
PRIVATE PROCESSING OF INTERNET OF THINGS DATA IN

CLOUDS WITH SECURITY BY HARDWARE

Guilherme Araujo Thomaz

Undergraduate Project presented to Electronics

and Computer Engineering Escola Politécnica,
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e da pesquisa de alto ńıvel no páıs. Tenho um compromisso de honrar a educação

que eu recebi aos longos desses cinco anos através da minha atuação profissional na

sociedade.

vii



ABSTRACT

Internet of Things (IoT) devices collect sensitive data such as energy consump-

tion patterns, biomedical signals, geolocation, and camera images. These data are

commonly processed in the cloud due to the limited computing power of the sen-

sors. As a result, clients lose control over how their data is used. The encryption

and authentication mechanisms adopted in the industry fail to ensure security when

cloud administrators themselves attempt to gain financial advantages from selling

data. This work proposes an architecture to protect the processing and storage

of IoT data in the cloud, even when an attacker obtains privileged server access.

The architecture employs the Software Guard Extensions (SGX), available in spe-

cific Intel processors, to process the data within a trusted execution environment,

isolated even from the operating system. Performance evaluations reveal that the

architecture offers low computational overhead. Additionally, the work implements

and documents a Software Development Kit (SDK) for developers to create secure

IoT systems using the SGX architecture. An energy data management system is im-

plemented using the proposed SDK’s functionalities. The SDK enables a developer

who is not a security expert to develop systems using databases, communication

protocols, graphical user interfaces, and processing tasks typical in IoT scenarios.

Keywords: Networks Security, Trusted Computing, Intel SGX, Internet of Things.
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RESUMO

Os dispositivos da Internet das Coisas (Internet of Things – IoT) coletam dados

senśıveis como padrões de consumo de energia elétrica, sinais biomédicos, geolocal-

ização e imagens de câmeras. Esses dados são comumente processados em nuvem,

devido a restrição do poder de processamento dos sensores. Com isso, os clientes

perdem o controle de como seus dados são utilizados. Os mecanismos de criptografia

e autenticação empregados no mercado falham em garantir a segurança quando os

próprios administradores em nuvem tentam obter vantagens financeiras com a venda

de dados. Este trabalho propõe uma arquitetura para proteger o processamento e

o armazenamento de dados de IoT em nuvem até mesmo no caso do atacante obter

acesso privilegiado aos servidores. A arquitetura utiliza o Software Guard Exten-

sions (SGX), dispońıvel em alguns processadores da Intel, para processar os dados

em um ambiente de execução confiável, isolado até mesmo do sistema operacional.

As avaliações de desempenho revelam que a arquitetura oferece baixa sobrecarga

computacional. Além disso, o trabalho também implementa e documenta um Kit

de Desenvolvimento de Software (Software Development Kit – SDK) para que de-

senvolvedores criem sistemas IoT seguros utilizando a arquitetura. Um sistema de

gerenciamento de dados de consumo de energia foi implementado utilizando as fun-

cionalidade da SDK proposta. A SDK permite que um desenvolvedor que não seja

especialista em segurança desenvolva sistemas utilizando bancos de dados, protoco-

los de comunicação, interfaces gráficas e tarefas de processamento t́ıpicas em cenários

IoT.

Palavras-Chave: Segurança em Redes de Computadores, Computação Confiável,

Intel SGX, Internet das Coisas (IoT).
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Chapter 1

Introduction

The Internet of Things (IoT) allows devices to collect, store, process, and

transmit data. This paradigm gains popularity as more tasks are automated by

devices, including smart homes, factories, vehicles, and farms [1, 2, 3]. IoT devices,

however, have restricted battery duration, storage, processing capacity, and band-

width. Therefore, data collected by IoT sensors are sent to remote resource-rich

infrastructures, such as the cloud.

Cloud computing offers low cost since multiple virtual machines can share

the same physical substrate, i.e., a single machine. These virtual infrastructures are

allocated on the fly according to the resource demand [4]. However, data collected by

the devices reveal sensitive information such as biomedical signals, vehicle images,

energy consumption patterns, and data gathered from critical industrial processes.

Hence, a well-succeeded attack to the cloud impacts the security of millions of de-

vices, justifying the importance of proposals enhancing the security of cloud-based

IoT systems [5, 6].

Due to cryptography, the data sent to the cloud is protected while in transit

and stored. At the same time, authentication mechanisms ensure clients’ interaction

with genuine servers before sending or requesting data. These mechanisms are al-

ready implemented in commercial systems, but do not guarantee data security while

it is processed [7]. Cryptography and authentication assume that the operating sys-

tem, the hypervisor, and the cloud administrator are trustworthy, i.e., the system

denies access to plain data being processed in memory. However, this premise may

not be realistic, as will be discussed.
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Client data are valuable because they can be used to train machine learning

models, leading to, for example, customized advertisements based on individuals’

consumption profile [8, 9]. Hence, it is reasonable to assume that a cloud insider

could maliciously access the client data during processing to obtain financial ad-

vantage [8, 9]. Several countries made legal efforts to enforce companies to follow

data usage policies in a manner that keeps client’s privacy. Despite this regulation,

mechanisms to prevent access to data being processed by highly privileged software

are not widespread. Trusted computing is a set of technologies that can fill this

gap [7].

Unlike traditional security mechanisms, trusted computing relies on hardware

resources. One of the most important trusted computing mechanisms is the Trusted

Execution Environment (TEE). TEE protects data while processed, even if any other

software component is controlled by an attacker. The Intel Software Guard Exten-

sions (SGX) [10] is the most popular TEE implementation. Intel CPUs equipped

with SGX have special instructions to create isolated memory regions called enclaves.

This work focus on TEE utilization to protect IoT data in clouds. Therefore,

this Final Undergraduate Project proposes, implements, and evaluates an architec-

ture that leverages enclaves to ensure that cloud servers follow data access policies

defined by clients. The architecture is named CACIC, which is an acronym in Por-

tuguese for Trusted Access Control for Internet of Things Data in Clouds using

Enclaves [11, 12, 13].

Enclaves are state-of-the-art solutions to protect data collection and aggre-

gation, manage cryptographic keys, and protect databases. Recent works employ

TEE in IoT contexts [14, 15, 16, 17, 18]. However, these works do not allow clients

to customize data access policies. In addition to data access customization, works

typically propose case-specific solution for IoT, since they rely on particular data

sources, databases, and processing tasks. This work fills these gaps by proposing a

generic architecture for IoT data access control in clouds.

This work considers a scenario in which data is collected in a sensor network

while the processing and storage are delegated to cloud servers. The proposal focuses

on ensuring the confidentiality and integrity of the data and access policies during

the transmission, storage, and processing, even if the attacker controls the whole

2



server software. Attacks that compromise client devices, attacks towards the server

availability, and attacks that explore Intel CPU’s vulnerabilities are out of the scope.

Therefore, the main goal is to develop an architecture to protect IoT data in clouds,

assuming a threat model with privileged access to the server. The specific goals are:

1. formulate the threat model and the security, performance, and generalization

requisites;

2. design an architecture that uses enclaves to follow the specified requisites,

facing the proposed threat model and solving previous works limitations;

3. build the architecture;

4. evaluate security and performance;

5. document a Software Development Kit (SDK) for developers to build their

own IoT systems with CACIC architecture, and;

6. demonstrate a system based on an energy consumption data management use

case, implemented with the proposed SDK.

1.1 Related Work

This section discusses related work using trusted computing to secure IoT

networks. Xiao et al. combine blockchain with TEE for access control [19]. A

highlight of the work is the execution of selling contracts out of the chain, in an

SGX enclave. The work focuses on data commercialization. Yang et al. use TEE

to protect the publication of industrial sensor data, which may be compromised by

physical attacks [14]. The proposal uses a blockchain to store data in a distributed

manner and to train federated learning models using smart contracts. The proposal

does not deal with cloud data security and does not ensure confidentiality since the

distributed ledger is public.

