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Abstract—Nowadays, the increasing popularity of smartphone
devices equipped with multiple sensors (e.g. accelerometer, gy-
roscope, etc) have opened several possibilities to the deployment
of novel and exciting context-aware mobile applications. In this
paper, we exploit one of this possibility, by investigating how to
detect the user motion type through sensors data collected by a
smartphone. Our study combines experimental and analytical
contributions, and it is structured in three parts. First, we
collected experimental data that demonstrate the existence of
specific sensors data patterns associated to each motion type, and
we propose methods for data analysis and features extraction.
Second, we compare the performance of different supervised
algorithms for motion type classification, and we demonstrate
that jointly utilizing the multiple sensor inputs of a smartphone
(i.e. the accelerometer and the gyroscope) can significantly
improve the accuracy of the classifiers. At the same time, we
analyze the impact of sampling parameters (e.g. the sampling
rate) on the system performance, and the corresponding trade-
off between classification accuracy and energy consumption of the
device. Third, we integrate the motion type recognition algorithm
into an Android application, that allows to associate a specific
smartphone configuration to each detected motion type, and
to provide this information at system-level to other context-
aware Android applications. Experimental results demonstrate
the ability of our application in detecting the user’s motion type
with high accuracy, and in mitigating the classification errors
caused by random data fluctuations.

I. INTRODUCTION

In these last years, context-aware computing has emerged
as a revolutionary paradigm to deploy pervasive and mobile
applications that are able to adapt their behaviours based
on the characteristics of the environment. Starting from
2001 [1], research on Body Area Sensor Networks (BANs)
and on activity pattern recognition has demonstrated the
possibility to deploy wearable devices that are able to
recognize everyday’s life activities (e.g. walking, running,
etc), and to leverage this knowledge to enrich the users’
experiences on different application domains (e.g. health
care). Nowadays, a new frontier of pervasive communication
is constituted by the exploitation of the potentials offered by
highly-popular devices, such as smartphones and tablets, for
novel and exciting mobile applications. Compared to wearable
accelerometers used on previous studies [2][3][4][5], these
devices offer the advantage to provide a wide set of embedded
sensors (including also: gyroscopes, magnetometers, etc),
through which an accurate description of the users’ context

can be inferred, in terms of geo-localization, mobility
prediction and network resources detection. In most cases,
these devices have enough computational and storage
capabilities to process sensor data locally, and to perform
context-recognition through advanced features extraction and
classification techniques [6]. Moreover, using Machine-to-
Machine (M2M) communication and short-range wireless
technologies, like Wi-Fi, NFC and Bluetooth, they are able
to share context-related information over a network, and to
autonomously cooperate with other heterogeneous devices to
provide aggregated services to the end users. This scenario is
also in-line with the emerging visions of Smart Spaces [7]
and Internet-of-Things [8], that are deserving increasing
attention from both academia and industry.

In this paper, we address the general topic of context-aware
computing by focusing on a specific research problem:
i.e. detecting the user’s motion type from smartphone
sensors data. Indeed, while determining the current user’s
location and direction might be trivial (e.g. by using GPS),
recognizing how the user is moving, i.e. by car or by train,
is more challenging, and involves considerable efforts if such
detection must be performed in an automatic way. At the
same time, knowing the user’s motion type can significantly
enrich the context-based services that a mobile device can
provide to the end users. A straightforward application is
related to motion-profiling, i.e. to the possibility to associate
different actions (denoted as profile in the following) to each
motion type, and to execute them automatically each time
a specific context is detected. The actions can be defined
by users, e.g. switch on/off the ringtone, send a notification,
etc and can be coupled to motions to implement behaviours
like: automatically switch off the ringtone while walking,
or activate the GPS navigator while on the car. Moreover,
the information about motion type can be aggregated with
information from other sensors/devices, in order to deploy
highly technological services for smart home environments.
This might be the case, for instance, of a system that allows
to remotely control the A/C regulations at users’ home, based
on current location, transportation system in use, and current
traffic conditions (whether by car) or estimated arrival time
(whether by train).



