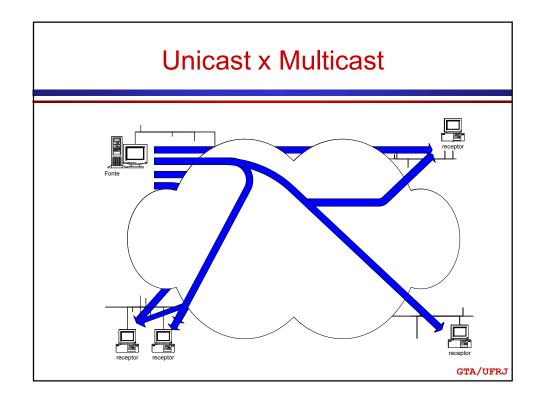


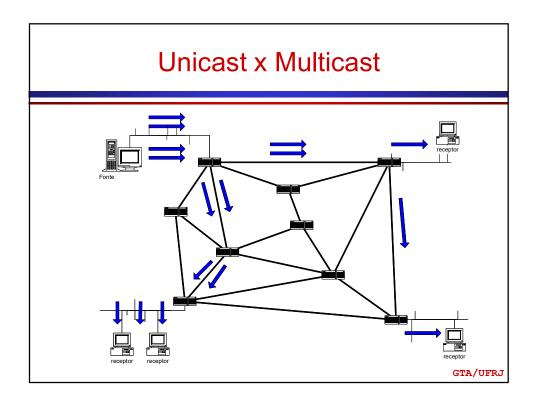
Redes de Computadores II **EEL 879**

Parte V **Roteamento Multicast na Internet**

Luís Henrique M. K. Costa

luish@gta.ufrj.br


Universidade Federal do Rio de Janeiro -PEE/COPPE P.O. Box 68504 - CEP 21945-970 - Rio de Janeiro - RJ Brasil - http://www.gta.ufrj.br


Introdução

- o Comunicação de grupo (aplicações multidestinatárias)
 - Vídeo-conferência
 - Ensino a distância
 - Jogos distribuídos
 - > TV na Internet, ...
- A mesma informação deve ser enviada a múltiplos receptores

Como enviar a N receptores?

- Opções: diferentes tipos de transmissão
- O Unicast
 - > Transmissão ponto-a-ponto
 - > 1 emissor, 1 receptor
- Multicast
 - > Transmissão ponto-a-multiponto
 - > 1 emissor, N receptores
- Broadcast
 - > Envio a todos os nós da rede

Utilização do Multicast

O Vantagens

- Produz menos pacotes
 - Utilização eficiente da banda passante da rede
 - Menor processamento em estações e roteadores

Utilização do Multicast

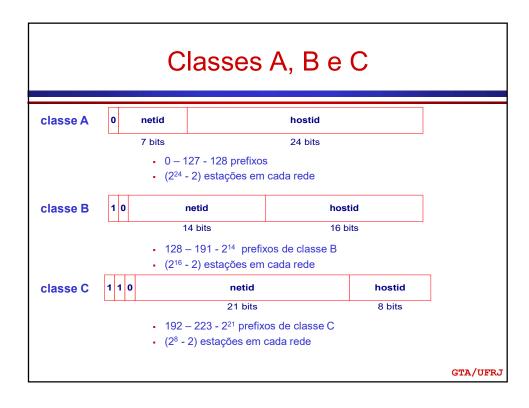
Problemas

- Como identificar o grupo?
 - · Lista dos receptores
 - Overhead de cabeçalho limita o tamanho do grupo
 - Endereço de grupo
 - Identidade e número dos receptores desconhecidos
- Como realizar a distribuição dos pacotes?
 - Endereçamento e roteamento (encaminhamento dos pacotes) s\u00e3o diretamente relacionados

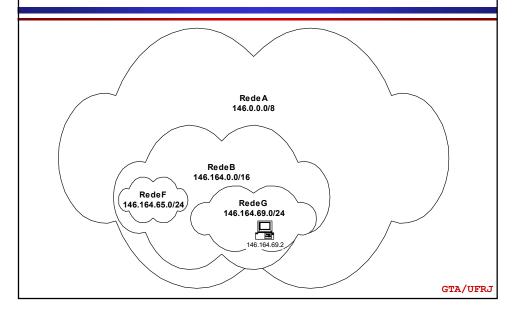
GTA/UFRJ

Endereçamento na Internet

o endereço IP = inteiro de 32 bits


- escrito na forma de 4 números decimais separados por pontos: 146.164.69.2
- o mapeamento de nomes em endereços IP e vice-versa é feito pelo Sistema de Nome de Domínio (DNS)
- > atribuído a cada interface de rede de uma máquina
 - identifica a conexão de uma estação na rede

o endereçamento IP

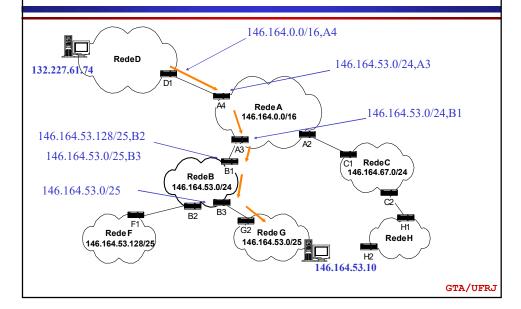

- topológico (ou hierárquico: utiliza prefixos)
 - a posição de uma máquina determina seu endereço
 - torna eficaz as operações de roteamento