Li et al. execute aggregation tasks, dynamic pricing, and load forecasting in

enclaves [20]. This scenario obligates the users to send their data to remote servers

because i) the sensors have low computational power, and ii) the tasks depend on

the data from multiple clients. The architecture uses SGX on the server side and

3



on the client access point. The proposal focuses on securely sending data to energy

companies and does not implement access control for authenticated users to query

data. Silva et al. compares TEE with homomorphic encryption in terms of the time

taken to aggregate measurements [21]. The time taken for aggregating with TEE

is ten thousand times lower, confirming that trusted computing ensures security

without a significant performance overhead.

Priebe et al. developed a database engine running within SGX enclaves [17].

Although the system is promising for IoT data in clouds, the proposal focuses solely

on data storage. Valadares et al. expand the FIWARE platform, a development

platform for smart sensor applications, to share sensitive data with authenticated

users [15]. In their proposal, cloud enclaves store and distribute keys for encrypting

produced data and decrypting consumed data. The architecture does not process

data in the cloud and requires the consumer to have an SGX computer to process

the data locally. The cloud enclave only implements a trusted publish-subscribe

system.

Ayoade et al. propose trusted computing to process IoT data from different

manufacturers in a shared cloud middleware [22]. The authors isolate the processing

in enclaves and provide the data only to the device’s company without customized

access policies. The system uses SGX at the access point to protect against client-

side attacks. However, this approach is unrealistic since SGX is commonly found

only in high-performance processors1. Additionally, the system initializes and attests

the enclave for each publication, resulting in a significant performance overhead.

Anciaux et al. describe an architecture for personal data management with

generic processing tasks in cloud [18]. The authors proposed the use of ARM Trust-

Zone TEE on mobile devices and SGX on the server, but they did not provide an

implementation. In another work, Carpentier et al. implement the architecture

proposed by Anciaxu et al. based on an application to reward employees using bi-

cycles [23]. The system core implements access control policies using SGX and can

be expanded with additional enclaves for more complex processing. The authors

assume the use of smartphones with high computational power. Experiments are

still needed to confirm whether the architecture meets the high throughput and low

1SGX is found only in the 3rd Generation Xeon Scalable product line.
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latency requirements necessary for some applications.

Unlike previous works, this paper proposes an architecture that enforces the

server to adhere to client data access policies, even in the presence of attackers with

privileged access. The performance evaluation demonstrates that the architecture

meets the low-latency and high-throughput requirements of IoT networks. Another

contribution of this work is the implementation of a development tool to build IoT

systems based on the CACIC architecture. The paper demonstrates that the tool’s

APIs enable non-security developers to integrate enclave technology with commercial

database solutions, user interfaces, and communication protocols.

1.2 Publications

The final project includes three publications carried out by the student during

their undergraduate course, listed as follows:

• THOMAZ, G. A., GUERRA, M. B., SAMMARCO, M., et al. “CACIC: Cont-

role de Acesso Confiável Usando Enclaves a Dados em Nuvem da Internet das

Coisas”. In: Anais do XL Simpósio Brasileiro de Redes de Computadores e

Sistemas Distribúıdos (SBRC 2022), pp. 573–586, Fortaleza, CE, Brasil.

• THOMAZ, G. A., GUERRA, M. B., SAMMARCO, M., et al. “Tamper-proof

access control for IoT clouds using enclaves”, Ad Hoc Networks, v. 147, pp.

103191, 2023. ISSN: 1570-8705.

• THOMAZ, G., GUERRA, M., SAMMARCO, M., et al. “CACIC-DevKit:

Construção de Sistemas IoT com Poĺıticas de Acesso Customizáveis e Segu-

rança por Hardware”. In: Anais Estendidos do XLI Simpósio Brasileiro de

Redes de Computadores e Sistemas Distribúıdos (SBRC 2023), pp. 1–8, Porto

Alegre, RS, Brasil, 2023.

The student has participated in other research projects within the Grupo de
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Networks (RAN):
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comparativa da arquitetura e desempenho de plataformas de blockchain per-

missionadas para contratos inteligentes”. In: Anais do IV Workshop em

Blockchain: Teoria, Tecnologias e Aplicações (WBlockchain 2021), pp. 114–127,

2021, Uberlândia, MG, Brasil.

• THOMAZ, G. A., CAMILO, G. F., DE SOUZA, L. A. C., et al., ”Archi-

tecture and Performance Comparison of Permissioned Blockchain Platforms

for Smart Contracts”. In: 2021 IEEE Global Communications Conference

(GLOBECOM), pp. 1–6, 2021, Madrid, Spain.

• REBELLO, G. A. F., CAMILO, G. F., GUIMARAES, L. C., et al., ”A Security

and Performance Analysis of Proof-Based Consensus Protocols”, Annals of

Telecommunications, pp. 1–21, 2021.

• CAMILO, G. F., REBELLO, G. A. F., DE SOUZA, L. A. C., et al., ”Re-

des de Canais de Pagamento: Provendo Escalabilidade para Pagamentos em

Criptomoedas”. In: Minicursos do XL Simpósio Brasileiro de Redes de Com-

putadores e Sistemas Distribúıdos (SBRC 2022), Fortaleza, CE, Brasil, 2022.

• MATTOS, D. M. F., DE MEDEIROS, D. S. V., DE SOUZA COUTO, R.,

et al., ”Ameaças e Vulnerabilidades em Open RAN: Desafios e Soluções”,

In Minicursos do XXIII Simpósio Brasileira de Segurança da Informação e

Sistemas Computacionais (SBSeg 2023), Juiz de Fora, MG, Brasil, 2023.

1.3 Text Organization

This work is divided into five chapters. Chapter 1 presents the state-of-the-

art, discussing its current limitations. Chapter 2 overviews the background needed to

fully understand the proposal, such as IoT architectures, security threats, and TEE.

Chapter 3 proposes the architecture and evaluates its performance and security.

Chapter 4 presents the SDK functionalities and demonstrates its functionalities with

a practical use case based on an IoT system for energy consumption measurement.

Finally, Chapter 5 concludes this work and draws future directions.
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Chapter 2

Technical Background

This chapter presents the theory on IoT networks, security and trusted com-

puting that is used for the rest of this work.

2.1 IoT Networks

Internet of Things (IoT) is a paradigm where watches, traffic lights, door

locks, industrial controllers, and other devices are equipped with data collection,

processing, storage, and transmission capabilities [1]. However, these devices usually

present intermittent connectivity, are powered by batteries, offer a small-capacity

storage medium, and are equipped with low-cost microcontrollers running very

lightweight software. Due to these limitations, they send the collected data to be

processed in remote servers. First, the devices send the data, usually using some

wireless link, to an Access Point (AP), which acts as the Local Area Network (LAN)

gateway. In some cases, the AP performs some computation, such as cryptographic

operations or the first layers of a neural network [24]. Finally, the data is transmit-

ted through the Internet to remote servers, usually instantiated as virtual machines

in the cloud. The servers can store a massive amount of data and perform intensive

processing tasks, like complex machine learning model training over a big amount

of data. Companies and users’ devices may query the stored data to automate pro-

cesses and make decisions. Figure 2.1 illustrates a typical IoT infrastructure. The

next section discuss cryptography tools that are typically used to provide security

in IoT networks.
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Figure 2.1: Typical IoT scenario where devices and users send data to and collect

data from the cloud. The cloud server must process and store an immense amount

of data necessary to create a connected ecosystem for homes, cities, and factories.

2.2 Cryptography Fundamentals

This section covers the cryptographic operations that will be used throughout

this work.