To achieve these results, in this paper we address the
problem of motion type recognition with three novel
contributions. First, we show some experimental results
gathered from smartphone sensors for different class of
motions, like driving a car, being on a train, and walking,
and we demonstrate (through opportune metrics) the
existence of patterns specific to each class. Second, we
propose a classification methodology to recognize these
features, by comparing different machine learning techniques
(Random Forests, SVM, Naive Bayes). Compared to previous
works on activity recognition based on accelerometer
devices [4][3][5][9][10], here we show that aggregating the
data from multiple sensors (e.g. accelerometer and gyroscope)
can significantly enhance the accuracy of the classification
process. Finally, we implement the proposed techniques on an
Android application, called What Am I Doing (WAID), that
performs on-line training from sensor measurements, predicts
user’s motion type and exports this information as a content
provider that can be accessed by other applications (e.g. the
context-profile one).

The rest of the paper is organized as follows: in Section
II we provide a brief-overview of the state of the art in the
field of activity recognition from mobile devices. In Section
III we explain how we collected data from real measurements.
In Section IV we provide details of the motion type recogni-
tion scheme and we show the accuracy results for different
classification algorithms. In Section V we present the WAID
application for the Android platform. Finally, in section VI we
discuss future extensions of the work.

II. RELATED WORKS

In the last years, several works have addressed the problem
of action recognition from accelerometer data produced
by wearable devices [3][4][5][9][10]. Moreover, most of
these works adopt the same methodology of study, i.e.: they
collect accelerometer data from a large set of experiments,
extract features from raw data, and utilize learning-based
classification techniques to recognize the accelerometer
pattern corresponding to each activity. Although a similar
approach is used also in this paper, we highlight in this
Section the peculiarities of our work, in terms of research
goals and contributions, compared to the existing literature.

In [4][5][6][10], the authors propose learning-techniques
to recognize everyday’s human activity, like walking, biking,
jumping, etc. One of the most comprehensive study on
feature recognition is contained in [10], where data are
collected by five accelerometers placed on different parts of
the body. Results in [10] demonstrate that the utilization of
multiple devices might improve the accuracy of the activity
recognition process. A comprehensive comparison of different
classification techniques is reported in [5], where the authors
show that combining classifiers through voting techniques
produces the best results for the correct classification of most
of the activities. Feature extraction from accelerometer data

is discussed in [3][4][11]. More specifically, in [3][4] the
authors propose to extract frequency-related patterns of the
accelerometer data using discrete consine transform. The same
problem is also investigated in [11], where however the goal
of the authors is to determine an efficient set of features that
involve low computation efforts for extraction/recognition.
More recently, the authors of [6] propose an original study on
walking activities recognition using a smartphone. The goal
of the authors is to recognise whenever a user is crossing a
road, in order to produce a database of traffic lights for a
specific urban environment. Differently from wearable sensor
devices used in previous studies, the smartphone might not
have a fixed position/orientation with respect to the user’s
body, and thus a new metric (called magnitude) is introduced
to compute the intensity of the acceleration, regardless of its
direction [6].

Our work is mainly inspired by research in [6][11]. At the
same time, we introduce the following key novelties: (i) we fo-
cus on the problem of recognizing user’s motion type, instead
of detecting user’s activity. Thus, we address a completely
different problem compared to [4][5][10], since in our case
we are mainly interested in detecting the characteristics of the
environment rather than the user’s behaviour; (ii) we rely on
data collected by smartphones, and we investigate how the
combined utilization of multiple sensors (e.g. acceleration and
gyroscope) might improve the accuracy of motion type recog-
nition, (iii) we integrate the proposed classification technique
into a mobile application for the Android platform, in order
to adapt the current smartphone configuration based on the
detected motion type, and at the same time to provide this
information as a system service.

III. DATA COLLECTION AND ANALYSIS

In this Section, we detail the methodology used to collect
sensors data from smartphone (Section III-A), and we provide
evidence of the fact that different motion types might exhibit
different sensor data patterns, that can be recognized by an
opportune selection of classification features. To this aim,
in Section III-B we describe how feature extraction was
performed, while the details of the classification process are
provided in Section IV.