Endereçamento IP

- Inicialmente, baseado em 3 classes de endereços:
 A, B e C
- o Endereço IP decomposto em
 - ▶ identificador de rede (netid) ou prefixo de rede
 - · identifica uma rede
 - identificador da estação dentro desta rede (hostid)
 - identifica uma máquina numa rede

Endereçamento Hierárquico

Endereçamento Hierárquico

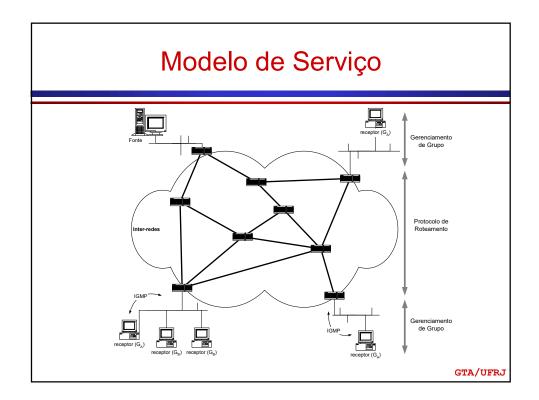

- o Hoje em dia
 - ➤ CIDR (Classless Inter-domain routing)
 - Prefixos podem ter comprimento arbitrário
 - Redes podem ter tamanho arbitrário
- O Rota:
 - Dado um destino, qual o próximo salto? (qual a "porta de saída"?)
- O Roteamento:

Escolher a melhor rota

O Roteamento Hierárquico:

Agregação de rotas

Agregação de Rotas



Problema do Multicast

- Dado o endereçamento, como realizar a distribuição dos pacotes?
 - > Endereço unicast
 - Identifica e localiza uma estação
 - > Endereço de grupo
 - Hierarquia impossível, receptores espalhados em toda a rede

Modelo de Serviço IP Multicast

- o Identificação
 - > Endereço de grupo
- Distribuição dos dados
 - > Gerenciamento de grupo
 - Entrada / saída do grupo
 - "quero escutar o grupo" / "quero parar de escutar o grupo"
 - Entre a estação e seu roteador local
 - > Protocolos de roteamento
 - Distribuição dos dados entre as redes
 - Como fazer os pacotes chegarem ao meu roteador local?

Modelo de Serviço

O Grupo

- > Identificado por um endereço de grupo
- Conversação N x M, aberta
 - Qualquer estação pode participar
 - Uma estação pode pertencer a vários grupos
 - Uma fonte pode enviar dados ao grupo, tendo se inscrito neste ou não
- O grupo é dinâmico, uma estação pode entrar e sair a qualquer instante
- O número e a identidade dos participantes do grupo são desconhecidos

GTA/UFRJ

Endereçamento

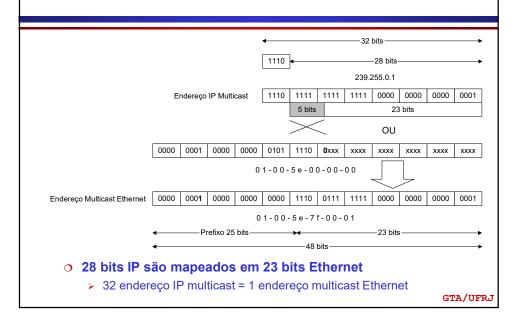
○ Endereço Multicast = IP Classe D

- o 224.0.0.0 **a** 239.255.255.255 (224.0.0.0/4)
- o Em geral, o endereço é temporário, mas...
 - > 224.0.0.0 a 224.0.0.255 são reservados e de escopo

local

224.0.0.1	All Hosts
224.0.0.2	All Multicast Routers
224.0.0.3	Não alocado
224.0.0.4	All DVMRP Routers
224.0.0.5	All OSPF Routers

Modelo de Serviço


- O grupo é identificado por um endereço IP Multicast
 - > Endereço IP Classe D
- Criação do grupo
 - Escolha de um endereço multicast e envio de dados para o grupo
- o Destruição do grupo
 - > Parada do envio de dados

GTA/UFRJ

Conexão a um Grupo Multicast

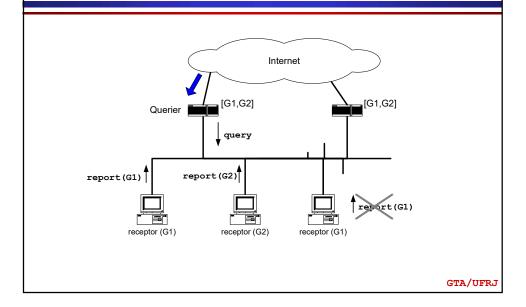
- A aplicação sinaliza à camada rede interesse no grupo G
 - > socket
- O Se não havia outra aplicação conectada a G
 - > Relatório IGMP é enviado na rede local
 - Camadas inferiores podem ser igualmente programadas
 - Ex. Ethernet

Multicast Ethernet

Por que apenas 23 bits?