2.2.1 Confidentiality

Data confidentiality is a property that ensures that the data going from A to

B cannot be read by an adversary. This is achieved using an encryption algorithm

to hide the message using an encryption key, and a decryption algorithm to recover

the original message from the encrypted one using a decryption key, as illustrated

in Figure 2.2. In symmetric-key block ciphers, such as the Advanced Encryption

Standard (AES), the encryption and decryption keys are the same. In asymmetric-

key block ciphers, such as the Rivest-Shamir-Adelman (RSA), there are two different
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Figure 2.2: The untrusted channel can be an Internet link spied by an attacker.

Blue indicates a symmetric key, green is a public key, and red is a private key. The

attacker does not understand the encrypted message, and ideally, the best way to

retrieve the message without the key is by brute force.

keys: a public key and a private key. If a user A wants to send a message to a user

B, he must encrypt it with B’s public key. Only B will be able to decrypt the

message using its private key. Communication from B to A must use A’s key pair.

Key generation algorithms use a Cryptographically Strong Pseudo-Random Number

Generator (CSPRNG) [10].

2.2.2 Integrity

Data integrity is a property that ensures that if the data going from A to B

is modified by an adversary, B will be able to detect it. This is achieved using secure

hashing functions, such as the Secure Hashing Algorithm (SHA), which map an input

of any size to a fixed-size output. These functions must be quick to compute, nearly

impossible to reverse, and very difficult to generate repeated results for different

inputs. It is common to say that the message was hashed and that the result is

the hash of the input. An application of SHA is the Hash Message Authentication
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Figure 2.3: The circle with C is a concatenator, while the circle with S is a splitter.

The attacker is not modifying the message, but if it does, the MAC tag checker

detects the tampered data. The message source can generate an already encrypted

message to protect confidentiality.

Code (HMAC), a scheme that produces an HMAC tag by hashing the message

together with a secret symmetric key. Figure 2.3 shows that the receiver recomputes

the HMAC and verifies if the result matches the received tag. The message can

be encrypted with AES, before generating the HMAC, using the same secret key

to achieve confidentiality and integrity. An alternative is using AES operating in

Galois/Counter Mode (AES-GCM), which embeds the MAC tag generation and

verification inside the AES block cipher [10].

2.2.3 Freshness

Data freshness is a property that ensures that every received data whose

integrity was validated is not a copy of an old one being replayed by an attacker.

This can be ensured by concatenating a single-use random number, named nonce, in

each message before computing its HMAC. The destination stores the nonces, verifies

if the received nonce is repeated, and discards the message if so. This prevents an

attacker without the key from validating an old genuine message as a new one with

the destination. AES-GCM encryption uses a number called Initialization Vector

(IV), which can be retrieved in the decryption. The IV can be used as a nonce

since the same data being encrypted with two different IVs leads to two completely

different results [10].
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Figure 2.4: An attacker sending messages impersonating the genuine message source

will not be able to generate the signature, concatenated to the message (circle with

C) because it does not have the source private key (in red).

2.2.4 Authentication

Authentication is a mechanism to confirm that a user is who he claims to

be, and that a message was generated by him. This can be achieved using a Public

Key Infrastructure (PKI), in which each user is identified to others by its public

key, while its private key remains confidential. Since anyone who wants to send a

message to B can encrypt it with B’s public key, a sender (A) must prove to B that

the message was generated by himself and not by an attacker impersonating A. To

authenticate the message, A must prove to B that it possesses A’s private key. A

signature is a mechanism to achieve message integrity and authenticity in PKIs, as

illustrated in Figure 2.4. A encrypts the hash of the message with its private key,

generating a signature. Once B receives the signature, it decrypts it with A’s public

key and verifies if the result corresponds to the received message’s hash. Although

RSA can be used in signing schemes, a more efficient signing algorithm is the Elliptic

Curve Digital Signature Algorithm (ECDSA). In PKIs, a Certificate Authority (CA)

is a trusted entity responsible for generating a certificate for each party’s public key.

Some fields contained in a certificate following X.509 format are the proprietary’s

identity, the proprietary’s public key, the issuer CA public key, and a signature

generated by the issuer CA. The goal of a certificate is to attach each party to an

identity, such as a name, and to prove to other parties that this identity owns a

public key [10].
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Figure 2.5: Both sides compute k using the received public parameters (gA mod p

and gB mod p) and its corresponding private random number (A or B), without

needing to know the private random number at the other side.

2.2.5 Key Agreement

Whereas in asymmetric-key block ciphers the public key can be broadcasted

in untrusted channels, in symmetric-key block ciphers, the key must be sent in

a secure channel [10]. Diffie-Hellman Key Exchange (DHKE) is a symmetric key

agreement protocol for two parties sharing a key, even in the presence of a man-

in-the-middle (MITM) attacker reading and fabricating messages. Figure 2.5 shows

that both ends privately generate random parameters A and B and end up with

the same key K = gAB mod p in such a way that an attacker reading messages is

not able to compute A or B nor generate K [10]. The Transport Layer Security

(TLS) is a network protocol that uses DHKE to share a temporary secret session

key between the client and the server. The server also authenticates itself to the

client by sending a certificate and signing the last message in DHKE with its private

key. The Hypertext Transfer Protocol Secure (HTTPS) uses TLS for authenticated

key agreement, which is necessary to build an encrypted channel.

The cryptography tools presented in this section are used to meet security

requirements in IoT networks, discussed in the next section.
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Table 2.1: Security requirements for IoT clouds. Issues can emerge if the solution is

not effective against the threat model. An attacker who can read any file can read

cryptographic keys from the disk and harm the system’s confidentiality, for example.

Security

requirement
Meaning Issues Possible solution

Confidentiality
Sensitive data cannot be revealed

to third parties
Client data can be stolen and sold Cryptography

Integrity
Data cannot be changed by third

parties

Attacker can unlock house doors or

control industrial actuators

Message Authentication Code

(MAC)

Authentication
Clients must identify themselves

to send and receive data

Attacker impersonates a genuine

client to compromise confidentiality

and integrity

Digital certificates

Digital signatures

Passwords/Tokens

Access Control

Clients must choose who has the

access permission to their data

and what can be done with it

The system allows the attacker to

read or modify the data without the

client’s consent, compromising

confidentiality and integrity

Role-based Access Control

Sticky Policies

Freshness
The same data cannot be sent

more than once

Attacker can control actuators

by replaying old valid messages
Cryptographic nonce

2.3 Security in IoT Clouds

This section has two goals: i) to define the requirements that the system

must follow to ensure IoT data security in clouds, and ii) to define the set of actions

the attacker can perform, known as the threat model. Table 2.1 presents the five

security requirements that must be accomplished to ensure IoT data security in cloud

servers. The table identifies some possible threats that can happen if the system

does not meet the requirements. It also presents some typical security solutions

whose efficacy depends on the threat model.

We consider a threat model where the attacker can control every application,

operating system, and hypervisor in the cloud. Therefore, the attacker can perform

the following actions:

1. read or write any file;

2. intercept, read, retransmit, or fabricate any network package;

3. execute or modify any application.

Nevertheless, the attacker cannot:
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1. access the place where data is generated, like residences or factories where

sensors, actuators, and local area network gateways are installed;

2. tamper with cryptographic primitives;

3. perform physical attacks on the CPU package, nor side-channel attacks.

This threat model defines a situation in which an attacker is someone who

successfully performed privilege escalation to dominate the entire software stack or

a malicious employee inside the cloud infrastructure with privileged access. These

are realistic scenarios since i) an attacker has a financial incentive to steal client

data, and ii) it is still a challenge to eliminate attacks from cloud managers [25].

The traditional solutions for protecting IoT data in clouds assume a weaker threat

model, in which the super-user and the operating system are trustworthy [26, 27].

This is because a privileged attacker can read cryptographic keys, which are the

basis of the security solutions presented in Table 2.1.

We define that an IoT system is secure if, and only if, it meets the deter-

mined requirements under the defined threat model. Since the solutions presented

in Table 2.1 alone are not effective against our threat model, we combine them

with trusted computing using enclaves, as described in the next section. Ensuring

availability is outside the scope of this work, since it is achieved with orthogonal

solutions, such as machine reapplication and Intrusion Detection Systems (IDS) [28].

