABO (Concurrent Archi-
tectures are Better than One) [16] which already used
virtual machines to build pluralist architectures. Hence,
multiple virtual networks share the same physical sub-
strate and each one can use a different configuration
or even a distinct protocol stack. The main motiva-
tion behind CABO is to permit ISPs (Internet Ser-

6

Table 4: Image transfer time in seconds for virtual machine creation with disk transfer.

PC Image transfer

xen1 35.21±0.13

xen2 35.47±0.41

xen3 36.52±4.99

Table 5: Processing time consumed by the client in seconds.

PC With image transfer Without image transfer

xen1 0.79±0.01 0.79±0.01

xen2 0.82±0.03 0.79±0.01

xen3 0.81±0.02 0.79±0.01

vice Providers) to offer differentiated services to their
costumers, which is not possible today. Because ISPs
do not have end-to-end routers between their Inter-
net users, service and infrastructure providers are sep-
arated. In this case, infrastructure providers offer com-
putational and network resources to service providers
through commercial agreements. A service provider
can use resources from different infrastructure providers
and, therefore, can build an end-to-end path with acces-
sible routers. This allows the provision of differentiated
services to final users. The VMS allows users to build
different networks based on a tool for creation, control,
management, and deletion.

5. CONCLUSIONS AND FUTURE WORK
In this work, we proposed a Virtual Machine Server

(VMS) for virtual networking management. Our results
are promising and revealed a tradeoff between flexibility
and performance, i.e. transferring virtual router images
before creating a virtual network provides more flexibil-
ity but incurs in higher delay. As a future work, we plan
to use real data for performance analysis and to extend
our testbed.

6. ACKNOWLEDGMENTS
The authors would like to thank the Brazilian agen-

cies CAPES, CNPq, Faperj, FINEP, and FUNTTEL
and the French agency ANR for their support. In ad-
dition, Miguel Elias M. Campista would like to thank
NPA (Network and Performance Analysis) Laboratory
in UPMC Sorbonne Universits and LINCS (Laboratory
of Information, Network and Communication Sciences)
for hosting him.

7. ADDITIONAL AUTHORS

8. REFERENCES
[1] J. Rexford and C. Dovrolis, “Future Internet

architecture: clean-slate versus evolutionary

research,” Communications of the ACM, vol. 53,
no. 9, pp. 36–40, Sep. 2010.

[2] D. Clark, R. Braden, K. Sollins, J. Wroclawski,
D. Katabi, J. Kulik, X. Yang, T. Faber, A. Falk,
V. Pingali, M. Handley, and N. Chiappa, “New
Arch: Future generation Internet architecture,”
USC Information Sciences Institute Computer
Networks Division, MIT Laboratory for Computer
Science and International Computer Science
Institute (ICSI), Tech. Rep., Aug. 2004.

[3] N. M. M. K. Chowdhury and R. Boutaba,
“Network virtualization: state of the art and
research challenges,” IEEE Communications
Magazine, vol. 47, no. 7, pp. 20–26, Jul. 2009.

[4] Citrix, “Credit-based CPU scheduler,”
http://wiki.xensource.com/xenwiki/Credit-
Scheduler, 2007, acessado em abril de
2011.

[5] K. J. Duda and D. R. Cheriton,
“Borrowed-virtual-time (BVT) scheduling:
supporting latency-sensitive threads in a
general-purpose scheduler,” in Proceedings of the
ACM symposium on Operating systems principles
(SOSP), 1999, pp. 261–276.

[6] I. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and
E. Hyden, “The design and implementation of an
operating system to support distributed
multimedia applications,” IEEE Journal on
Selected Areas in Communications, vol. 14, no. 7,
pp. 1280–1297, Sep. 1996.

[7] L. Cherkasova, D. Gupta, and A. Vahdat, “When
virtual is harder than real: Resource allocation
challenges in virtual machine based IT
environments,” HP Laboratories Report No.
HPL-2007-25, Tech. Rep., 2007.

[8] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt,
L. Mathy, and T. Schooley, “Evaluating Xen for
router virtualization,” in ICCCN, Aug. 2007, pp.

7

1256–1261.
[9] G. Alkmin, D. M. Batista, and N. L. S.

da Fonseca, “Optimal mapping of virtual
networks,” in IEEE Globecom, Dec. 2011, pp. 1–6.

[10] F. Gu, C. Xie, M. Peng, iek avdar, S. Khan, and
N. Ghani, “Virtual overlay network scheduling,”
IEEE Communications Letters, vol. 15, no. 8, pp.
893–895, Aug. 2011.

[11] P. Mockapetris, “Domain names - implementation
and specification,” RFC 1035, Nov. 1987.

[12] K. Egevang and P. Francis, “The ip network
address translator (NAT),” RFC 1631, May 1994.

[13] R. Hinden and S. Deering, “Internet protocol
version 6 (IPv6) addressing architecture,” RFC
3513, Apr. 2003.

[14] V. Jacobson, D. Smetters, J. Thornton, M. Plass,
N. Briggs, and R. Braynard, “Networking named
content,” in Conference on emerging Networking
EXperiments and Technologies (CoNEXT), Dec.
2009, pp. 1–14.

[15] T. Koponen, M. Chawla, B.-G. Chun,
A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 181–192, Aug. 2007.

[16] N. Feamster, L. Gao, and J. Rexford, “How to
lease the internet in your spare time,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 1, pp. 61–64,
Jan. 2007.

8

