

Redes de Computadores II EEL 879

Parte IV Roteamento Inter-Domínio

Luís Henrique M. K. Costa

luish@gta.ufrj.br

Universidade Federal do Rio de Janeiro -PEE/COPPE P.O. Box 68504 - CEP 21945-970 - Rio de Janeiro - RJ Brasil - http://www.gta.ufrj.br

Organização da Internet

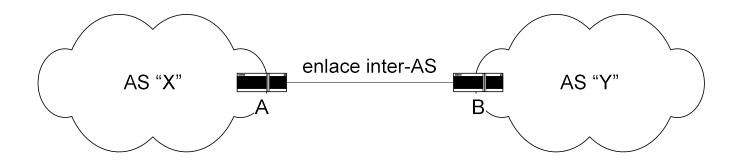
- **o** 1980
 - Arpanet + enlaces de satélite (Satnet)
 - Uma única rede (rodando GGP)
- Crescimento da rede
 - Atualizações de topologia mais frequentes
 - Diferentes implementações do GGP
 - Implantação de novas versões cada vez mais difícil
- Divisão em sistemas autônomos (AS Autonomous System)
 - Unidade que contém redes e roteadores sob administração comum
 - AS backbone Arpanet + Satnet
 - Outras redes ASs stub
 - Comunicação com outros ASs através do AS backbone
- EGP (Exterior Gateway Protocol)
 - Projetado para troca de informação de roteamento entre os ASs

Sistemas Autônomos

"conjunto de roteadores e redes sob a mesma administração"

- Não há limites rígidos
 - 1 roteador conectado à Internet
 - Rede corporativa unindo várias redes locais da empresa, através de um backbone corporativo
 - Conjunto de clientes servidos por um ISP (Internet Service Provider)
- Do ponto de vista do roteamento
 - "todas as partes de um AS devem permanecer conectadas"
 - Todos os roteadores de um AS devem estar conectados
 - Redes que dependem do AS backbone para se conectar não constituem um AS
 - Os roteadores de um AS trocam informação para manter conectividade
 - Protocolo de roteamento

Sistemas Autônomos


- Roteadores dentro de um AS
 - Gateways internos (interior gateways)
 - Conectados através de um IGP (Interior Gateway Protocol)
 - Ex. RIP, OSPF, IGRP, IS-IS
- Cada AS é identificado por um número de AS de 32 bits (antes 16 bits)
 - Escrito na forma decimal
 - Atribuído pelas autoridades de numeração da Internet
 - IANA (Internet Assigned Numbers Authority)

Troca de Informação de Roteamento

- Divisão da Internet em ASs
 - Administração de um número menor de roteadores por rede
- Mas conectividade global deve ser mantida
 - As entradas de roteamento de cada AS devem cobrir todos os destinos da Internet
- Dentro de um AS, rotas conhecidas usando o IGP
- Informação sobre o mundo externo através de gateways externos
 - EGP (Exterior Gateway Protocol)

O Protocolo EGP

- Responsável pela troca de informação entre gateways externos
 - Informação de alcançabilidade ("reachability")
 - Conjunto de redes alcançáveis

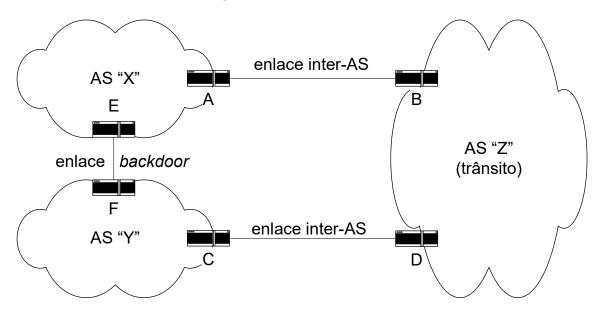
- Os roteadores A e B utilizam EGP para listar as redes alcançáveis dentro dos AS X e Y
- A pode então anunciar estas redes dentro do AS X usando RIP ou OSPF, por exemplo
 - > RIP: DV com entradas correspondentes às redes anunciadas por B
 - OSPF: LS com rotas externas

Funcionamento do EGP

• EGP:

Troca de alcançabilidade entre dois gateways externos

Procedimentos

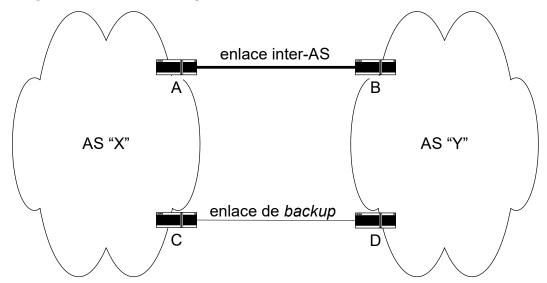

- Atribuição de vizinho ("neighbor acquisition")
 - Determina se dois gateways concordam em ser vizinhos
- Alcançabilidade de vizinho ("neighbor reachability")
 - Monitora o enlace entre dois gateways vizinhos
- Alcançabilidade de rede ("network reachability")
 - Organiza a troca de informação de alcançabilidade

Anúncio de Destinos no EGP

- Anúncio do destino x supõe
 - Existe caminho para o destino x dentro do AS
 - O AS concorda em transportar dados para x usando este caminho
- Implicações
 - Maiores custos em redes pagas por volume de tráfego
 - O tráfego externo compete pelos mesmos recursos que o tráfego interno
- Deve-se tomar cuidado com o que se anuncia...

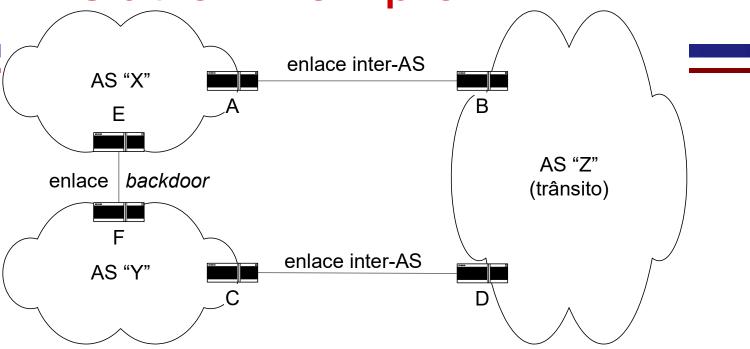
Exemplo

ASs X e Y conectados ao provedor Z


- X e Y pagam Z pelo transporte de seus pacotes
- Suponha que X e Y sejam organizações "próximas"
 - Podem decidir ter uma conexão direta ("backdoor")
- Anúncios
 - E deve anunciar para F alcançabilidade das redes dentro de X
 - F deve anunciar para E alcançabilidade das redes dentro de Y

Exemplo

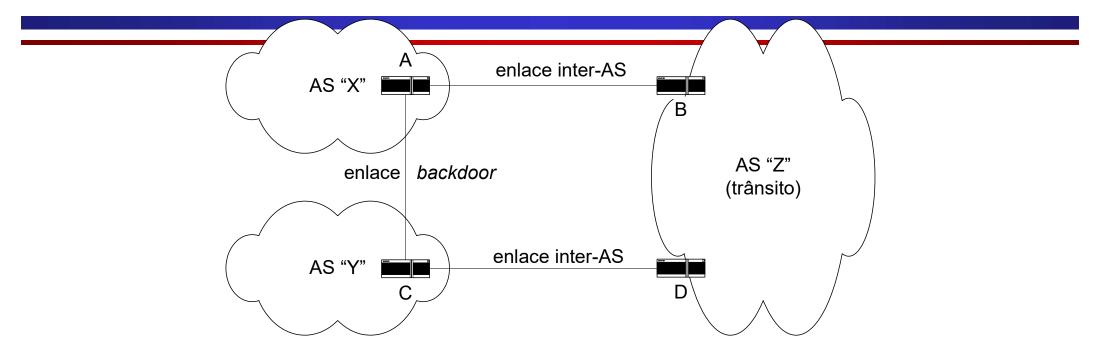
- Rotas aprendidas são propagadas pelos IGPs
- A é capaz de alcançar redes em X e Y
 - Mas A não deve anunciá-las
 - Não faz sentido A anunciar rotas para Y, o objetivo não é X se tornar uma rede de trânsito...
- Para funcionar, deve-se implementar duas listas
 - Redes que podem ser servidas
 - Arquivo de configuração (lista pode ser por vizinho)
 - Redes que podem ser alcançadas
 - Obtidas do IGP