2.4 Trusted Execution Environments

Trusted Execution Environments (TEE) use hardware resources to execute

code sections securely without depending on the security of any other software com-

ponent. The most popular TEE implementation in cloud computing is the Software

Guard Extensions (SGX), an extension of the x86 instruction set available in most

recent Intel Xeon processors. These new instructions can create and destroy trusted

execution environments, called enclaves [10]. ARM also has its own TEE imple-

mentation, known as TrustZone, which is commonly used in mobile System-on-Chip

(SoC) integrated circuits and cheap microcontrollers [29]. The rest of this section

focuses on Intel SGX implementation because it is the technology used throughout

14



Figure 2.6: Memory separation with SGX. The lines represent threads. After cre-

ating an enclave, Application 3 (App 3) can call a function that executes inside the

isolated memory (PRM). The red arrow represents the function call, while the blue

arrow illustrates the return.

the rest of this work.

2.4.1 Memory Enclaves

Enclaves are isolated regions in the DRAM for protecting data confidential-

ity, as well as data and code integrity. In SGX-compatible CPUs, there is a subset of

the DRAM address space where access is controlled by logic circuits called Processor

Reserved Memory (PRM). Pages containing code and data from enclaves are allo-

cated in a subset of the PRM, called the Enclave Page Cache (EPC) [10]. Figure 2.6

illustrates how the memory is organized in a computer with SGX.

When an application wants to process sensitive data, it asks the OS to create

an enclave. Since the PRM access control hardware prohibits the OS from directly

manipulating the PRM, the OS must use SGX instructions to create the enclave.

The first instruction for creating the enclave, ECREATE, creates an SGX Enclave

Control Structure (SECS), which can be considered the enclave identity. The SECS

specifies various enclave metadata, such as the location of the enclave in memory.

Then, the OS transfers data and code pages from outside the PRM to the EPC

using the EADD/EEXTEND instructions. Each enclave page has metadata stored in a

table called Enclave Page Cache Map (EPCM), such as its virtual address, its read-

/write/execute permissions, and a pointer to the SECS of the owner enclave. Last,

the EINIT instruction puts the enclave in initialized mode, disallowing any posterior
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instruction to modify the enclave code and metadata. There are instructions for

destroying the enclave and freeing EPC pages, which is not discussed [10].

Now that the enclave is created, any application thread can call functions that

reside inside the enclave. Thus, the application must execute EENTER instruction,

which puts the processor in enclave mode and forces the instruction pointer register

(RIP) to a predefined value, known as the thread entrypoint. SGX allows multiple

threads to execute inside an enclave by creating a Thread Control Structure (TCS)

for each thread, which keeps track of the thread stack, heap, data, registers, and

RIP values. When an application thread finishes executing the function inside the

enclave, it executes the EEXIT instruction. The system can also interrupt the thread

execution because of a memory fault or a context switch, causing an Asynchronous

Enclave Exit (AEX). In that case, the TCS is saved in the PRM and the processor

returns to normal mode. The ERESUME instruction retrieves the previously stored

TCS, puts the CPU in enclave mode, and resumes the execution [10].

Based on the example presented in Figure 2.6, there are five different cases

in which SGX takes access control decisions:

1. Application thread in non-enclave mode tries to access data from thread T1

running in App 3 enclave: the hardware will verify if the address the applica-

tion tries to access is inside the PRM range. Therefore, since the processor is

in non-secure mode, the instruction will be aborted.

2. Application thread in enclave mode running in App 1 enclave tries to access

data from thread T1 running in App 3 enclave: the first verification, pre-

sented in the previous case, will be successful since the processor is in enclave

mode (EENTER was executed). Then, the instruction will access the metadata

of the accessed page (EPCM). The EPCM indicates the location of the en-

clave’s identity (SECS) who owns the page. Then, the instruction will verify

if this retrieved identity matches the identity of the enclave that executed the

instruction, passed as a parameter. Therefore, this verification fails, and the

access is denied.

3. Application thread T1 in enclave mode running in App 3 enclave tries to access

data from thread T1 running in App 3 enclave: the two first checks mentioned
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above succeed. Then, the instruction verifies the read/write/execute permis-

sions stored in the metadata of the accessed page (EPCM). If the instruction

being executed is allowed for the page, the instruction will pass this verifica-

tion. Last, it verifies if the virtual address used by the application’s instruction

matches the page’s expected virtual address, stored in its metadata (EPCM).

If so, the access is finally granted.

4. Application thread T2 in enclave mode running in App 3 enclave tries to access

data from thread T1 running in App 3 enclave: the access is granted, since

threads of the same process typically have shared memory.

5. OS thread tries to access thread T1 running in App 3 enclave: the OS always

runs in non-secure mode, such that the access is denied as in the first case.

2.4.2 Encryption and Attestation

Each SGX CPU has unique One-Time Programmable (OTP) devices used

to store a secret, which can only be used to derive keys, such as the sealing key.

This key derivation is performed by the EGETKEY instruction. An application enclave

must encrypt sensitive data with this sealing key before writing into the disk. Since

the sealing key is unique to the enclave and cannot be accessed by other software,

only the same enclave on the same processor can retrieve the sealed data [30].

All code, data, and metadata used during enclave creation (2.4.1) are hashed,

creating a unique enclave measurement (MRENCLAVE). The measurement is performed

by the enclave creation instructions and is stored in the enclave metadata, ensuring

its integrity. If the untrusted OS modifies the code at the enclave creation, the

measurement does not match the developer’s expected value. This measurement is

used to create a report, which can be signed by a privileged enclave developed by

Intel, called quoting enclave.

Before sending its data to an enclave in the cloud, the client must ask the

server to perform a remote attestation. The attestation proves that the server runs

on a legitimate SGX-enabled platform with the expected code. Intel’s Data Center

Attestation Primitives (DCAP) is an attestation mechanism based on PKI [31]. In

this mechanism, Intel is a trusted CA that provides the CPUs with a unique private
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attestation key and emits certificates with the corresponding public key. A pre-made

Intel enclave, called quoting enclave, uses a unique private key, in the format of the

x509 certificate, to sign the enclave report. This signed measurement is forwarded

to the client, and the enclave is considered trusted if the signature can be verified

using the data center public key provided on the certificate. The client can also

compare the enclave initial measurement, done at the initialization step, with an

expected value to ensure that the enclave code loaded into the main memory is the

expected one. The attestation protocol is based on Elliptic Curve Diffie-Hellman

Key Exchange (ECDHKE) between the client and server enclave to transmit the

signed report using symmetric encryption [32]. If the attestation is successful, the

client can transmit confidential secrets over this encrypted channel so that only the

enclave can decrypt them.

Intel also offers a service called Enhanced Privacy ID (EPID), in which the

client needs to access an online centralized Intel Attestation Server (IAS) to verify

the validity of the signature [30]. DCAP, described above, eliminates relying on

a single verification point since Intel servers are only requested in the provisioning

step. In this step, Intel servers provide the quoting enclave with the private key that

never leaves this enclave used to sign the measurement, the corresponding public key,

and the lists of revoked certificates. SGX platform offers a CSPRNG for generating

secrets without depending on any other potentially malicious software components.

This can be used to generate the ECDHKE secrets or as a seed to key generation

algorithms.

SGX trust model assumes that the attacker cannot tamper with the circuitry

inside the CPU package. However, attackers could still tamper with the buses that

connect the CPU to the main memory. Therefore, SGX CPUs are equipped with

a Memory Encryption Engine (MEE) responsible for encrypting data transferred

from the cache to the main memory and decrypting data in the opposite direction.