A. Data Collection

The first step of our work consisted in collecting sensors
data for different motion types. To this purpose, we developed
an Android-application that allows to sample the sensor values
at a fixed rate r (set to 10Hz), and to save each sample on a log
file. In our analysis, we considered three motion types M =
{walking (mW ), moving by car (mC), moving by train (mT )},
and two sensor types S={accelerometer (A), gyroscope (G)}.
For each motion type m, and sensor type s, we built a data-
set Ds

m containing around 72000 samples (corresponding to
around 2 hours of continuous sampling). Each entry of Ds

m

has the following structure:

< t, vx,s, vy,s, vz,s > (1)



(a) Accelerometer values (walking) (b) Accelerometer magnitude (walking) (c) Accelerometer magnitude (car)

Fig. 1. The accelerometer values on the x, y,z axes and the magnitude index for the mW motion type are shown in Figures 1(a) and 1(b), respectively.
The magnitude index for the mC motion type is shown in Figure 1(c).

where t is the time-stamp of the sample, and vx,s, vy,s,
vz,s are the values of sensor s on the x, y and z axes,
respectively. Each data-set Ds

m was built in an heterogeneous
way, i.e. samples were collected from different people moving
on different environments. Moreover, we left each user free to
carry and use the device at his taste during the experiments
(i.e. we did not impose fixed orientations and locations of
the wearable devices like in [5][10]). This choice, while in-
creasing the realism of the experiments, introduced additional
complexity for the recognition purposes, since at each time
instant the sensor value in each direction depends on the
specific orientation of the device. This is demonstrated by
Figure 1(a), where we show the accelerometer values over
time (the three lines refers to the values of vx,A, vy,A and
vz,A), in a scenario where the user is walking and he is
dynamically changing the current orientation of the device. It
is easy to see that high fluctuations are introduced on each axis,
as a consequence of the orientation changes. To overcome this
problem, we combined the three values of the sensor (on the
three axes) through an orientation-independent metric (called
magnitude [6]), that reflects the module of the sensor vector.
Like in [6], we defined the magnitude of a sensor s as follows:

magnitude(s) = |vs| =
√
v2x,s + v2y,s + v2z,s (2)

Figure 1(b) shows the magnitude values for the sensor data
of Figure 1(a). Conversely to the previous case, the mag-
nitude values are almost stable and are not affected by the
orientation changes. Moreover, in Figure 1(c) we show the
magnitude values for the car motion type. Even from these
raw data, it is easy to see that there are qualitative and
quantitative differences between the patterns of Figure 1(b)
and Figure 1(c), that motivate the utilization of techniques for
motion type classification and recognition. Similar trends can
also be noticed for different motion types (e.g. moving by
train) and sensor types (e.g. gyroscope). These results are not
shown here for space constraints.

B. Feature Extraction

After having collected the data, we divided each data-set
Ds

m into consecutive non-overlapping time sequences of length

T (equal to 10 seconds in our tests). From each sequence k
we extracted the following features:

< min(s,k),max(s,k), avg(s,k), std(s,k) > (3)

where min(s,k), max(s,k), avg(s,k) and std(s,k) are respec-
tively the minimum value, maximum value, average and stan-
dard deviation of the magnitude of sensor s during the
sequence k1. In Section IV-B, we investigate the impact of
the sequence length (i.e. T ) on the accuracy of the classifiers.
While several set of features can be used to represent a
sequence, our choice is mainly motivated by the observation
(supported by Figures 1(b) and 1(c)) that different motion
types produce different time-behaviours of the sensor magni-
tude, in terms of mean and fluctuations between the peak val-
ues. Also, this choice involves much lower computational costs
than frequency-based feature extraction techniques like [3][4].
We introduce here some notations used in the rest of the
paper. We denote with FA

k the set of features associated to
the accelerometer values on a sequence k, i.e.:

FA
k = {min(k,A),max(k,A), avg(k,A), std(k,A)} (4)

Similarly, we represent with FG
k the set of features of the

gyroscope:

FG
k = {min(k,G),max(k,G), avg(k,G), std(k,G)} (5)

We denote with FAG
k the combined set of features using both

the accelerometer and gyroscope data together:

FAG
k = FA

k ∪ FG
k (6)

Finally, we denote with TF the feature training-set used for
the classification:

TF =
⋃
k

< F •k ,mk > (7)

where F •k is the feature set extracted from sequence k (i.e.
FA
k , FG

k or FAG
k ) and mk is the corresponding motion type.