Cálculo de Distâncias

- Métrica do EGP: inteiro de 0 a 255
 - EGP apenas especifica que 255 = inalcançável
- Utilização da métrica
 - Sinalização de rotas "preferenciais"

- Suponha AB enlace principal, CD enlace de backup
- A distância anunciada por C deve ser maior que a anunciada por A

Outro Exemplo


- Rotas em Y
 - Anunciadas por C para D
 - Anunciadas por B para A
 - Anunciadas por F para E (conexão backdoor)
- Para que o backdoor funcione
 - Distância anunciada por F < distância anunciada por B</p>
 - Para tanto
 - Anuncia-se distâncias maiores por C que por F
 - E espera-se que Z não anunciará através de B distâncias menores que as aprendidas por D...

 GTA/UFRJ

Tabelas de Roteamento

- Para que uma rota externa seja usada pelo IGP
 - Procedimento de atribuição de vizinho realizado com sucesso
 - Vizinho deve estar alcançável
 - Vizinho deve ter anunciado o destino
 - O roteador local deve ter determinado que não existe outra rota melhor para o destino
- Quarta condição
 - Várias rotas podem existir para o destino
 - A de menor distância deve ser escolhida...

Exemplo

- Simples se rotas chegam no mesmo roteador
 - Basta pegar a rota de menor métrica
- Se não, distâncias EGP devem ser traduzidas na métrica do IGP para garantir a melhor escolha
 - Tradução depende do IGP

Rotas Externas no IGP

OSPF

- External link state records
- ➤ E bit = 1 métrica externa, maior que qualquer valor interno
- LSs propagados a todos os roteadores, decisão baseada na distância anunciada pelo EGP

o RIP

- Métrica 0 a 15
 - Problemas para traduzir métricas externas em número de saltos
- Para garantir preferência entre rota primária e secundária
 - métrica (rota primária) < métrica (rota secundária)
 - métrica = métrica RIP + métrica inicial derivada do EGP
- Para garantir a inequação
 - Métrica inicial derivada do EGP = diâmetro do AS para caminho secundário
 - Porém esta métrica deve ser menor que 8, ou o mecanismo não funciona (rota secundária daria inalcançável a partir de alguns roteadores)

Topologia da Rede

- EGP "parece" com protocolos de vetores de distância
 - Mas não há regras bem especificadas para cálculo de distâncias
 - Convergência lenta
- Distâncias anunciadas pelo EGP
 - Combinam preferências e políticas
- Exemplo do backbone NSFnet
 - 128 rede alcançável
 - 255 rede inalcançável

Topologia da Rede

- Em geral, um roteador não anuncia distância menor que a aprendida do seu vizinho
 - Apenas um consenso, não existe a regra no EGP
- Necessidade de isolamento de mudanças de topologia
 - Mudanças de métricas em um AS não são anunciadas em geral, apenas quando há perda de conectividade
- Infinito = 255
 - Convergência seria lenta em caso de loop
- Além disso, updates enviados após consultas (a cada 2 min.)
 - > 2 min. x 255 > 8 horas...

Topologia da Rede

Conclusão

EGP não foi projetado como protocolo de roteamento em geral, apenas como "anunciador de alcançabilidades"

Topologia

- ASs stub conectados a um backbone (Arpanet)
- Pode funcionar se a topologia for uma árvore
- NSFnet
 - Redes regionais
 - Redes universitárias e de pesquisa
- Podem haver conexões backdoor, apenas bilaterais
- Com o aumento da Internet, as limitações do EGP ficaram evidentes...

Roteamento por Políticas

- Ex. Rede com dois acessos à Internet
 - Um pelo backbone NSFnet
 - Outro por um provedor comercial
 - Ideal: utilizar provedor comercial para destinos em parceiros comerciais, utilizar a NSFnet para destinos em parceiros acadêmicos
- Rotas são recebidas pelas duas redes...
 - Não se deve acreditar nas distâncias EGP
- Solução: configuração manual
 - Rota para destinos acadêmicos será sempre pela NSFnet, não importa as métricas anunciadas pelo EGP

Outras Limitações do EGP

- Loops de roteamento
 - EGP foi projetado para 1 backbone e topologia em árvore...
- Tamanho de mensagens e fragmentação
 - Listas completas são transportadas nas mensagens EGP
 - Com listas cada vez maiores, a MTU de muitas redes foi ultrapassada...
 - Perda de 1 fragmento = perda da mensagem...
- A escolha foi desenvolver o BGP, substituto do EGP

Border Gateway Protocol (BGP)

- No início...
 - > 8 bits de rede, 24 bits de estações...
 - Mas a Internet logo iria ultrapassar as 256 redes...
 - Divisão em classes A, B e C
 - Redes grandes, médias e pequenas poderiam ser criadas
- 1991: mais problemas por vir...
 - Penúria de endereços de Classe B
 - Explosão das tabelas de roteamento
- Remédio: CIDR (Classless Inter-Domain Routing)

Penúria de Redes Classe B

- Classe A 128 redes, 16.777.214 estações
- O Classe B − 16.384 redes, 65.534 estações
- Classe C 2.097.152 redes, 254 estações
- Classe A muito escassos...
- Classe C muito pequeno...
- Classe B melhor escolha na maioria das vezes
- Em 1994, metade dos Classe B já haviam sido alocados...

Endereços Sem Classe (CIDR)

- Muitas organizações possuem mais de 256 estações, mas muito poucas mais de alguns milhares...
 - Em vez de uma Classe B, alocar várias Classes C
- Fornecimento de endereços
 - Existem dois milhões de Classe C
 - Classe B fornecido
 - Se no mínimo 32 redes, com no mínimo 4.092 estações
 - Classe A fornecido em casos raros
 - E apenas pelo IANA, as autoridades regionais não o distribuem
- Distribuição de n Classes C
 - Resolve a penúria de Classes B
 - Mas deve ser feita com cuidado, para não piorar a explosão das tabelas
 - Classes C "contíguos" devem ser alocados
 - Criam "super-redes"
 - Agregação por regiões pode ser vislumbrada