- No início da década de 90, Steve Deering desejava que o IEEE alocasse 16 OUIs (Organizational Unique Identifier) para os endereços multicast Ethernet.
- O Cada OUI equivale a 24 bits de espaço de endereçamento
 - > 16 OUIs consecutivos = 28 bits
- Na época, 1 OUI = US\$ 1.000,00
- Jon Postel (chefe de Deering na época) comprou apenas 1
 OUI, e liberou apenas a metade do espaço para as pesquisas de Deering...

Gerenciamento de Grupo


- Quem quer ouvir que grupos?
 - "estação de rádio"
- o IGMP (Internet Group Management Protocol)
 - > Detecção de estações interessadas em grupos multicast
 - > Existem 4 versões do IGMP
- o Escopo local
 - > diálogo entre a estação e o primeiro roteador
 - > criação da árvore de distribuição independente do IGMP

GTA/UFRJ

Funcionamento do IGMP

- Parte estação
 - Conexão ao grupo (join (G))
 - Receptor envia mensagem report (G)
 - Envio de mensagens report em resposta às mensagens query
 - "Estes são os grupos de interesse desta estação"
- Parte roteador
 - > Envio periódico de mensagens query
 - "Que grupos são escutados na rede?"
- Parte estação
 - Mecanismo de supressão de mensagens report

Funcionamento do IGMP

IGMPv2

- o Introduz o mecanismo de fast-leave
 - Diminuição da latência de desconexão
- Desconexão
 - Receptor envia mensagem IGMP leave (G)
- Regras de processamento para evitar a desconexão de outras estações
 - Ex. roteador deve enviar query (G) para detectar se existem ouvintes remanescentes

IGMPv3

- Filtragem de fontes
- O A estação anuncia o interesse no grupo G,
 - > "apenas nos dados enviados por determinadas fontes", ou
 - > "nos dados enviados por todas, exceto determinadas fontes"
- Interface
 - > IPMulticastListen (socket, interface, mcast-address, filter mode, source-list)
 - > filter-mode pode ser INCLUDE ou EXCLUDE

GTA/UFRJ

Exemplo no IGMPv3

- Recepção do que apenas as fontes S1 e S2 enviam a G
- Recepção de tudo que é enviado a G, exceto por S2 e S3
 - > IPMulticastListen (sock, iface, G, EXCLUDE, {S2,S3})
- Estado no roteador
 - (G,EXCLUDE(S3))

Roteamento Multicast

- Problema de Roteamento Multicast
- G=(V,E)
 - > v conjunto de vértices
 - ➤ E conjunto de enlaces
- M sub-conjunto de V
 - > inclui fontes e receptores do grupo multicast
- Problema: construir uma, ou várias, topologias de interconexão, árvores, que incluem todos os nós em M
 - > árvore por fonte (source-based tree)
 - > árvore compartilhada (*shared tree*)

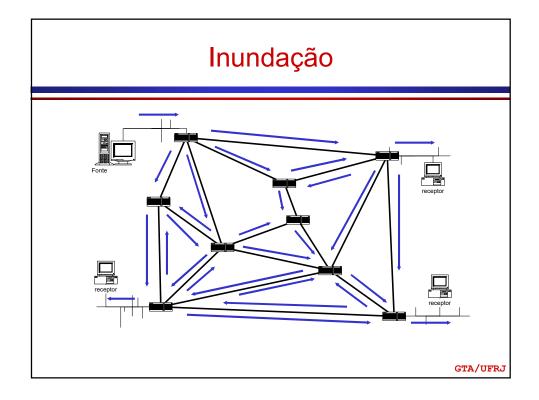

GTA/UFRJ

Primeiras Soluções

- Árvores de cobertura (spanning trees)
- Algoritmo de inundação
- Árvores RPF (Reverse Path Forwarding)
- Árvores centradas

Árvores de Cobertura

- Sub-grafo contendo todos os nós em M, sem ciclos
- o Pode-se adicionar objetivo de custo mínimo
 - > Associa-se um custo, $\mathbf{c_{uv}}$, a cada enlace (u,v)
- \circ Se $c_{uv} = 1 \ \forall u, v$, árvore de Steiner
 - > Problema NP-completo


