Post-IP technologies virtualization and security

Guy Pujolle

Virtualization for a post-IP network

Geni

- Intel would like to propose a generic router
- Intel proposes to have a generic hardware with virtual network operating system
- A router can support simultaneously CISCO IOS and Juniper Junos and Alcatel OS and Nortel OS, etc.
- Cisco reaction was to virtualize the different releases of IOS.

Virtual router

Virtualization of the Control Plane

Control algorithms

NOS	NOS	NOS	NOS	NOS
Control	Control 2	Control 3	Control 4	Control 5
Hypervisor				

Why virtualization?

- A better use of the resources
- Sharing of the resources for the routing schemes
- Security of the machines against attacks
- Isolation of the traffic in the virtual machines

- Management and control
- Need an hypervisor
- How to move the virtual entities (router, etc.)

Virtualization of the Management Plane

Protocol virtualization

A = IP stack is mandatory in the core network within the virtual protocol

Virtualization of the Data Plane

Virtualization of the Data Plane

Virtualization of the protocols

Post-IP security through a strong authentication and closed traceability

Why two-factor authentication is needed

Password issues

- Attackers can sniff out what's typed on keyboards, simply by recording keystroke sounds
 - Recommendation to enhance security with two-factor authentication that combines passwords with one-time-password tokens or smartcards, or with biometric recognition, like fingerprint readers
- A well known two-factor authentication device is the RSA SecurID token
 - This token works with a proprietary authentication infrastructure called ACE.

Two-factor authentication

Our proposal

- Tokens are based on the Java Card technology
- They execute Java applications supported by the open code project OpenEapSmartcard.
- The authentication platform is fully based on IETF standards (mainly the *Extensible Authentication Protocol*, EAP), no proprietary features
- Our authentication scenario deals with the classical SSL/TLS protocol (more precisely EAP-TLS), which is widely deployed through the WEB, and which relies on Public Key Infrastructure (PKI)

EAP is an IETF standard

- The Extensible Authentication Protocol (EAP) was introduced in 1999, in order to define a flexible authentication framework.
 - EAP, RFC 3748, "Extensible Authentication Protocol, (EAP)"
 - EAP-TLS, RFC 2716, "PPP EAP TLS Authentication Protocol"
 - EAP-SIM, RFC 4186, "Extensible Authentication Protocol Method for Global System for Mobile Communications (GSM) Subscriber Identity Modules (EAP-SIM) "
 - EAP-AKA, RFC 4187, "Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA) "

EAP Message Format.

An *Esperanto* for Access Control in IP infrastructures.

Wireless LAN

- Wi-Fi, IEEE 802.1x
- WiMAX mobile, IEEE 802.16e , PKM-EAP

Wired LANs

- ETHERNET, IEEE 802.3
- PPP, RFC 1661, "The Point-to-Point Protocol (PPP)"

VPN (Virtual Private Network) technologies

- PPTP, RFC 2637, "Point-to-Point Tunnelling Protocol"
- L2TP, RFC 2661, "Layer Two Tunnelling Protocol"
- IKEv2, RFC 4306, "Internet Key Exchange Protocol"

Authentication Server

- RADIUS, RFC 3559, "RADIUS (Remote Authentication Dial In User Service) Support For Extensible Authentication Protocol (EAP)"
- DIAMETER, RFC 4072, "Diameter Extensible Authentication Protocol Application"

Voice Over IP

UMA, Unlicensed Mobile Access, http://www.umatechnology.org

EAP components

- According to RFC 3748, EAP implementations conceptually consist of the four following components:
 - 1- The lower layer is responsible for transmitting and receiving EAP frames between the peer and authenticator.
 - 2- The EAP layer receives and transmits EAP packets via the lower layer, implements duplicate detection and retransmission, and delivers and receives EAP messages to and from EAP methods.
 - 3- EAP peer and authenticator layers. Based on the Code field, the EAP layer de-multiplexes incoming EAP packets to the EAP peer and authenticator layers.
 - 4- EAP methods implement the authentication algorithms, and receive and transmit EAP messages. EAP methods can be implemented in Java Card systems.

EAP Java Card Technology

Full Software

Implementations

Partial Software Implementations

+

EAP JavaCard Technology

The open platform,

Why open Java Card technology code?

- Internet and WEB technologies are based on open code.
- No proprietary features.
- Good security principle that enables code reviewing.

Fair choice among multiple Java Card systems

OpenEapSmartcard.

Architecture Overview

Authentication platform

Overview

The platform

Summary

- We have presented two-factor authentication tokens, based on the Java Card technology
- We have introduced the open code project
 OpenEapSmartcard, which is used by these token
- We have built an authentication architecture fully based on IETF standards.
- We have shown a real Wi-Fi platform that deals with these technologies.