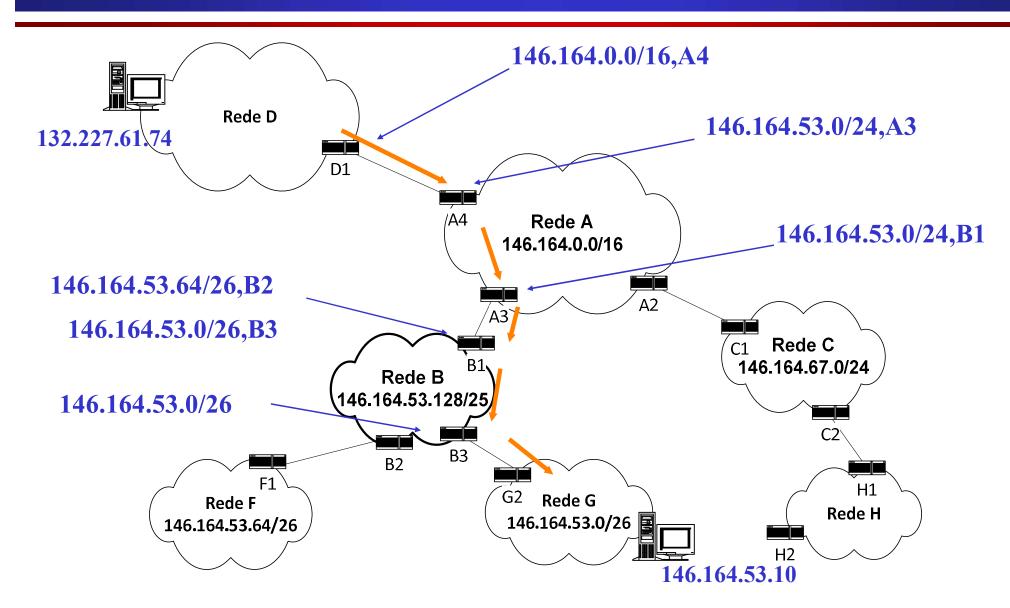
Vetores de Caminho

Inter-domínio

- Nem sempre o caminho mais curto é o melhor
- Distâncias representam preferências por determinadas rotas
 - Convergência do Bellman-Ford não pode ser garantida
 - Destinos inalcançáveis poderiam implementar split horizon, mas não há como contar até o infinito para prevenir loops
- Estados de enlace
 - Tentado no protocolo IDPR (Inter-Domain Policy Routing)
 - Problemas
 - Distâncias arbitrárias
 - Para evitar loops, IDPR propunha source routing
 - Inundação da base de dados da topologia
 - Problema mesmo com nível de granularidade do AS
 - OSPF: áreas com até 200 roteadores
 - Internet: 700 ASs em 1994...

Vetores de Caminho

- Vetor de caminho (path vector PV)
 - "DV" que transporta a lista completa das redes (ASs) atravessados
 - Loop apenas se um AS é listado duas vezes


Algoritmo

- Ao receber anúncio, roteador verifica se seu AS está listado
 - Se sim, o caminho não é utilizado
 - Se não, o próprio número de AS é incluído no PV
- Domínios não são obrigados a usar as mesmas métricas
 - Decisões autônomas
- Desvantagem
 - Tamanho das mensagens
 - Memória

Consumo de Memória do PV

- Cresce com o número de redes na Internet (N)
 - Uma entrada por rede
- Para cada uma das redes, o caminho de acesso (lista de ASs)
 - > Todas as redes em um AS usam o mesmo caminho
 - Número de caminhos a armazenar proporcional ao número de ASs (A)
 - Tamanho médio de um caminho: distância média entre 2 ASs
 - Depende do tamanho e topologia da Internet
 - Hipótese: diâmetro varia com o logaritmo do tamanho da rede
 - Seja x a memória consumida para armazenar um AS, y a memória consumida por um destino, a memória consumida
 - x . A . Log A + y . N

- Até BGP-3: destinos eram apenas redes IP de classe A, B ou C
- BGP-4: CIDR
 - Rotas devem incluir endereço e comprimento do prefixo (máscara)
 - Para diminuir o tamanho das tabelas, agregação de rotas

• Exemplo

- Provedor T
 - Duas Classes C: 197.8.0/24 e 197.8.1/24
- ASs X e Y, clientes de T
 - Classes C: 197.8.2/24 e 197.8.3/24
- Anúncios sem agregação:
 - Caminho1: através de {T}, alcança 197.8.0/23
 - Caminho 2: através de {T, X}, alcança 197.8.2/24
 - Caminho 3: através de {T, Y}, alcança 197.8.3/24
- Idealmente, anunciar-se-ia Caminho 1: alcança 197.8.0/22
 - Problema: anunciar apenas {T} não evita loops, anunciar {T,X,Y} é incorreto...

- Solução: caminho estruturado em dois componentes
 - Sequência de ASs (ordenado)
 - Conjunto de ASs (não ordenado)
- Exemplo (cont.)
 - Caminho 1: (Seqüência {T}, Conjunto {X,Y}, alcança 197.8.0/22)
 - Se um vizinho Z anuncia o caminho:
 Caminho n: (Seqüência {Z,T}, Conjunto {X,Y}, alcança 197.8.0/22)
- Os dois conjuntos devem ser usados para prevenir loops
- Caminhos podem ser agregados recursivamente
 - A Seqüência de ASs contém a interseção de todas as seqüências
 - O conjunto de ASs contém a união de todos os conjuntos de ASs
 - A lista de redes, todas as redes alcançáveis

Atributos de Caminhos

- Principais
 - Lista dos ASs atravessados (AS_PATH)
 - Lista das redes alcançáveis (destinos)
- Outros atributos ajudam o processo de decisão...
- BGP-4: 7 atributos:

Attribute	Туре	Flags	Value
ORIGIN	1	Well known	IGP (0), EGP (1) or other (2)
AS_PATH	2	Well known	Autonomous systems in the path
NEXT_HOP	3	Well known	Address of next router
MULTI_EXIT_DISC	4	Optional, local	32 bit metric
LOCAL_PREF	5	Well known	32 bit metric
ATOMIC_AGGREGATE	6	Well known	Flags certain aggregations
AGGREGATOR	7	Optional, transitive	AS number and router ID

Atributos de Caminho

Origin

Informação de roteamento obtida do IGP; pelo antigo protocolo EGP, ou por outro meio

Next Hop

- Mesma função que o vizinho indireto no EGP
- (atributo não transitivo)

Multi Exit Discriminator (MED)

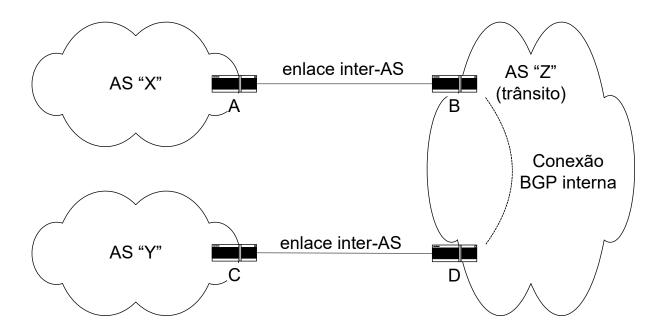
- Métrica usada para escolher entre diversos roteadores de saída
 - Entre diversos caminhos que diferem apenas pelos atributos MULTI_EXIT_DISC e NEXT_HOP
 - Estes caminhos não devem ser agregados
 - Permite exportar informação (limitada) da topologia interna para um AS vizinho

Atributos de Caminho

Local Preference

- Sincroniza a escolha de rotas de saída pelos roteadores dentro de um AS
- O atributo é adicionado ao caminho pelo roteador de entrada
- Usado na escolha entre vários caminhos que levam a um prefixo de rede

Aggregator


- Inserido pelo roteador que agregou rotas
- Contém o número de AS e IP do roteador
- Usado para diagnosticar problemas

Atomic Aggregate

- Indica que o roteador está passando um caminho agregado
- Não possui conteúdo

Parceiros BGP Internos e Externos

- Rotas devem ser passadas para o IGP
- Atributos de caminhos devem ser transmitidos a outros roteadores BGP do AS
 - Transmissão de informação através do IGP não é suficiente

Solução: conexão BGP interna

Conexões BGP Internas

Conexões internas

- Propagação de rotas externas independente do IGP
- Roteadores podem eleger a melhor rota de saída, em conjunto
- Se os roteadores de um AS escolhem nova rota externa, esta deve ser anunciada imediatamente para parceiros externos que usam este AS como trânsito
 - Ou risco de loops de ASs...
- Roteadores BGP conectados por malha completa
 - Problemas de escalabilidade, se o número de roteadores BGP é grande...