Inundação

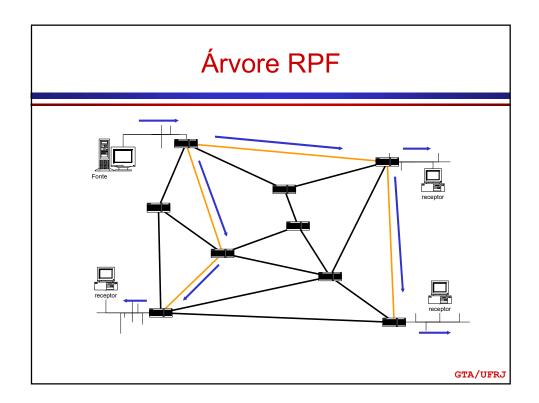
Ao receber o pacote

- > Esta é a primeira vez que foi recebido?
 - Se sim, re-envio em todas as interfaces de saida
 - Se não, descarte

O Problema

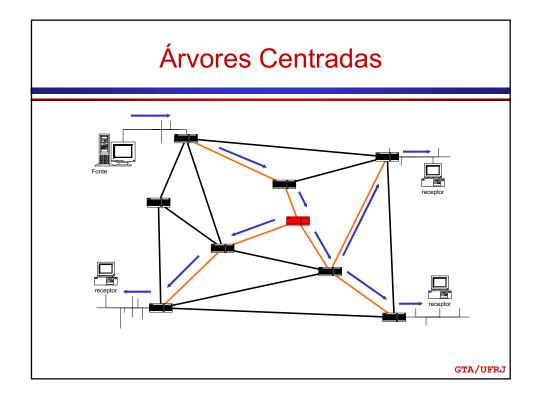
- > Como identificar o primeiro envio de um pacote
 - Armazenar identificação
 - Carregar lista dos nós atravessados
- > Consumo de memória e banda passante

Árvores RPF


- Hipótese: um roteador R conhece o caminho mais curto para ir à fonte, s
- Reverse Path Forwarding check (RPF check)
- Reverse Path Broadcasting
 - > O roteador R recebe um pacote da fonte s
 - O pacote chegou pela interface utilizada por R para ir à s? (RPF check)
 - Se sim, enviar o pacote por todas as interfaces de saída. Se não, descartar o pacote.

GTA/UFRJ

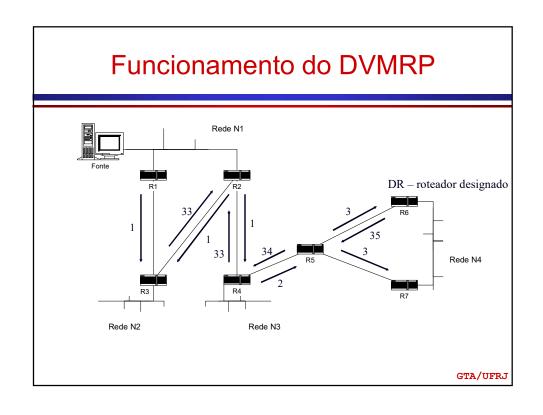
Reverse Path Broadcasting Forte Forte GTA/UFFJ

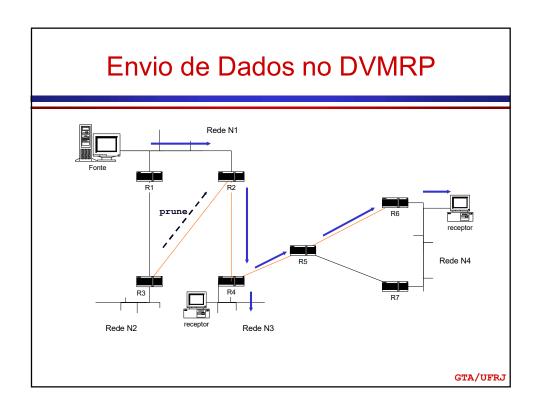

Reverse Path Forwarding

- Hipótese
 - um roteador R sabe se seu vizinho o utiliza como caminho para a fonte, S
- Como obter esta informação
 - > trivial, se protocolo de estado do enlace
 - > se protocolo de vetor-distância
 - mensagem adicional para alertar o roteador "pai", ou
 - mensagem de poda para eliminar a rota reversamente
- o Informação por (fonte,grupo)

Árvores Centradas

- o Construída a partir de um nó central (core)
- Compartilhada por diversas fontes
 - > diversas fontes utilizam o mesmo *core*
 - > "pedidos de conexão" são enviados ao core


Roteamento Multicast Intra-domínio


- DVMRP (Distance Vector Multicast Routing Protocol)
 - > Primeiro protocolo utilizado no MBone
- MOSPF (Multicast Open Shortest Path First)
- CBT (Core Based Trees)
- PIM (Protocol Independent Multicast)
 - ➤ PIM-DM (PIM Dense-Mode)
 - > PIM-SM (PIM Sparse Mode)
 - > PIM-SSM (PIM Source Specifiic Multicast)