1The index k is a progressive counter over the total set of sequences in
each data-set.



(a) Impact of T values on accuracy (b) Impact of r values on accuracy (c) Impact of r values on energy consumption

Fig. 2. The accuracy of the Random Forest algorithm computed over different sequence lengths and for different sampling rates is shown in Figures 2(a)
and 2(b), respectively. The energy consumption as a function of the sampling rate is shown in Figure 2(c).

IV. DATA CLASSIFICATION

In this Section, we describe the algorithms used to learn pat-
terns and to identify the user’s motion type. In Section IV-A,
we evaluate different algorithms while in Sections IV-B we
investigate the impact of different parameters on the classifi-
cation accuracy.

A. Algorithm Comparison
In its general definition, a motion type classifier takes as in-

put a set of features F •k for a sequence k and a feature training-
set TF , and produces as output a value c(F •k , TF ) ∈ M that
represents the estimated motion type, i.e. mW , mC or mT . In
our study, we consider three different classification algorithms,
i.e. Random Forest [12], Support Vector Machines [13] and
Naive Bayes [14].
The Random Forest algorithm was first presented in [12]. A
Random Forest consists in a series of k decision trees, where
each node of the tree represents a conjunction of features,
and the leafs are the output labels of the classification (in our
case, mW , mC or mT ). In our analysis, a Random Forest
classifier is used to discover possible patterns over sub-sets of
data features.
Support Vector Machines were first introduced in [13], and
are widely used for classification and regression analysis. In
its simplest version (i.e. binary linear classifier), a SVM maps
the data points in input on a plane, separates the positive and
negative instances by defining a separation gap, and classifies
the new instances based on the side of the gap they fall
on. Moreover, SVMs can work as non-linear classifier, using
kernel methods to map the points into an hyperplane (or a set
of hyperplanes) [2]. In our analysis, SVMs are used to identify
possible spatial relationships over the feature sets.
Finally, Naive Bayes [14] constitute a well-known tech-
nique for probabilistic-based data classification. In its sim-
plest formulation, each classification hypothesis is assigned
a posteriori-probability based on the observed data-set, and
a maximum likelihood criteria is used to choose the best a-
priori hypothesis. In our problem, Naive Bayes classifiers are

Random Forest SVM Naive Bayes
walking 96.70 % 85.50 % 97.90 %
driving 94.10 % 85.50 % 56.10 %

train 98.80 % 77.90 % 76.00 %
overall 97.71 % 82.50 % 84.11 %

TABLE I
ACCURACY OF DIFFERENT ALGORITHMS

FA FG FAG = FA ∪ FG

walking 97.40 % 93.10 % 96.70 %
car 62.80 % 65.90 % 94.10 %

train 94.50 % 94.50 % 98.80 %
overall 93.49 % 91.94 % 97.71 %

TABLE II
ACCURACY FOR DIFFERENT SETS OF FEATURES USING THE RANDOM

FOREST ALGORITHM

introduced to reflect the stochastic nature of the environment
where the training-set was built.