EBGP x IBGP

- External BGP Peers x Internal BGP Peers
 - Diferenciação: pelo número do AS, na abertura da conexão
- Funcionamento
 - Rotas aprendidas de um peer EBGP repassadas a outros ASes através das conexões IBGP
 - Evita-se armazenar todos os prefixos externos nos roteadores internos
 - Porém, no anúncio através do IBGP não se acrescenta o AS
 - Risco de loop > regras específicas

Anúncios EBGP x IBGP

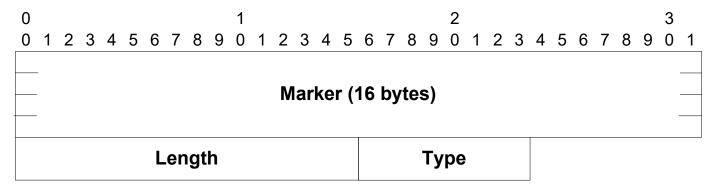
Regra 1

Um roteador BGP pode anunciar prefixos que aprendeu de um par EBGP a um par IBGP; também pode anunciar prefixos que aprendeu de um par IBGP para um par EBGP

Regra 2

Um roteador BGP não deve anunciar prefixos que aprendeu de um par IBGP para outro par IBGP

Motivos para Regra 2


- Evitar loops: o número de AS não é acrescentado no anúncio IBGP
- Rotas internas devem ser anunciadas pelo IGP...

Execução sobre o TCP

- Controle de Erro TCP
 - O BGP pode ser mais simples (máquina de estados do EGP é bem mais complexa)
 - Por outro lado...
 - EGP informação gradual (%), decisão de enlace operacional ou não
 - BGP/TCP enlace operacional ou não (informação "binária")
 - BGP utiliza sondas (*probes*) enviados periodicamente
- Transmissão confiável
 - Atualizações incrementais, menor consumo de banda que no EGP
- Problema: controle de congestionamento do TCP
 - Cada conexão TCP recebe uma parte justa ("fair share") da banda
 - Desejável na maioria dos casos
 - Mas não em se tratando do protocolo de roteamento, que pode eventualmente adaptar-se e remediar o congestionamento

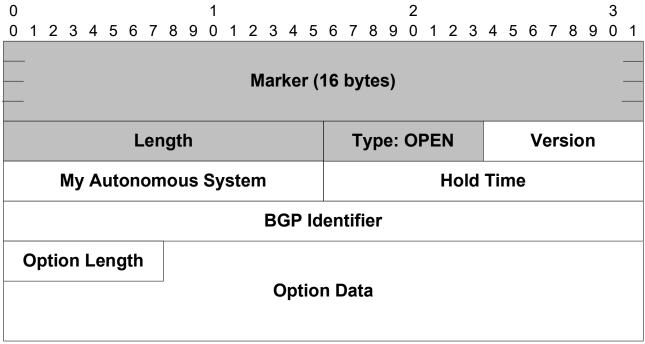
Cabeçalho BGP

- TCP: orientado a byte
 - Delimitadores necessários nas mensagens BGP

- Marker projetado para utilização por mecanismos de segurança
- A estação lê os 19 bytes correspondentes ao cabeçalho, mais (length – 19) bytes da mensagem BGP
- Type

- 1 Open 2 Update 3 Notification 4 KeepAlive

Exemplo de Problema de Alinhamento


Suponha uma mensagem de 255 bytes de comprimento

Recebida desalinhada de 1 byte

- Comprimento recebido: 65.582(FF02) em vez de 255(00FF)
- Testes de sanidade
 - Comprimento entre 19 e 8192 bytes
 - Type deve estar entre 1 e 4
 - Marker deve ter o valor esperado pelo algoritmo de segurança

Troca Inicial

Mensagem OPEN

- Version Versão do BGP
- My Autonomous System número de AS do roteador emetente
- Hold Time número de segundos utilizado no KeepAlive
- BGP Identifier um dos endereços IP do roteador

Troca Inicial

- Opções: TLV
 - 1 byte de tipo + 1 byte de comprimento + N bytes de conteúdo
- Opção Tipo 1
 - Informação de autenticação
 - Determina o conteúdo do marcador (nas mensagens seguintes)
- Conexão com sucesso (envio posterior de mensagens keepalive)
 - Versão e Hold Time devem estar ok
- Insucesso (envio de mensagem de notificação)
 - Diferença de versão
 - pode ser tentada uma versão menor
 - Falha de autenticação
 - existe parametrização, como no EGP
 - Colisão
 - Duas conexões TCP abertas
 - Uma é fechada (decisão pelo identificador BGP)

Mensagens de Atualização

Mensagens UPDATE

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Marker (16 bytes)

Length
Type: UPDATE

Unfeasible routes length

Withdrawn routes (variable length)

Path attributes length

Path attributes (variable length)

Network Layer Reachability Information (variable length)

- Lista de rotas inalcançáveis
- Informação sobre um caminho específico

Mensagens de Atualização

- Lista de rotas inalcançáveis
 - > Rotas anunciadas anteriormente, agora inalcançáveis
 - Podem ser reunidas rotas de caminhos diferentes
- Informação sobre um caminho
 - > Atributos referentes a este caminho
 - Formato TLV
 - Redes alcançáveis por este caminho
- As mensagens não são alinhadas em 32 bits...
 - Listas de prefixos de roteamento nos dois campos
 - 1 byte de comprimento do prefixo em bits
 - Endereço com o comprimento necessário

Mensagens de Atualização

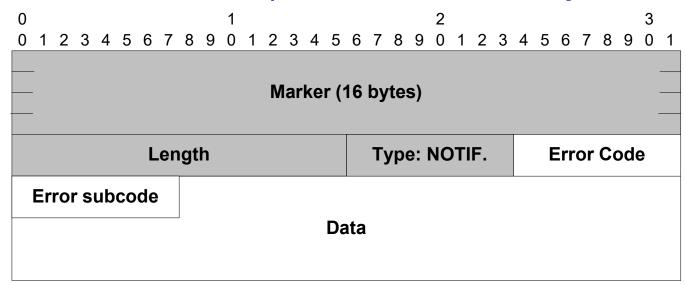
Uma mensagem para cada caminho

- Todos os caminhos são enviados após a troca inicial
- Não são repetidos periodicamente, são enviadas mensagens de atualização apenas para os caminhos que mudarem

Funcionamento semelhante ao DV

- Ao receber atualização, se caminho "mais curto", modificação de rota e envio aos vizinhos
- Dado que há malha completa entre os parceiros BGP internos
 - Atualização recebida em uma conexão interna não precisa ser enviada aos parceiros internos

Testes de sanidade


- Verificação de loops (path-vector)
- > Hold-down antes de começar a utilizar o caminho

Procedimento KeepAlive

- Enviadas periodicamente, se necessário
 - A conexão TCP sinaliza problemas quando há tentativa de envio de dados
 - Testam o enlace em uma direção
- Na direção contrária
 - O parceiro deve enviar uma mensagem no mínimo a cada Hold-Time s
 - Na verdade, envio de 3 mensagens, em média, por Hold-Time
 - O atraso de transmissão sobre o TCP não é constante
 - Tipicamente, uma mensagem a cada 2 minutos
- Hold-Time pode ser zero não há envio de mensagens keepalive
 - Útil se enlaces pagos por demanda
 - Outro mecanismo deve ser utilizado pra detectar se enlace operacional

Notificação de Erros

- Mensagem de erro
 - Recepção de mensagem incorreta
 - Ausência de recepção de mensagens
- Conexão TCP fechada após o envio da notificação