GTA/UFRJ

DVMRP

- Utiliza vetores de distância
 - ➤ Semelhante ao RIP (Route Information Protocol)
 - > Constrói rotas unicast para cada fonte multicast
 - Poison-reverse especial utilizado para marcar interfaces filhas
- Distribuição de dados
 - ➤ Inundação e poda (flood-and-prune)
 - > Teste RPF baseado em sua tabela de roteamento unicast
- A inundação é periódica
 - > Descoberta de fontes ativas

DVMRP

- Algoritmo simples
- o Protocolo de roteamento unicast próprio
- o Inundação periódica da rede com dados
- Vetores-de-distância
 - Convergência lenta, como no RIP

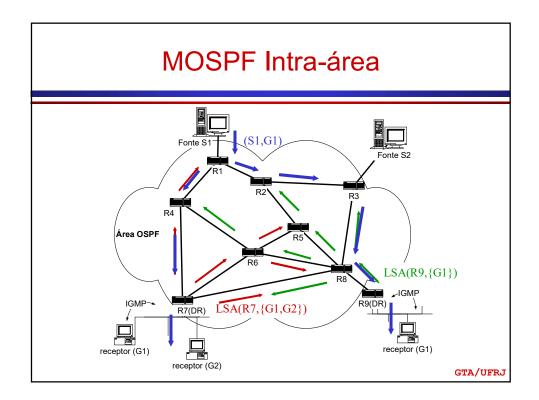
GTA/UFRJ

MOSPF

- Extensão do OSPF (Open Shortest Path First)
 - > roteadores trocam mensagens de estado-do-enlace
 - LSA Link State Advertisement
 - > Cada nó possui a topologia atualizada da rede
 - Algoritmo de Dijkstra caminhos mais curtos
- Novo tipo de LSA anuncia receptores multicast
- A árvore de distribuição é uma SPT (Shortest-Path Tree)
 - > união dos caminhos mais curtos entre fonte e cada receptor

MOSPF

Estrutura hierárquica


Áreas OSPF (roteamento intra-área e inter-área)

Intra-área

- > IGMP descoberta de receptores
- ➤ Group Membership LSAs
 - (roteador, grupo multicast, lista de interfaces)

Cálculo da SPT

- Disparado apenas após recepção do primeiro pacote de dados
- > Diminui o custo computacional

MOSPF Inter-área

- Multicast Area Border Router (MABR)
 - > Envio de tráfego multicast
 - > Informação sobre os grupos multicast
 - Conecta uma área OSPF à área 0 (área backbone)
- Receptor coringa
 - LSA anuncia que o roteador possui receptores para todos os grupos
 - > Todos os MABRs em uma área são receptores coringa
 - · Injetam LSAs coringa na área OSPF
 - Recebem todo o tráfego e o re-enviam na área 0 se necessário
- LSA de Resumo de Grupos (Summary Membership LSA)
 - > Lista todos os grupos escutados em uma área
 - São injetadas na área 0 pelos MABRs

GTA/UFRJ

MOSPF Inter-área SLSA(MABRI, {GI, G2}) LSA(MABRI, {*}) R11 R12 R22 R23 R24 R24 R25 R26 R27 R27 R27 R27 R28 GTA/UFRJ

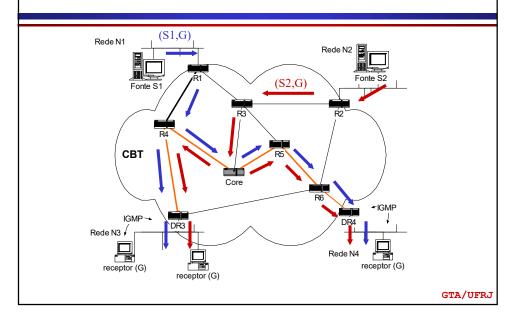
MOSPF Inter-área

- o Árvore SPT é construída na área 0
- A árvore completa (áreas comuns + área 0) não é SPT
- Pode haver envio desnecessário de tráfego ao MABR
 - > Receptor coringa

GTA/UFRJ

MOSPF

- o Protocolo de roteamento unicast deve ser OSPFv2
- Mensagens de estado-do-enlace
 - evitam a inundação periódica de dados como no DVMRP
 - > porém impedem o uso do OSPF em redes muito grandes
 - LSAs inundam toda a rede
- **O DVMRP**
 - Dados são uma mensagem implícita sobre a localização dos receptores
- MOSPF
 - > Mensagem explícita sobre onde existem receptores


CBT

- Utiliza árvores centradas
 - > Compartilhadas e bi-direcionais
- Roteador central core
- Construção da árvore
 - ➤ Mensagens *join*
 - Enviadas pelos receptores na direção do core