Data in the cache is plaintext to ensure fast access since an attacker cannot access

the processor internals [10].
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2.4.3 Application Development

Intel offers a Software Development Kit (SDK) with high-level C/C++ func-

tions for using SGX functionalities. The developer must choose the functions resid-

ing inside the enclave and write them in separate files. These functions are compiled

into a dynamic library (enclave.so, for example), which can be used by other appli-

cations to process sensitive data. Since system calls are untrusted OS code, they

cannot be executed inside the enclave. Therefore, memory allocation, file descriptor

operations, threads synchronization with semaphores, Inter-Process Communication

(IPC), and child process creation must be outside the enclave [33].

A non-enclave function may want to call an enclave function passing a pointer

to some buffer at the non-protected memory as an argument. However, the enclave

can reveal sensitive information if it manipulates this buffer directly. Therefore, the

application outside the enclave calls an intermediate function with the same name

as the enclave function, called ECALL edge routine, which copies the buffer to the

protected memory. Similarly, when an enclave function wants to call a non-enclave

function, it calls an OCALL edge routine, which copies the buffers from the protected

to the non-protected memory [33]. Intel offers the Edger8r (edgerator) tool for

automatically generating C++ code containing edge routines. The developer must

write an Enclave Definition Language (EDL) file for the edge routine generation, as

illustrated in Code 2.1.

1 // Enclave func t i on headers that may be

c a l l e d by non−enc lave code

2 t ru s t ed {

3 // pub l i c i n d i c a t e s that i t can be c a l l e d

by any non−enc lave func t i on .

s g x s t a t u s t i s the re turn type .

4 pub l i c s g x s t a t u s t p r o c e s s s e n s i t i v e

5 ( [ in , s i z e=i n s i z e ] i n t ∗ bu f f e r i n ,

6 i n t i n s i z e ,

7 [ out , s i z e =16] i n t ∗ bu f f e r ou t ) ;

8 // The s i z e f i e l d be f o r e each po in t e r

argument i n d i c a t e s the maximum number

o f bytes o f the bu f f e r .

9 }
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10 // Non−enc lave func t i on headers that may

be c a l l e d by enc lave code

11 untrusted {

12 pub l i c s g x s t a t u s t c a l l i n s e c ( ) ;

13 }

Code 2.1: Enclave Definition Langauge (EDL) file used by Edger8r to generate .cpp

and .h files containing an ECALL for process sensitive() and an OCALL for

call insec().

2.4.4 Performance Limitations

The main performance limitations brought by SGX are EPC page eviction,

transition overhead, cache misses, enclave creation, and communication between

enclaves. The EPC page eviction happens when the system runs out of EPC space

and stores some pages outside the PRM. This degrades performance since the evicted

pages must be encrypted when evicted and decrypted when restored. This problem

is more evident in older SGX versions, found in Intel Skylake platforms, where the

EPC was limited to 128MB, from which only 90MB were available to enclaves while

the rest were metadata. The transition overhead introduced by ECALLs and OCALLs

increases with the amount of data copied from buffers into/out of the PRM. With

enclaves, cache misses are a more serious problem because when memory content

is not cached in CPU, it must not only be retrieved from the main memory, as in

untrusted computations, but also be decrypted. The biggest performance limitation

is enclave creation since multiple memory pages must be copied and measured from

the non-protected memory to the PRM [33]. In cloud computing, it is common to

distribute processing in multiple computers to achieve parallelism. However, since

enclaves do not trust each other, they must perform remote attestation for sharing

a secret key. All data must be transmitted over this encrypted channel, introducing

significant overhead [12].

2.4.5 Security Limitations

The main SGX security limitations are denial-of-service attacks, public code,

unprotected peripherals, application code vulnerabilities, and side-channel attacks.
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The need to trust Intel is an intrinsic security limitation when using SGX.

Enclaves do not protect against denial-of-service attacks since, for example,

the untrusted OS can refuse to create an enclave. Also, while the data processed

inside the enclave is confidential, the enclave code is not, since the untrusted OS

knows the enclave code and initial data for creating the enclave. Moreover, clients

aiming to use an enclave in the cloud must know the enclave code to verify if the

measurement is correct. Silva et al. propose a tool to protect SGX code privacy by

dynamic loading code inside the enclave whenever needed [34]. Enclaves do not offer

any means for protecting peripheral’s data. The developer is responsible for writing

secure codes, avoiding memory leakage and overflow issues, validating every input

that comes from non-enclave code, and avoiding shared memory between threads to

store secrets. Minimizing enclave code reduces the chance of vulnerabilities while

processing sensitive data.

Side-channel attacks can happen through OS kernel manipulation to infer

the application memory access pattern by measuring computation time [35]. The

most common side-channel attack regarding SGX is the cache side-channel attack,

in which the attacker uses a malicious non-enclave process to fill the cache used by

a given core executing enclave code. Then, whenever enclave pages are accessed,

they replace existing attacker pages in the cache. Periodically, the malicious pro-

cess verifies if the time to access its data in a certain address is high. If so, the

content there was evicted from the cache, and this location was accessed by the

enclave [36]. Information obtained this way is reverse-engineered into actual data

since the attacker has access to memory translation tables [37].
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Chapter 3

CACIC Architecture

This chapter uses SGX to enhance the security of IoT data processing in

clouds. Figure 3.1 illustrates the architecture composed of clients that send data

to or receive data from a trusted cloud server. The communication uses HTTPS

because it is a secure and widely adopted protocol in web servers. However, the sole

deployment of HTTPS is not enough to meet the security requirements proposed in

Section 2.3. Hence, the architecture leverages memory enclaves to equip the system

with the four secure procedures: registration, publication, query, and revocation.

3.1 Trusted Protocols

This section describes the secure procedures followed by the clients and the

server, illustrated in Figure 3.2.

3.1.1 Registration

Initially, the client access point must register in the platform (1) to share its

symmetric Communication Key (CK) with the server, used to encrypt and decrypt

data, as illustrated in Figure 3.2. During registration, the client access point must

attest that the server is trustworthy (2), as presented in Subsection 2.4.2. The access

point sends the CK to the enclave if the attestation is successful. The attestation

procedure involves multiple messages in both directions for key exchange using Diffie-

Hellman, as indicated by the double arrows in the diagram. The server seals the

key before writing it on disk and associates it with the client ID: an eight-digit
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hexadecimal string that identifies who is sending the messages.

3.1.2 Publication

When the access point receives data from sensors for publication (3), it as-

sembles a message (M[publication], 4) with the following content:

M[publication]=[time|ID|type|size|nonce|CK(content|perm|nonce)].

Figure 3.1: Components and interfaces in blue compose CACIC core, i.e., they do

not depend on the use case. The architecture is agnostic to the processing task, the

database, and the data sources.
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Figure 3.2: Data in transit is encrypted with the Communication Key (CK), and

stored data is encrypted with the Storage Key (SK). Only the enclave decrypts and

processes the data in the cloud. The blue color highlights the security mechanisms

introduced by the architecture.
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The symbol | represents string concatenation. If the application needs, the time

can be used as an index for post-lookup procedures at the database. The public

ID identifies the client to the server, which locates the CK sealed on disk. The

content type is used by the server to identify the appropriate processing task for

each case. The sensor data is stored in the content field. Client access permissions

(perm) permit the server to be aware of who can access the published data using

a list of IDs. In addition, permissions are encrypted together with the data, as

they are private information. The nonce is a random number sent to avoid replay

attacks. Once the publication message is received, the server enclave retrieves the

communication key, decrypts the data, verifies if the nonce is fresh, and applies some

processing depending on the content type (5). The result and the permissions list

are encrypted with the Storage Key (SK), which is sealed in the disk. The enclave

also verifies if the encrypted nonce is consistent with the plaintext nonce.

The M[publication] message can also be used for requesting the server to

apply some processing over previously published data, making this data available to

other clients. In such a case, the type field identifies the processing task, while the

content field can be used to specify processing task parameters. Some processing

tasks may require the server to use previously published data, such as for building

predictive models, for example. In such a case, the content indicates the data that

should be used to perform the processing task. Applications running on clients’

personal computers can send M[publication] to the server for this purpose.