- Erros identificados por código e sub-código
 - A notificação "cease" não é um erro, mas indicação de término da conexão

Códigos de Erro

Code	Subcode	Symbolic Name
1	Message Header Error	
	1	Connection Not Synchronized
	2	Bad Message Length
	3	Bad Message Type
2	OPEN Message Error	
	1	Unsupported Version Number
	2	Bad Peer AS
	3	Bad BGP Identifier
	4	Unsupported Optional Parameter
	5	Authentication Failure
	6	Unacceptable Hold Time
3	UPDATE Message Error	
	1	Malformed Attribute List

	2	Unrecognized Well-Known Attribute
	3	Missing Well-Known Attribute
	4	Attribute Flags Error
	5	Attribute Length Error
	6	Invalid ORIGIN Attribute
	7	AS Routing Loop
	8	Invalid NEXT_HOP Attribute
	9	Optional Attribute Error
	10	Invalid Network Field
	11	Malformed AS_PATH
4	Hold Timer Expired	
5	Finite State Machine Error	
6	Cease	
	1	

Sincronização com o IGP

Rotas devem ser mantidas coerentes

No plano BGP

- Roteadores de borda aprendem rotas de roteadores em ASs vizinhos
- Selecionam caminhos através do processo de decisão do BGP
- Sincronizam-se através de conexões BGP internas

No plano IGP

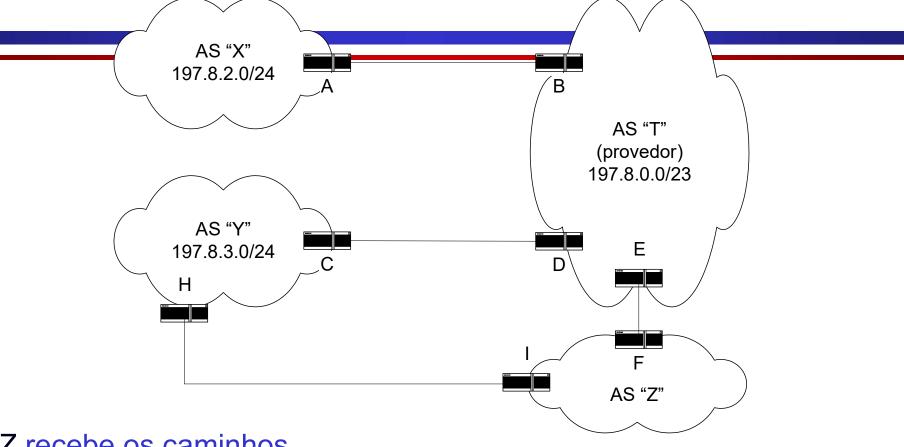
- Roteadores de borda anunciam rotas externas
- Aprendem a conectividade local

Políticas de Interconexão

- Redes comerciais não transportam tráfego para "qualquer um"
 - O acordo básico é entre o provedor e o cliente
 - acesso à Internet através de uma rota default
 - Pequenos provedores compram serviços de trânsito de provedores maiores (provedores de backbone)
 - Grandes provedores podem se interconectar (peering)
 - Limited peering conexão aos endereços diretamente administrados pelo parceiro
 - Full peering interconexão transitiva (o AS pode ser usado como trânsito)
 - Provedores podem negociar acordos de backup
 - Manter conectividade em caso de falha parcial

Processo de Decisão

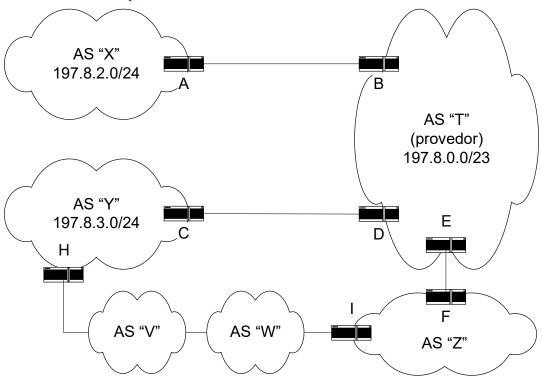
- Três fases
 - Análise dos caminhos recebidos de roteadores externos
 - Seleção do caminho mais apropriado para cada destino
 - Anúncio do caminho aos vizinhos


Análise do Caminho Recebido

- Remoção de caminhos inaceitáveis
 - Que incluem o AS local no caminho de ASs
 - Não conformes à política do AS
 - Que não foram qualificados como estáveis
- Métricas
 - Número de ASs no caminho (simples demais)
 - Pesos podem ser associados a alguns ASs
 - Caminhos agregados são um problema
 - Número de ASs na seqüência de ASs é uma sub-estimativa
 - Número de ASs no conjunto de ASs é uma super-estimativa
- A métrica pode então ser combinada com preferências locais
 - > Ex. local preference, banda do enlace com o vizinho, custo

Seleção de Caminhos

- 1. Remoção de caminhos cujo próximo salto está inalcançável
- 2. Separar os caminhos com o maior LOCAL_PREFERENCE
- Se existem múltiplos caminhos, escolher o de menor valor MULTI_EXIT_DISC
- 4. Se ainda existem múltiplos caminhos, selecionar o caminho anunciado pelo parceiro BGP *externo* de maior identificador
- 5. Se ainda existem múltiplos caminhos, selecionar o caminho anunciado pelo parceiro BGP *interno* de maior identificador
- Anúncio da rota aos vizinhos...


CIDR e IGP

- Z recebe os caminhos
 - Path(T): (Sequence{T}, Set{X,Y}), alcança 197.8.0.0/22
 - Path(Y): (Sequence{Y}), alcança 197.8.3.0/24
- Quando uma máquina em Z quer enviar a uma máquina em Y
 - O segundo caminho ganha ("mais específico": prefixo mais longo)
 - É mais "seguro" utilizar o caminho mais específico

CIDR e IGP

Mas o caminho mais específico não é necessariamente mais curto

- Path(T): (Sequence{T}, Set{X,Y}), alcança 197.8.0.0/22
- Path(W): (Sequence{W,V,Y}), alcança 197.8.3.0/24
- Pode-se configurar o BGP para não escolher o mais específico
 - A ser feito com cuidado...

CIDR e IGP

- Passagem de prefixos para o IGP
 - Todos os prefixos podem ser passados, se o IGP os "entende"
 - Se não, os prefixos devem ser quebrados
- Anúncios equivalentes no primeiro exemplo
 - Path(T): (Sequence{T}, Set{X,Y}), alcança 197.8.0.0/23, 197.8.2.0/24
 - Path(Y): (Sequence{Y}), alcança 197.8.3.0/24
- Os anúncios podem ser exportados agregados ou não
 - Path(Z): (Sequence{Z}, Set{X,Y,T}), alcança 197.8.0.0/22

Exportando Rotas para ASs Vizinhos

- Caminho exportado
 - Caminho recebido + Número do AS local
 - (AS local adicionado ao AS_SEQUENCE)
 - LOCAL_PREFERENCE é removido
 - MULTI_EXIT_DISC pode ser configurado
 - Se caminhos foram agregados no AS
 - Atributo AGGREGATOR
 - Atributo ATOMIC_AGGREGATE
 - Se caminhos mais específicos foram fundidos em menos específicos