GTA/UFRJ

Construção da Árvore CBT Rede N1 Fonte S1 Fonte S1 Fonte S2 F

Envio de Dados no CBT

CBT

Escalabilidade

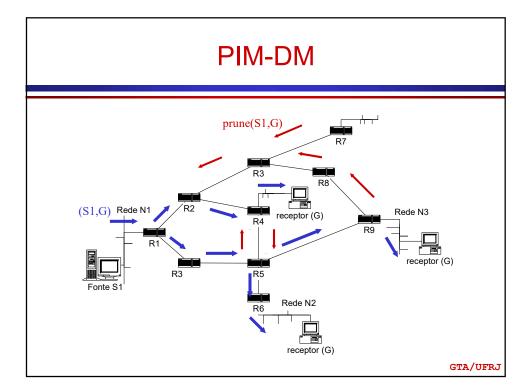
- > Estado apenas nos roteadores na árvore de distribuição
 - Ao contrário de DVMRP e MOSPF
- > Estado por (grupo), em vez de por (fonte,grupo)

Desvantagens

- > Concentração de tráfego próximo ao core
- > Rotas sub-ótimas entre a fonte e o receptor
 - Maiores atrasos

o Localização do core é crítica

PIM


- Protocol Independent Multicast (PIM)
 - > Independente do protocolo de roteamento unicast
- O Dense-Mode (PIM-DM)
 - > Receptores densamente distribuídos
 - Árvores por fonte
 - Inundação-e-poda (semelhante ao DVMRP)
- Sparse-Mode (PIM-SM)
 - > Receptores esparsamente distribuídos na rede
 - Árvores compartilhadas (como o CBT)
 - Uni-direcionais

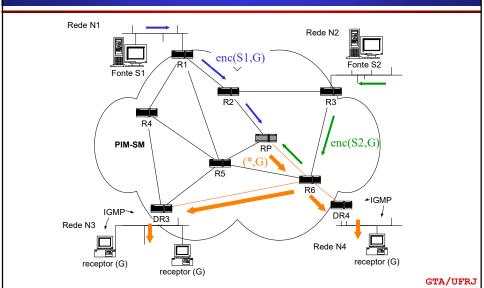
GTA/UFRJ

PIM-DM

Reverse Path Multicast

- > Utiliza o teste RPF
- Mas não constrói lista de interfaces filhas como o DVMRP
- > Tráfego enviado em todas as interfaces de saída
- Duplicação de pacotes, todos os enlaces da rede são utilizados, mas
 - independência do roteamento unicast
 - evita base de dados com pais/filhos
- > Após a inundação inicial, mensagens de poda são enviadas
 - Por roteadores que não possuem receptores do grupo
 - Por roteadores que n\u00e3o possuem vizinhos interessados no grupo
 - Por roteadores que receberam tráfego por uma interface incorreta (RPF)

PIM-DM


- Árvore SPT reversa (RSPT)
 - > União dos caminhos mais curtos dos receptores até a fonte
- Todos os roteadores da rede armazenam estado (fonte,grupo) para todas as fontes/grupos ativos
- o Inundação periódica é necessária
 - > Descoberta de novos membros do grupo

PIM-SM

- Árvores de distribuição centradas ((*,G), como o CBT)
 - ➤ Nó central roteador RP (rendez-vous point)
 - Uni-directional
- Construção da árvore
 - Mensagens join
- o Mecanismo de mapeamento entre grupos e RPs
- o Fontes se "registram" com o RP
 - Dados são enviados ao RP (encapsulados em mensagens PIMregister)

GTA/UFRJ

Árvore Compartilhada no PIM-SM

PIM-SM

- → Árvores por fonte (S,G)
- Troca realizada por configuração
 - > Taxa de envio de dados
- Roteador local envia mensagens join (S,G)
 - Mas não pára o envio de join(*,G)
 - Tráfego de outras fontes deve continuar
 - Envia mensagem de poda especial (RP-bit-prune (S,G))
 - Evita a recepção de dados de s em duplicata

GTA/UFRJ

Arvore por Fonte no PIM-SM Rede N1 Fonte S1 Rede N2 PIM-SM PIM-SM

PIM-SM

- O RP também pode enviar join (S,G)
- O Possibilidade de árvores por fonte
 - > Diminui a importância da localização do RP
 - > Reduz o atraso fonte-receptores

GTA/UFRJ

Problemas do Modelo de Serviço IP Multicast

- Como limitar o alcance (ou escopo) do tráfego multicast
 - > Até onde vai o tráfego enviado por uma fonte?
 - (receptores **não** são conhecidos)
- o Como evitar a colisão de endereços
 - > Duas aplicações escolhem o mesmo endereço multicast

Alcance do Tráfego Multicast

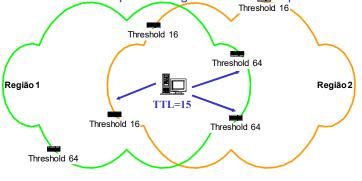
- o Definição de Escopos: até onde o tráfego alcança
- Técnicas para limitar o alcance
 - > Por endereço
 - > Utilizando o campo TTL
 - Administrativos