In Table I and II, we evaluated the accuracy of the three
classifiers by performing a 10-fold cross validation on our
training set. More specifically, Table I shows the classification
accuracy2 for the three algorithms described above, when FAG

k

is used as feature-set. Table II shows the classification accuracy
of the Random Forest algorithm, when different feature-sets
are used (i.e. FA

k , FG
k and FAG

k ). From the results in Tables I
and II, two important considerations can be drawn. First, the
Random Forest algorithm provides the average highest accu-
racy (98%) among the three evaluated schemes, outperforming
the SVMs (82.5%) and Naive Bayes (84.11%). This is also
in accordance with the analysis in [10]. Second, although
using a single sensor at a time can produce good results for a
specific action (e.g. FA

k for walking), the utilization of joint
data features from both the sensors (i.e. FAG

k ) is shown to
guarantee the best results in terms of average accuracy. This
result confirms the effectiveness of our approach in jointly

2defined as percentage of correct classifications returned by each algorithm.



utilizing the accelerometer and gyroscope data for motion type
recognition. Based on these considerations, in the following
we focus on the performance of Random Forest algorithm
with FAG

k feature-set, and we investigate the impact of the
time-sequence length T and sampling rate r on the overall
accuracy.

B. Parameter Characterization

In Figure 2(a) we show the overall accuracy as a function of
the time-sequence length T (on the x-axis) used to collect the
data. From these results, it is easy to notice that the values
of the time-sequence length do not affect the performance
of the classification algorithm significantly, since the overall
accuracy remains quite the same for the configurations with
T=5 seconds and T=240 seconds. We can thus conclude that:
(i) a motion-type pattern has a limited time-duration and that
(ii) the minimum value of T can be chosen (5 seconds in
our analysis) in order to increase the responsiveness of the
application (during motion type prediction). In Figure 2(b) we
show the impact of the sensing sampling rate r on the overall
detection accuracy. More specifically, Figure 2(b) depicts the
accuracy as a function of the training rate (on the x-axis)
and of the prediction rate (i.e. of the sampling frequency
used by the WAID application in predicting mode). The
results in Figure 2(b) show that: (i) optimal accuracy can
be achieved when training and predicting rates are the same,
(ii) on average, the detection accuracy tends to increase in
under-sampling conditions (i.e. prediction rate lower than the
training rate), and to decrease in over-sampling conditions
(i.e. prediction rate higher than the training rate) and (ii) high
frequency sampling does not provide significant performance
improvements, i.e. the accuracy of the classifier is almost
independent by the training rate (at the conditions of using
the same prediction rate). This latter result is quite important,
since it allows to minimize the energy consumption of the
device while collecting sensor data for training. To this aim,
Figure 2(c) shows the energy consumption (in mA) introduced
by the application used for data collection (described in
Section III-A) as a function of the training rate r, and confirms
that using high sampling rates (e.g. 10 Hz) might have a
significant impact on the battery life-time of the smartphone.

V. THE WAID APPLICATION

In this Section, we describe the WAID application, that
includes a motion-type recognition algorithm (details in Sec-
tion V-A) based on a Random-forest classifier, and a context-
profiler module (details in Section V-B) to adopt the smart-
phone configuration to the current motion type detected.

A. Motion Type Recognition Algorithm

The WAID application can run into two different modes:
training and predicting. In the training mode, the application
collects sensor data samples at each sequence k, extracts
the features FAG

k , gets the information about the current
mobility type m by the user’s feedback and then stores the
< FAG

k ,m > information on the feature training-set TF .

In the predicting mode, the application works similarly,
i.e. it extracts the current set of features FAG

t , but then it
determines the current motion type m′ based on the stored
knowledge. Finally, it loads the profile p associated to m′

(i.e. p(m′)), as detailed in Section V-B.

In predicting mode, the recognition algorithm used by
WAID relies on the output of the Random Forest classifier,
since this algorithm is shown to produce the highest accuracy
in the previous tests. However, it also attempts to reduce the
occurrence of classification errors, by considering the time-
correlation among consecutive motion type predictions. To this
aim, let c(FAG

k , TF ) ∈ M the output of the classifier for the
current set of features FAG

t at time t, i.e. mW , mC or mT .
Similarly, let c(FAG

t , TF ), c(FAG
t+1 , TF ), ..., c(FAG

t+N , TF ) the
answers produced by the classifier when the application runs
over a period of N sequences. If each classification answer is
treated in isolation and directly returned to the application, this
might produce sequences like: mC ,mC , mT , mC , mC , ..., that
are clearly wrong, since the user can not intermittently change
its motion type in a short sampling window. To overcome
this problem, we maintain an history-set (H) of the latest h
answers of the classifier, i.e:

H = {c(FAG
t−h, TF ), c(F

AG
t−h+1, TF ), ..., c(F

AG
t , TF )} (8)

The history-set is dynamically updated at each new sam-
pling, and a reference answer, i.e. c(H) is computed as the
motion type having more positive answers in the current
history-set. Each time a new answer c(FAG

k , TF ) is produced,
it is compared with the reference answer o(H), and in case of
difference the value of o(H) is returned to the user (instead of
c(FAG

k , TF )). The details of the WAID recognition algorithm
are shown in Algorithm 1.

Algorithm 1: WAID Motion Type recognition algorithm
input: FAG

t , TF

output: motion type m′ ∈ M

Compute c(FAG
t , TF ) through the Random Forest classifier

H=H ∪ {FAG
t }

H=H \ {FAG
t−h−1}

Compute c(H) as the motion type with more positive answers
if c(H) == c(FAG

t ) then
Set m′ = c(FAG

t ), return m′

else
Set m′ = c(H), return m′

end if

An important parameter of Algorithm 1 is h, i.e. the history
size. Indeed, short values of h might still determine classifica-
tion errors due to random fluctuations, while long values of h
might impact the reactiveness of the application in tracking the
motion type changes. This trade-off is captured by Figure 3(a),
where we show the accuracy of Algorithm 1 for different
values of h. We consider a realistic scenario in which the user
dynamically changes its motion type during the experiment
(i.e. from mW to mC) and we depict the average detection



(a) Impact of the history length (h) (b) WAID User Profile (c) WAID interface

Fig. 3. The impact of the history size (h) on the accuracy is shown in Figure 3(a). The WAID user-interface: profile setting (3(b)) and predicting mode
(3(c)).

accuracy of Algorithm 1 over all the length of the experiment,
and the average accuracy during the motion type switch.
As expected, Figure 3(a) demonstrates that the configuration
with the longest value of h minimizes the occurrences of
classification errors (on average). At the same time, it is easy
to see that shorter values of h provides higher accuracy in
proximity of the motion type switch.

B. User Interface

Figures 3(b) and 3(c) show the user-interfaces of the WAID
application. At each time, the user can configure the profile
associated to a specific motion type, as shown in Figure 3(b).
Among the available options, the user can switch on/off the
ringtones, enable/disable the state of wireless connections, and
so on. In predicting mode, the WAID user interface looks
like Figure 3(c). Here, an icon corresponding to the current
predicted motion type is shown in evidence (i.e. the car icon
in Figure 3(c)), together with an history of previous motion
types (below the main icon). When the user-interface is not
visible, the WAID application is still executed in background
as an Android Service. Moreover, the WAID application ex-
ports the motion type information via an Android Content
Provider, that can be accessed by all the Android applications
installed on the smartphone. As a result, the information
provided by WAID can be communicated to other users
in the surrounding environment through short-range wireless
communication interfaces, or combined with other local sensor
data for the deployment of advanced context-aware services
and applications.

VI. CONCLUSIONS

In this paper, we have addressed the problem of determining
the user’s motion type from smartphone sensors data. To this
aim, we have evaluated different feature extraction techniques
and classification algorithms, and we have demonstrated that
the joint utilization of sensors data from multiple sources (i.e.
accelerometer and gyroscope) can improve the accuracy of
the classifier. Moreover, we have introduced an history-based
recognition technique to reduce the occurrences of classifi-
cation errors by exploiting the temporal correlation among

consecutive sensor readings. Finally, we have integrated the
motion type recognition algorithm into an Android application,
that allows to associate a smartphone profile to each motion
type, and to share this information with other context-aware
applications. Future works include: the support to additional
actions/motions (e.g. climbing a stair) and sensor types (e.g.
external sensors) and the extension to a collaborative scenario,
where users’ can share their motion type information for
smart-city applications deployment.
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