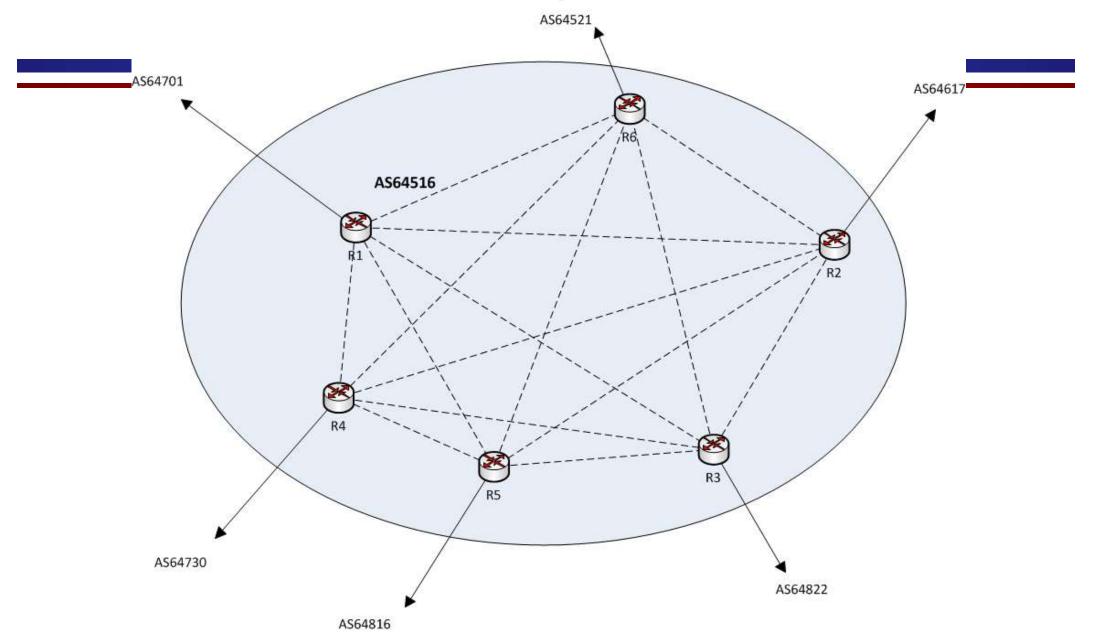
Escalabilidade Interna

O Problema

- Malha completa de conexões BGP internas
- Dados N roteadores, (N.(N-1)) / 2 conexões IBGP
- Cada roteador deve gerenciar N-1 conexões IBGP (TCP)

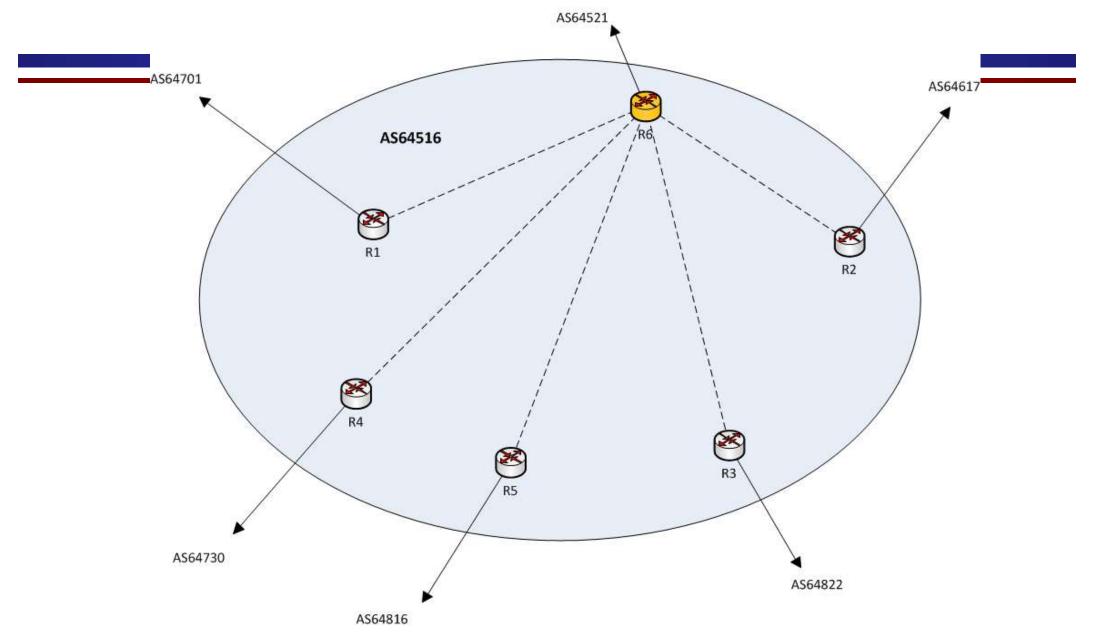
Soluções possíveis

- BGP Route Reflectors
- BGP Confederations

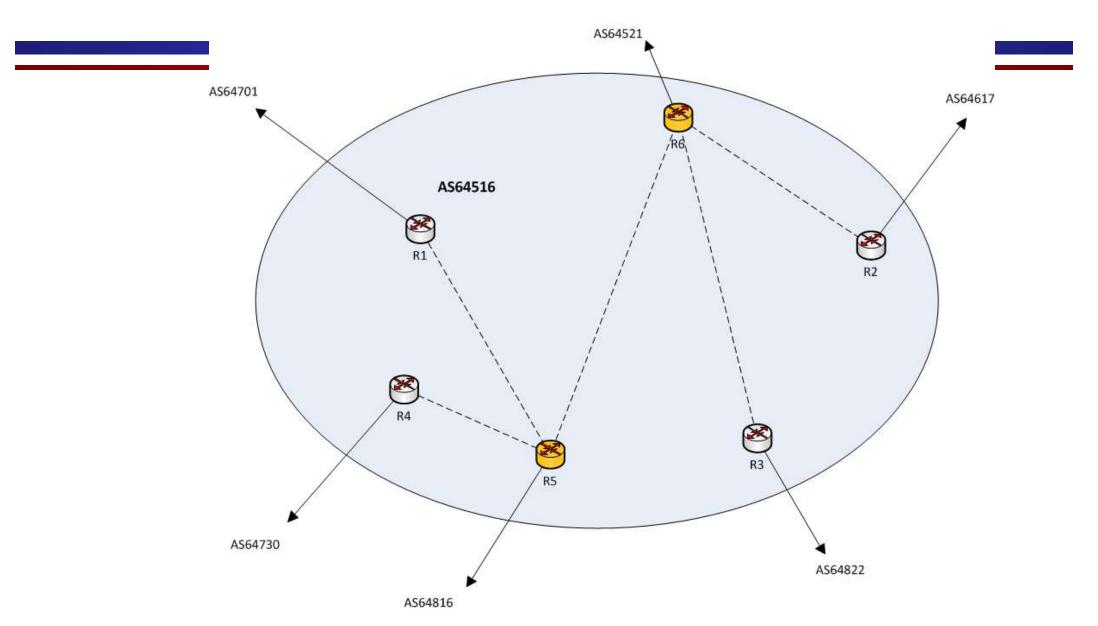

Refletores de Rotas BGP

- Roteadores Route Reflector (RR)
 - Funcionam como "concentradores"
- Roteadores clientes
 - Se conectam apenas a um route reflector
 - Se comportam como se estivessem conectados à malha completa
- RRs + Clientes formam "clusters"