GTA/UFRJ

Escopo por Endereço

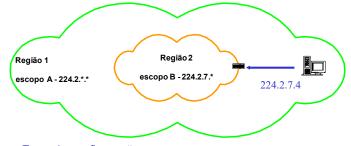
- o Faixa de endereços dinâmicos da Classe D
 - > 224.0.1.0 a 239.255.255.255
- Sub-divisão
 - > 224.0.1.0 a 238.255.255.255
 - aplicações com escopo global
 - > 239.0.0.0 a 239.255.255.255
 - aplicações com escopo limitado
 - 239.253.0.0/16 local ao site
 - 239.192.0.0/14 local à organização

Escopo usando o TTL


- TTL (Time-to-live)
 - > Campo decrementado de 1 a cada roteador atravessado
 - Pacote descartado quando TTL=0
- Escopo usando o TTL
 - > Escolhe-se um valor de TTL inicial para os pacotes multicast
- o Limita-se a distância em número de saltos
 - > Pouca correlação entre numero de saltos e uma região
- Limiar TTL (TTL threshold)
 - Configurado nos roteadores de borda
 - Pacotes com TTL menor que o limiar de TTL são descartados

GTA/UFRJ

Escopo usando o TTL Threshold 16 Site Local Fonte GTA/UFRJ


Escopos Administrativos

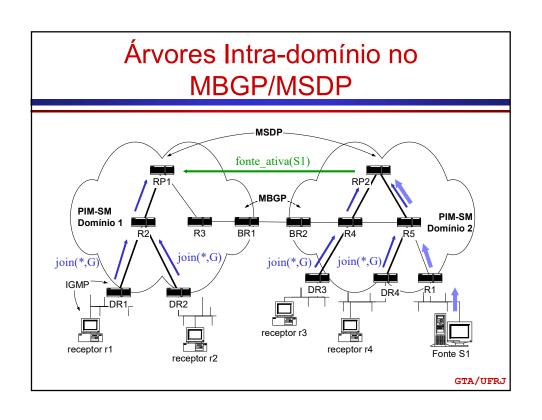
- Roteadores não encaminham certas faixas de endereços
 - > Maior flexibilidade que por TTL
 - Por TTL não se pode configurar zonas sebrepostas

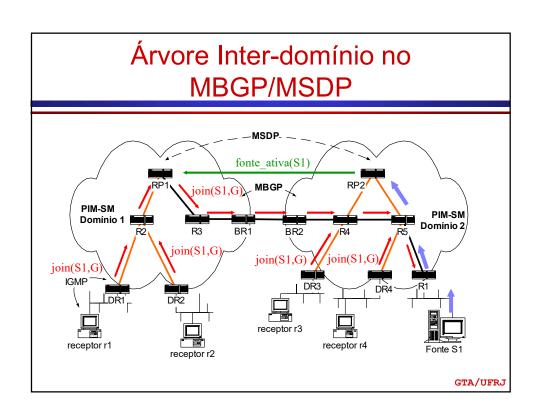
Escopos Administrativos

- Desvantagens
 - > Alcance definido por *todas* as zonas às quais a fonte pertence
 - Como descobrir que zonas se aplicam?
 - Zonas sobrepostas devem utilizar faixas de endereços disjuntas

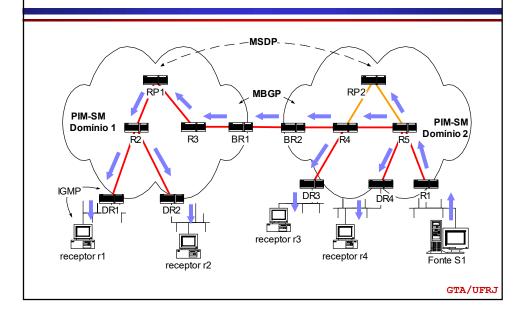
- Erros de configuração
 - · Zonas maiores ou menores que o necessário
 - Com o TTL, pode-se escolher um valor pouco maior que o necessário e garantir o funcionamento da aplicação

GTA/UFRJ


Roteamento Inter-domínio


- Nem todos os roteadores são multicast
- Diferentes protocolos nos diferentes domínios
- Problemas com o PIM-SM
 - > Mecanismo escalável de mapeamento entre RPs e grupos
 - Inter-dependência entre provedores de serviço introduzida pelos RPs

GTA/UFRJ


Arquitetura MBGP/MSDP

- Solução de curto-prazo
 - > Interconexão de domínios PIM-SM
- MBGP Multiprotocol Extensions for BGP-4
 - Permite múltiplas tabelas de roteamento
 - Pode-se utilizar uma tabela unicast e uma tabela multicast
 - M-RIB (Multicast Route Information Base)
- MSDP Multicast Source Discovery Protocol
 - Anúncio das fontes ativas, entre todos os RPs