To illustrate a common system application, let us consider the aggregation of

a client’s energy consumption data. The client sends a M[publication] requesting

the server to aggregate energy consumption data using content and type fields.

After receiving the message and identifying the type, the server reads from the

database other energy consumption data according to the parameters received in

the content field. Therefore, the enclave can decrypt the samples and calculate a

sum, as described in Algorithm 1. With the proposed architecture, a control center

can use this data to make decisions regarding energy distribution planning, for

example, without accessing confidential consumption patterns. Other proposals use

homomorphic cryptography for computing the sum with encrypted data. However,

enclaves stand out for introducing a much smaller processing delay and allowing
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Algorithm 1 Algorithm for aggregating data inside the enclave. The MAC and

nonce checks are omitted. The enclave uses the result to build an encrypted sample

for publication.

Input: (size, enc data[size], sealed CK)

Output: sum

sum← 0

CK ← Unseal(sealed CK)

counter ← 0

while counter 6= size do

data← Decrypt(enc data[counter], CK)

payload← GetPayload(data)

sum← sum+ payload

counter ← counter + 1

end while

arbitrarily complex operations on the data, such as filtering [21]. Before publication

in the database, the data is encrypted with the access permissions and the nonce,

using the SK.

3.1.3 Query

In the query procedure, the client access point sends a message M[query] (7)

with the following format:

M[query]=[ID|index|command|size|nonce|CK(nonce)],

where command and index are used to locate and request data in the database. The

request is forwarded to the database (8), and the response is the encrypted data

(9). Then, the server enclave retrieves the client CK, decrypts the nonce with the

CK, and verifies if the nonce is fresh and consistent with the plain-text nonce (10).

Therefore, it decrypts the data received from the database and checks if the access

permissions (perm stored with the data) allow access to the data by the interested

client (10). If so, the enclave encrypts the result with the CK and sends it to the access

point. Finally, the access point decrypts the received data using the CK, making it

available to the interested device (11). The architecture is database-agnostic so that
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the format of the index and command fields of the query message depends on the

application. The cloud provider is free to deploy the database on the same machine

as the server, on a separate server, or even in a distributed fashion.

An advantage of CACIC is that it does not impose any computational re-

quirements or rigid message format on the sensor. This advantage is a consequence

of delegating the key management and data encryption to the access point, regard-

less of the message format used by the sensors. The diversity of IoT devices in terms

of protocols and performance specifications justifies this design choice, making the

proposal flexible and device-agnostic [38]. However, if the sensor has cryptographic,

networking, and key storage capabilities, it can directly send the messages: the ac-

cess point would act as a simple network gateway. Still, delegating these operations

to the access point is simpler because the ID and CK can be maintained in a sin-

gle device. Additionally, the sensor can employ more lightweight network protocols,

such as the Constrained Application Protocol (CoAP), since the access point can act

as a proxy. The client can send messages using its own devices, such as a personal

computer, to request the server to perform processing tasks (M[publication]) or

to query data (M[query]).

A key feature of the architecture is the possibility for the client to configure

access permissions. The perm field at the publication message (M[publication]) is

used by the enclave to prevent or allow access when a client requests this data. A

client can prevent the biomedical signals from their smartwatch from being made

available to the watch manufacturer but can allow them to be accessed by a biomed-

ical research institution, for example. This is only possible because the client has

established a trustworthy relationship with the trusted execution environment in the

cloud. Also, if a company sends a M[publication] requesting the server to perform

some processing task over previously published biomedical data from other clients,

the server can refuse to use data whose access permission list does not include the

company ID.

The access control mechanism is based on sticky policies, first proposed by

Karjoth et al. [39]. Sticky policies are stored and transmitted along with the data,

providing the data producer with in-depth control over access rules for every single

data unit [40]. This approach relies on a Trusted Authority (TA) for managing
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decryption keys and enforcing access control, which is the enclave in this proposal.

The system uses Access Control Lists (ACL) containing the identity of the clients

allowed to access the data.

3.1.4 Revocation

The client can revoke the access permission or even completely remove the

data, sending a revocation message in the following format:

M[revocation]=[ID|index|command|size|nonce|CK(perm|nonce)].

The server first queries the data published together with the access permissions from

the database using an index and a command (13, 14). The enclave verifies the nonce

and unseals the data as described for other procedures. Therefore, it updates the

access permissions of this data with the new permissions sent on the perm field (15).

If this field in the message is null, this means that the data must be removed from

the database. If not, it overwrites the database entry with new data containing new

access permissions (16). Essentially, the revocation procedure combines querying

old data and publishing a new one.

3.2 Security Evaluation

The architecture uses cryptographic primitives to achieve the first four secu-

rity requirements, presented in Table 2.1. The system uses AES with 16-byte keys

because this is the default symmetric encryption algorithm offered by SGX SDK.

Therefore, an attacker without access to the cryptographic keys cannot access en-

crypted data, ensuring the confidentiality of encrypted data. The encrypted data

are accompanied by a 16-byte MAC, computed using GCM, implemented in SGX

SDK. This ensures that: i) the encrypted data was generated by someone with the

expected key, and ii) the encrypted data was not modified. Therefore, authentica-

tion and integrity are ensured if an attacker cannot access the cryptographic keys.

The encrypted data is also accompanied by a nonce, implemented using a 12-byte

random IV for the AES-GCM algorithm. When data is decrypted, the system can

verify if this value is unprecedented, such that an attacker cannot replay old mes-

sages, ensuring freshness. Therefore, it is safe to say that the first four properties
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of Table 2.1 are ensured if: i) sensitive data is always in its encrypted form, except

inside the trusted modules, ii) trusted modules must perform all AES-GCM oper-

ations as well as its corresponding security checks, and iii) the encryption keys are

never accessed by an attacker following the attacker model defined in Section 2.3.

Trusted modules are defined as systems components whose security does not depend

on the attacker actions defined in Section 2.3, which, in this work, include the client

LAN, the server enclave, the Intel system for provisioning keys and certificates, and

the Intel CPU package. Thus, the server must access plaintext sensitive information

only inside the enclave and prevent an attacker from accessing cryptographic keys.

To ensure the last security requirement, access control, only trusted modules should

modify access permissions and read access permissions to grant access to sensitive

data.

Two trusted components must also be able to share the symmetric key

through a channel controlled by the attacker. This is achieved using the ECDHKE

(2.4.2), which is the key exchange algorithm implemented in SGX SDK. Given that

the secret parameters are securely generated inside the trusted components and are

never revealed outside them, the attacker cannot perform man-in-the-middle attacks

on the communication channel between components. Therefore, keys must always

be generated and exchanged between trusted components. Remote attestation is

used by the client to ensure enclave authenticity.

Based on these principles, the next Subsections discuss how the mechanisms

described in Section 3.1 make the system resilient to an attacker performing the

actions described in Section 2.3. This work does not prove the system security,

since formal methods are out of the scope. More information about formal methods

for enclave security can be found in [41].

3.2.1 File Manipulation

An attacker who gains privileged access control over the server may read

data from arbitrary files, including the database containing the client’s data and

the access permissions. The database is encrypted with the SK using AES-GCM for

ensuring confidentiality. Both the SK and the client’s CK are sealed on the disk so

that only the enclave can decrypt these keys. It is assumed that no one can tamper
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with the SGX hardware, making it impossible for the attacker to obtain the sealing

key.

An attacker may also write to any file, modifying the client’s data and access

permissions in the database. Since AES-GCM ensures data integrity, the enclave

cannot decrypt data fabricated by the attacker, thus denying the operation. Conse-

quently, the attacker cannot tamper with the access control list stored with the data.