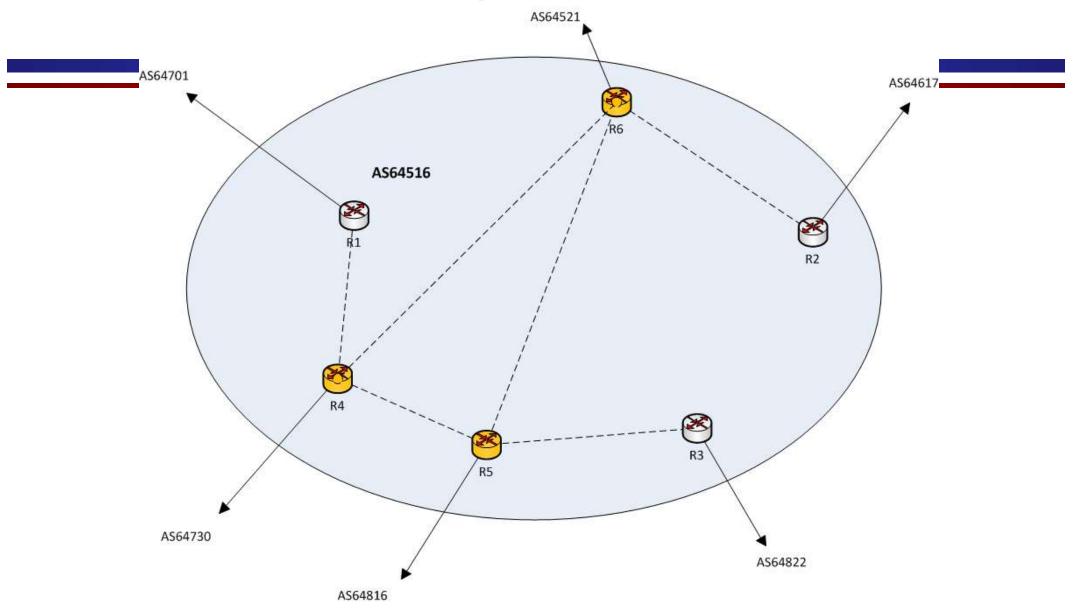
Refletores de Rotas BGP: Convenções


- Um cluster pode ter múltiplos Refletores de Rotas
 - Redundância
- CLUSTER-ID
 - Identificador do cluster
 - Normalmente, o identificador BGP do roteador Refletor de Rotas
- Refletores de Rotas se conectam entre si em malha completa

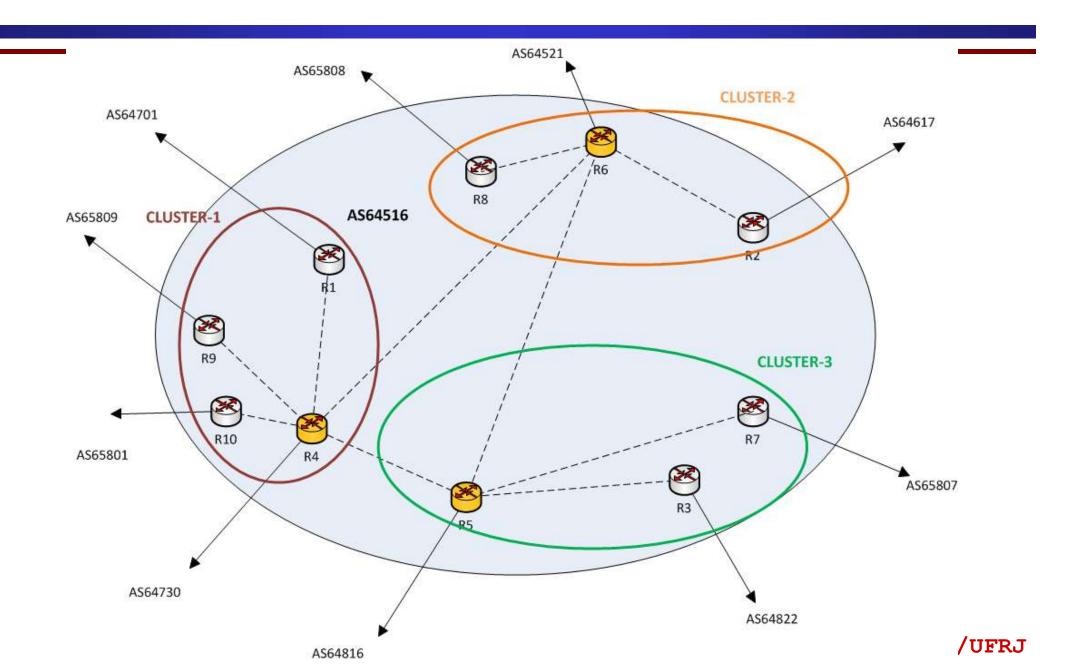
Malha Completa IBGP


Número de conexões IBGP por roteador: N-1

Exemplo: 1 Route Reflector


1 RR: número de conexões de R6 não diminuiu (N-1)

Exemplo: 2 RRs



Diminui o número de conexões máximo por roteador para N/2

Exemplo: 3 RRs

Exemplo de RRs com 3 clusters

Regras de Anúncios usando RRs

- Anúncio recebido por um RR, de outro RR
 - Repassado aos seus clientes
- Anúncio recebido por um RR, de um cliente
 - Repassado a outros RRs
- Anúncio recebido por um RR, de um parceiro EBGP
 - Repassado aos outros RRs e a seus clientes

Regras de Anúncios usando RRs

- Risco de loops
 - RRs podem repassar prefixos aprendidos de pares IBGP para outros pares IBGP
 - Não há a adição do número de AS (previne loops)

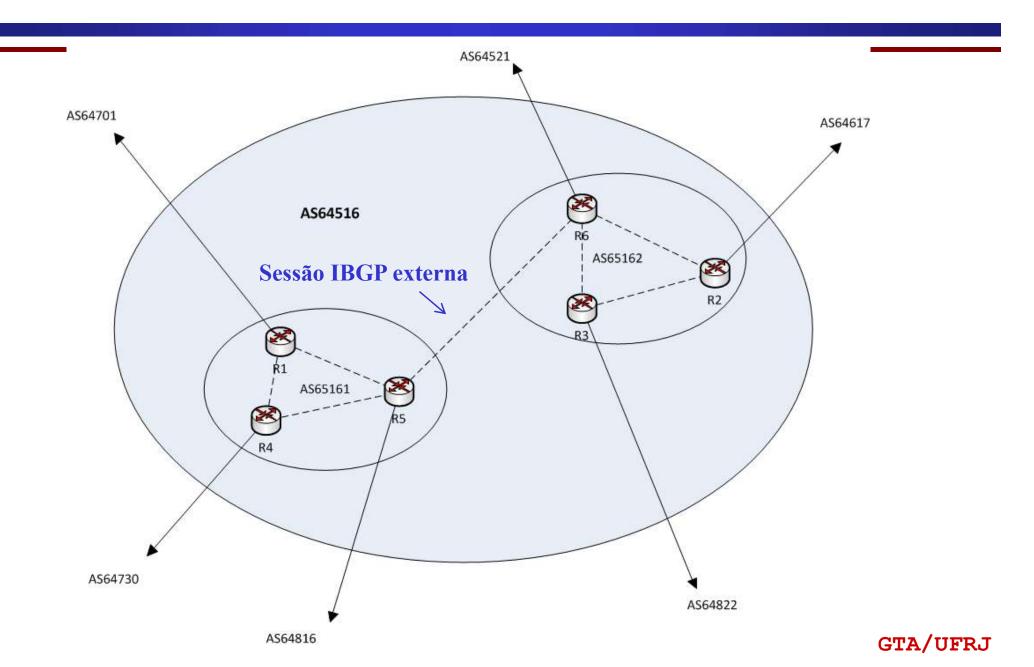
Refletores de Rotas BGP: Prevenção de Loops

ORIGINATOR-ID

- Adicionado apenas pelo RR de origem
- Quando recebe anúncio do cliente, o RR acrescenta o ORIGINATOR-ID antes de refleti-lo para outros pares
- Só um ORIGINATOR-ID pode existir no anúncio
- Se o RR recebe um anúncio com seu próprio ORIGINATOR-ID, deve ignorá-lo

CLUSTER-LIST

- Sequência de CLUSTER-IDs que indicam o caminho de clusters que um anúncio atravessou (semelhante ao path vector)
- Quando um RR reflete um anúncio, ele deve acrescentar o seu CLUSTER-ID à lista