Envio de Dados no MBGP/MSDP

MBGP/MSDP

- o Inter-dependência entre domínios evitada
- Todos os domínios são notificados de todas as fontes ativas
 - > Problema de escalabilidade
- Tráfego é encapsulado nas mensagens de "fonteativa"
 - > Evita perda dos primeiros dados
 - > E de fontes em rajadas
 - Problema: dados são enviados a todos os RPs

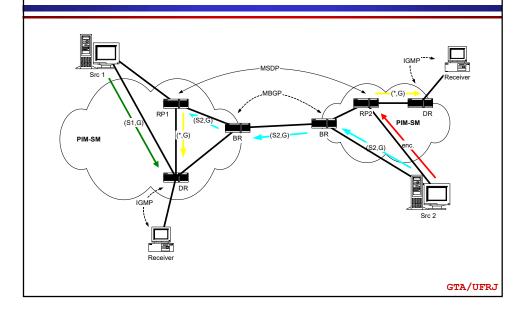
Novas Propostas

Modelo de Serviço IP Multicast

- ➤ Endereço IP class-D = grupo de estações
 - qualquer estação pode se inscrever no grupo
 - e qualquer estação pode enviar dados para o grupo
- > alocação de endereços multicast é problemática
- > protocolos: IGMP + protocolos de roteamento

IP Multicast não foi implantado na Internet

- > Redes de backbone superdimensionadas
- Tentativas de simplificação da arquitetura
 - Simple Multicast
 - EXPRESS, PIM-SSM
 - REUNITE, HBH


GTA/UFRJ

Protocolos Multicast

O IGMP

- Gerenciamento de grupo (estações roteadores designados)
- Protocolos de roteamento
 - Modo denso
 - DVMRP, PIM-DM
 - Inundação-e-poda, árvores por fonte
 - Modo esparso
 - PIM-SM
 - · Join explícito, árvores compartilhadas, árvores por fonte
- MBGP (Multi-protocol BGP)
 - > Anúncio de rotas unicast e multicast
- MSDP (Multicast Source Discovery Protocol)
 - Anúncio de fontes ativas entre todos os RPs

Arquitetura Atual

Inconvenientes da Arquitetura IP Multicast Original

- o Modelo de serviço aberto
- Alocação de endereços
- PIM-SM
 - é possível comutar da árvore compartilhada para árvore por fonte
 - > nos roteadores Cisco
 - limiar de tráfego configurado para 1 pacote
 - RP, MSDP
 - servem apenas para a descoberta de fontes
 - Árvore por fonte é preferível em muitas aplicações
 - Mesmo para fontes conhecidas
 - Construção da árvore compartilhada no início da transmissão

EXPRESS

- EXPlicitely REquested Single Source multicast
- o Canal multicast
 - 1 fonte para N receptores
 - ECMP protocol
 - controle do canal
 - coleta de informações sobre o canal
- Canal
 - ▶ (S,G) S = endereço IP da fonte, G = endereço multicast classe D

GTA/UFRJ

Source Specific Multicast

- SSM (Source-Specific Multicast)
 - conversação 1 x N
 - Subscribe channel <S,G>
 - > Fornece base para o controle de acesso
 - Apenas S pode enviar para (S,G), outras fontes são bloqueadas
 - > Alocação de endereços multicast (G)
 - Problema local à fonte
 - > Roteadores RP e o protocolo MSDP não são necessários

Componentes do Serviço SSM

- o Faixa de endereços exclusiva 232/8 (IANA)
- O Roteamento: PIM-SSM
 - Versão modificada do PIM-SM
 - Pode implementar ambos os serviços (SM & SSM)
- o IGMPv3 (MLDv2 no IPv6)
 - Suporta a filtragem de fontes
 - (INCLUDE, EXCLUDE)

GTA/UFRJ

Arquitetura SSM PIM-SSM (S1,G) PIM-SSM (S2,G) Receiver GTA/UFFJ

Funcionamento do PIM-SSM

- Regras do PIM-SSM
 - ▶ somente join(S,G) é permitido na faixa 232/8
 - > join(*,G) e join(S,G) permitidos na faixa restante
 - > roteadores de borda (DR no PIM)
 - implementam join(S,G) imediato
 - > roteadores de núcleo
 - devem evitar as árvores compartilhadas em 232/8

GTA/UFRJ

Modificações no IGMPv3

 Using IGMPv3 and MLDv2 For Source-Specific Multicast

<RFC4604.txt>

- Estações
 - Módulo IGMP não precisa ser modificado
 - Aplicações devem conhecer a faixa de endereços SSM, e utilizar apenas uma API específica à fonte nesta faixa
- Roteadores
 - Na faixa de endereços SSM, apenas modo INCLUDE
 - IGMP reports (queries) são processados (produzidos) de acordo

Observações Finais

- Arquitetura IP Multicast
 - Continua complexa
 - > Ainda possui problemas de escalabilidade
 - Estado armazenado nos roteadores
- Faltam ferramentas de gerenciamento
- Modelo de tarifação complexo