This work does not deal with system availability issues such as forcing data to be

unuseful by breaking its integrity, deleting contents from the disk, or simply shutting

down the server by the cloud provider. Orthogonal solutions such as database repli-

cation for backup are outside the scope. Now, suppose a client publishes a boolean

data identifying if a door lock in its house is open. The attacker could replicate old

data in the database to force a stale state, putting client security at risk. However,

the cryptographic nonce ensures data freshness, blocking replay attacks.

3.2.2 Packages Manipulation

The attacker can also intercept network packets to read or modify message

contents. Since sensitive data and permissions in all messages are encrypted with

the CK using AES-GCM, the attacker cannot tamper with its confidentiality, in-

tegrity, and freshness. The client generates the CK during the registration, without

affecting the security of the proposal, as the attacker model assumes that the client

is trustworthy. The client is responsible for maintaining its CK confidential. During

attestation, the client shares the CK with the server enclave using ECDHKE securely,

since both ends are trusted. After attestation, an attacker at the server will not be

able to access the CK because it is sealed on the disk and can only be retrieved by

the enclave. The attacker is not able to impersonate a client to send fake messages

because all messages have an encrypted field that acts as proof that the sender pos-

sesses the CK. Availability attacks such as Distributed Denial of Service (DDoS) or

packet drop attacks are not considered.

3.2.3 Software Manipulation

The attacks described in Subsections 3.2.1 and 3.2.2 do not involve modifying

currently running applications or running a malicious application. This work goes
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beyond most works in the literature by assuming an attacker can tamper with the

existing server code to introduce malicious tasks, such as revealing client data in

the clear. The OS is also not trusted, so an attacker can read, write, and execute

code in every server memory region outside the one reserved for the enclave. To

avoid these attacks, data is processed in clear inside the enclave, a trusted entity

that guarantees its security at runtime. All sensible information, like CK, SK, data

contents, access permissions lists, and encrypted message fields are only decrypted

after entering the enclave and only encrypted before leaving the enclave, as shown in

Figure 3.2. Therefore, all the integrity, freshness, and authenticity checks concerning

AES-GCM-protected data are only performed inside the enclave.

The attestation protocol at the registration phase guarantees that the server

does not falsify the authenticity of the code that runs inside the enclave. For this,

the client checks if the signed measurement of the enclave code matches an expected

value. As described in Section 2.4.2, the signature relies on a trusted system enclave

owned by Intel that cannot be tampered with by any other component in the software

stack. The client does not proceed with the communication if the code measurement

is not the expected one, or if the signature cannot be verified, indicating that the

server does not leverage a genuine enclave. Since only the enclave processes the

access control rules, the client has complete control over who accesses its data. The

SK is generated at the first enclave startup by a trusted software component, the

SGX CSPRNG, and is sealed on the disk for future use.

3.3 Performance Evaluation

The performance evaluation aims to: i) verify if the architecture is scalable,

ii) measure the processing latency introduced by enclaves, iii) identify the main

performance bottlenecks, iv) evaluate the CPU and memory overhead, and v) verify

how the architecture deals with a processing task that operates over a large amount

of data instead of just publishing the received data. IoT cloud systems need to serve

a large number of clients at the same time, given the growing number of devices. This

challenge justifies evaluating the performance of security proposals with numerous of

clients [42]. The experiments evaluate the number of requests the platform processes
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per second and the time for publishing and querying data. The trusted server was

implemented in a computer with an Intel i9-10900 CPU 2.80 GHz, 32 GB RAM, and

20 threads. This machine also sends messages for querying and publishing synthetic

data in the Ultralight 2.0 format, a standard adopted by the FIWARE platform for

developing intelligent applications used in other works [43, 15, 44, 45]. Still, the

data format supported by the platform is generic, as described in Section 3.1. A

Software Development Kit (SDK) for using the Intel SGX trusted instructions in

C++ language was used1. During the experiments, the EPC page eviction problem

discussed in Subsection 2.4.4 did not occur.

3.3.1 Scalability

The first experiment evaluates the number of publication messages a server

can process per second, which includes steps 4 to 6, as denoted in Figure 3.2. The

experiment reproduces multiple clients sending publication messages at the same

time with a constant rate of publications per second (pub/sec). The wrk2 tool

sends constant HTTP workloads, measures the server processing rate, and evaluates

the performance statistics [46]. The experiment was repeated without the enclave

(step 5 in Figure 3.2) to evaluate the overhead added by the proposed security

mechanisms. Figure 3.3 shows that the publication rate increases rapidly with the

sending rate as the system processes requests in parallel using multiple threads inside

the same enclave. For less than 4k messages sent per second, the processing rate

is similar to the sending rate, suggesting that, until this point, the server does not

reach its processing limit yet. As the sending rate increases, the curve inclination

decreases until the processing rate stabilizes at a maximum value, representing the

server processing capacity limit. The maximum processing rate is 5,500 pub/sec for

the secure server (with enclave) and 6,250 pub/sec for the insecure server (without

enclave). This represents a 12% decrease in the maximum publication processing

rate, which is small considering that CACIC architecture can still serve thousands

of clients per second with a much stronger threat model.

Figure 3.4 reveals that the latency of a single publication message is in the

1The repository with the CACIC core implementation for evaluating the performance is available

at https://github.com/GTA-UFRJ-team/TACIoT.
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Figure 3.3: The enclave reduces the maximum publication rate by 12%, but the

system still processes thousands of publications per second.

Figure 3.4: The latency quickly increases when the system achieves its maximum

publication rate since new messages are inserted into a queue.

order of a few milliseconds when the system is below its processing rate limit. When

the system achieves its maximum parallelism, every new message is inserted into a

queue and is only processed when a thread becomes available. This is confirmed by

the rapid growth in latency around the maximum processing rate. For the secure

case, at 4K pub/sec the latency is negligible while at 6K pub/sec the latency is

already significant, since the maximum processing rate is 5,5K pub/sec. The client
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Figure 3.5: This result is analogous to Figure 3.3. The reduction in message pro-

cessing rate due to the enclave is more significant in that case, since queries are

faster.

will notice a response time in the order of seconds in both secure and insecure cases

when the server is at its parallelism limit.

The second experiment evaluates the number of query messages processed

per second (que/sec) by the server, which includes steps 7 to 10 in Figure 3.2. The

methodology is the same as the one described for the first experiment. The results

presented in Figure 3.5 are analogous to the first experiment, with a maximum rate

equal to 13,540 que/sec without enclaves and 10,110 que/sec with enclaves. In both

cases, the query rate is higher than the publication rate, suggesting that the query

procedure is faster than the publication procedure. The overhead added by the

enclave in the query is not that negligible, leading to a performance drop of 25%

compared with the insecure case.

Figure 3.6 presents the latency of each query message, similarly to Figure 3.4,

confirming that the latency increases rapidly when the server reaches its maximum

processing rate. For the query messages, this maximum processing rate is much

higher than for publication messages. As the sending rate increases, the curve for

the secure server starts to grow before the curve for the insecure server. This happens

because the maximum rate is much lower when using the enclave.
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Figure 3.6: This result is analogous to Figure 3.4. The system processes more queries

than publications per second.

Figure 3.7: The enclave adds an imperceptible latency overhead for the clients. The

enclave does not perform any computation-intensive processing and the overhead is

mainly due to the ECALL.

3.3.2 Latency

Figures 3.4 and 3.6 also presented results concerning the processing time of

messages, but considered a scenario with multiple concurrent messages being queued.

The third experiment differs from the previous by evaluating the time between the

client transmission of a single request and the reception of a successful response
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using the wrk2 tool. This experiment aims to verify if the enclave adds significant

overhead in response time. Figure 3.7 shows that, in both cases, the enclave adds

only 0.1 ms of delay, which is imperceptible for most applications. The enclave does

not apply expansive computation over the published data, since the experiment only

evaluates the publication/query messages processing times. The time introduced by

the enclave processing is the same for publication and query because the system ex-

ecutes three sealing/unsealing and encryption/decryption operations in both cases,

as presented in steps 5 and 10 of Figure 3.2. The experiment also confirms that

publication time is approximately 25% higher than the query time for both secure

and insecure servers. This result explains why the maximum query rate of the server

is much higher than the maximum publication rate, as discussed before. The time

added by the enclave has more influence on the total query time than on the total

publication time since the query procedure is faster. This explains the significant

reduction in the maximum query rate caused by the enclave, as discussed before.