Refletores de Rotas BGP: Seleção de Caminhos

- Modificação na escolha de caminhos
 - Preferência para a rota com o CLUSTER-LIST mais curto
 - Convenção
 - Comprimento do CLUSTER-LIST = zero se a rota n\u00e3o possui o atributo CLUSTER-LIST

Confederações BGP

- Ideia básica: hierarquia
 - ASes são divididos em sub-ASes
 - Malha completa somente dentro de cada sub-AS
 - Conexões "IBGP externas" interconectam os sub-ASes
- O AS é um "AS Confederado"
 - A confederação possui um número de AS único
 - Sub-ASes podem usar números de AS do espaço de numeração público ou privado

Exemplo de Confederações BGP

Confederações BGP: Prevenção de Loops

- Atributos: AS-CONFED-SET e AS-CONFED-SEQUENCE
 - Funcionamento equivalente ao AS-SET e AS-SEQUENCE
 - Entre sub-ASes, em vez de entre ASes

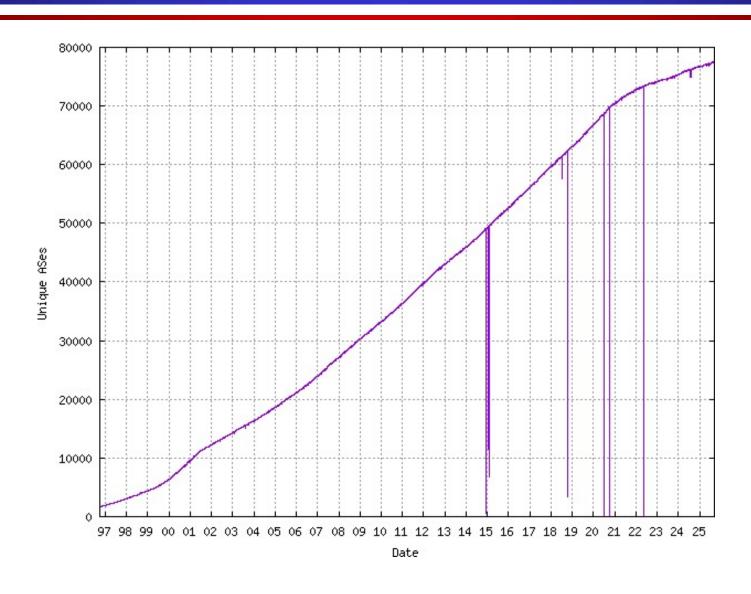
Regras

- Quando um anúncio é encaminhado de um sub-AS a outro sub-AS, acrescenta-se o AS_CONFED_SEQUENCE com o número do sub-AS
- Quando o anúncio sai do AS Confederado, AS-CONFED-SET e AS-CONFED-SEQUENCE são retirados

BGP: Observações Finais

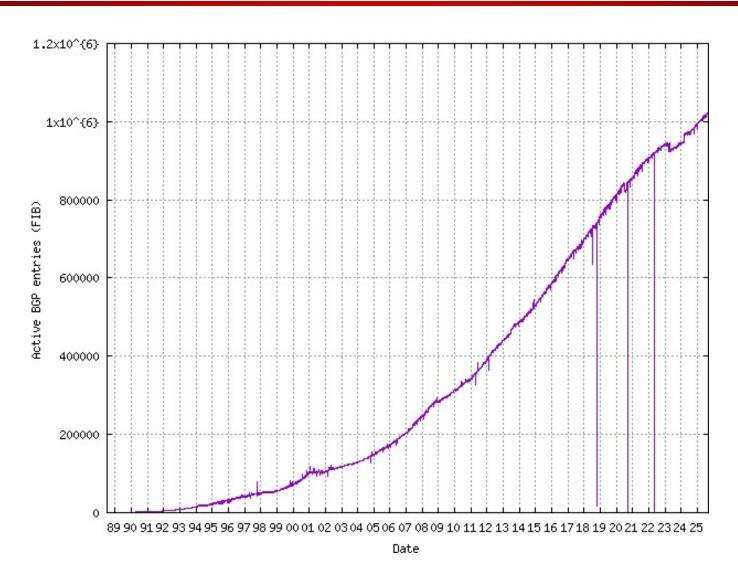
O BGP

Topologia genérica, em malha, em vez da árvore imposta pelo EGP

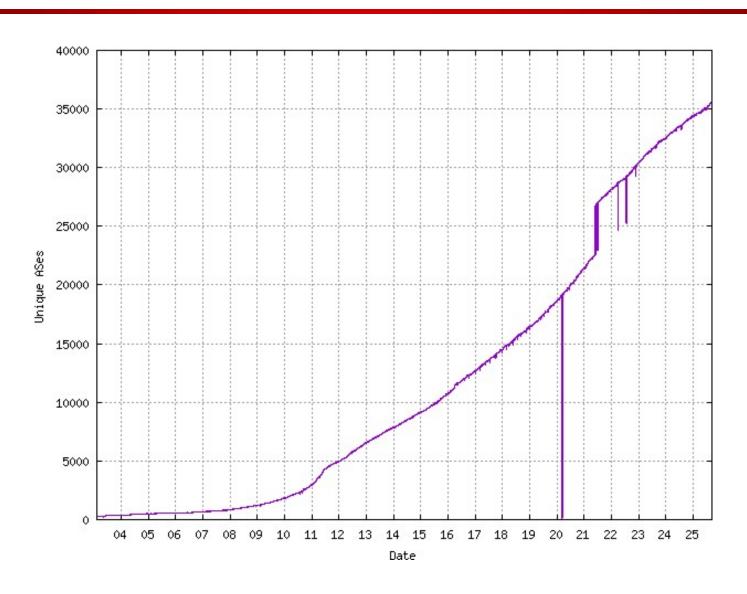

O CIDR

Evitou o colapso da Internet pela penúria de endereços Classe B

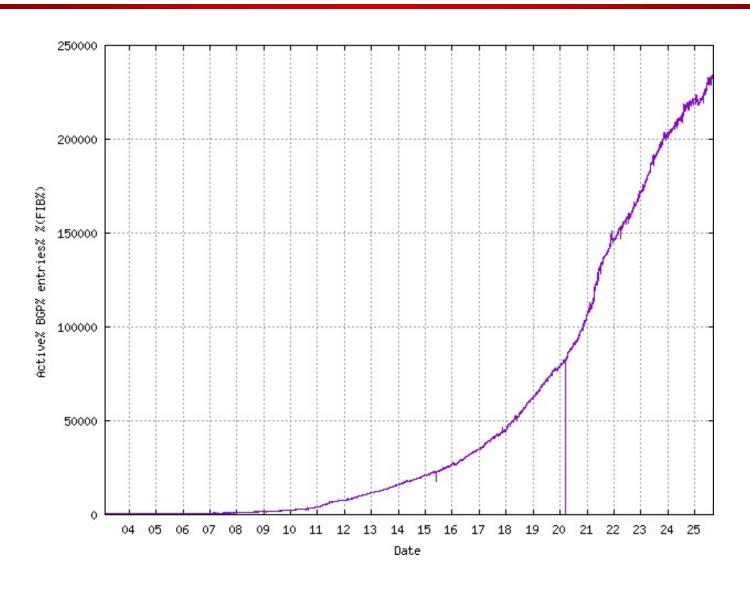
o BGP


- Evitou o colapso da Internet pela explosão das tabelas de roteamento
- No entanto, o BGP precisa de muita configuração manual...

AS's Únicos



Fonte: http://www.cidr-report.org/ (AS Count - Unique ASes)


Entradas BGP Ativas

AS's Únicos – IPv6

Entradas BGP Ativas – IPv6

Fonte: http://www.cidr-report.org/