These experiments confirm an inverse relationship between the latency of a single

request in seconds, and the maximum rate in requests per second. The performance

of the revocation procedure must be analogous as it is a combination of querying

old data and publishing it with updated access permissions.

3.3.3 Microbenchmarking

The previous experiments treated the server as a black box since the wrk2 tool

simulates clients interacting with the server through HTTP requests and measures

the time and the rate by the responses. The fourth experiment analyses the system

under the microscope, detailing how much each procedure contributes to the total

overhead. To perform this analysis, this work develops a custom benchmarking

tool based on high-precision timers, which individually measures the elapsed time

of each critical code section and computes statistics, such as mean and variance,

at the end of an experiment epoch, with 1 µs resolution. The overhead added by

HTTP processing was not evaluated. Table 1 presents the mean elapsed time in

microseconds for each procedure. After repeatedly running the experiments, the

error bar becomes negligible (lower than the resolution). The first row represents

enclave initialization, which includes creating and transferring memory pages to
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Table 3.1: Publication and query latency microbenchmark results. The publication

time is dominated by the disk writing and the query time is dominated by the

enclave.

Procedure Elapsed time (µs)

Enclave initialization 5848

Enclave publication message processing 105

Database write 387

Other procedures 42

Total publication time (not considering HTTP) 534

Enclave query message processing 105

Database read 56

Other procedures 74

Total query time (not considering HTTP) 235

the PRM, as described in Section 2.4.1. The following four rows relate to the

publication procedure. In that case, the bottleneck is the time to write to the

secondary storage, which does not depend on the proposed architecture. The last

four rows relate to the query procedure. In that case, the smaller time to access the

database led to much better performance. The bottleneck for the query becomes the

enclave, explaining why removing the enclave from the query procedure results in

a substantial performance improvement (Figures 3.5 and 3.6). Table 1 also reveals

that just the enclave initialization time is 10 times higher than the total publication

time and 25 times higher than the total query time, dominating the total overhead.

However, the server takes advantage of multithreaded processing inside a single

enclave to initialize the enclave only on the startup.

3.3.4 Resources Usage

The fifth experiment evaluates the CPU usage in terms of the percentage (%)

of CPU time the kernel dedicated to the server process and of the physical memory

usage in MB. The psrecord tool is used to monitor the server’s resources while

receiving 2k HTTPS messages per second for 30 seconds. Figure 3.8 shows the CPU

usage. The values can be greater than 100% because the result is the sum of all
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Figure 3.8: Percentage of CPU time for the server process, considering the sum of all

CPUs. The resource usage is dominated by the HTTPS protocol implementation,

as seen in gray.

percentages of time dedicated to the process by all CPUs. Thus, the maximum CPU

usage for the entire 20-core machine is 2,000%. Initially, the publication and query

functionalities were disabled to measure the resource usage by the HTTPS library

alone, i.e., to create a baseline, presented in Figure 3.8 using gray bars. In that case,

the mean CPU usage for receiving HTTPS messages is 148% for publications and

68% for queries.

Afterward, the system functionalities were re-enabled to measure the impact

of the proposed publication and query protocols on resource usage. The CPU usage

overhead is defined as the difference between the CPU usage while processing the

requests and the CPU usage baseline, as defined before. For the insecure case,

the CPU usage overhead is 24% for both publications and queries. For the secure

case, on the other hand, the CPU usage overhead is 50% for publications and 32%

for queries. The architecture does not impose significant CPU usage, considering

that the overhead introduced by the security procedures is not very significant.

Furthermore, it is evident that the HTTPS protocol dominates CPU usage and

that the values are very distant from the maximum server capacity. The memory

consumption maintained stable at around 7 MB for all experiments, indicating that

the operations are not memory intensive. Repeating the experiment with rates
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Figure 3.9: The enclave overhead increases as more data is transferred to it. How-

ever, the time for reading the samples from the database is much higher than this

enclave overhead.

greater than 2k messages per second leads to similar results. These results confirm

that high message processing rates do not require implementation with lots of CPU

and memory resources.

3.3.5 Use Case: Aggregation

The sixth experiment evaluates the time taken to perform realistic data pro-

cessing over fictitious IoT data samples, based on the use case of aggregation, de-

scribed in Section 3.1. Figure 3.9 presents the time to aggregate the samples with

and without enclaves. The experiment measures the time for aggregating 1; 500;

1,000; 1,500; and 2,000 samples to verify the influence of the number of samples.

When the number of samples is 1, the system just decrypts the data and does not

perform any sum. In both secure and insecure cases, the aggregation time grows

with the number of data aggregated. This is expected since the asymptotic complex-

ity of the Algorithm 1 is O(n), where n is the number of samples, considering that

it repeats the same efficient decryption and sum operations for every data sample.

However, the aggregation time with the enclave is always higher. This is a

consequence of an additional step to execute an ECALL instruction to call the enclave

and transfer the data buffer by reference before starting the described algorithm.
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Other works demonstrated that the ECALL instruction is one of the main performance

overheads introduced by enclave utilization, going from 4K clock cycles up to 20k

clock cycles, depending on the amount of data transferred to the enclave [47, 33].

The difference between the secure and insecure curves represents the overhead added

by entering the enclave. As the amount of data transferred to the enclave grows,

the time taken to enter the enclave also increases, and the curves diverge. This is

compatible with the results presented since the secure curve inclination is higher

than the insecure case.

The time for reading a single sample from the secondary storage is approxi-

mately 56 µs, as presented in Table 3.1. For thousands of samples, the total reading

time is in the order of tens of milliseconds, which is much higher than the time for

processing these samples. As the number of samples grows, the overhead introduced

by the enclave increases, but the time for reading these samples from the database

increases as well. This result suggests that the overhead introduced by the enclave

can be imperceptible for the client if the application involves intensive I/O opera-

tions, as the bottleneck is on disk reading. These results are promising, considering

that many applications, such as those requiring machine learning model training,

are I/O intensive. Even though this is a straightforward conclusion, we still need

more experiments to confirm it.

3.3.6 Validity Discussion

This section discusses some precautions taken to ensure the validity of the

results and presents some limitations for generalizing the conclusions [48]. Experi-

ments 1 to 5 aim to confirm the impact of the architecture and protocol, presented

in Section 4, on scalability, latency, and resource usage. These experiments are

direct measurements of two situations, contrasting only by the presence or not of

security procedures, confirming the construct validity of the experiments. For in-

ternal validation, we repeated the experiments and performed statistical mean and

standard deviation estimations to reduce stochastic errors. Also, we leverage widely

adopted tools such as wrk2, C++ high-precision timers, and psrecord for conduct-

ing measurements to minimize the chance of systematic errors in instrumentation.

Moreover, the obtained results lead to similar and coherent conclusions: i) publi-
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cation performs worse than queries, ii) the enclave is the main bottleneck only for

queries and iii) for publications, the time for writing into the secondary storage is

the main bottleneck.

The validity of the results presents some limitations. Experiment 5 indicates

that the system performs well in aggregating large amounts of data. However,

more experiments must be run to ensure that the architecture does not hinder

arbitrarily complex tasks. Some processing tasks may exit the enclave and re-enter

it, while the models developed in Subsection 3.3.5 assume that the entire processing

is performed inside the enclave once the thread enters the enclave. The proposed

architecture is agnostic to the database, but the data is directly written into a file

on the disk during the experiments. Therefore, in a production environment, the

results depend on the overhead introduced by the deployed database. Still, the

experiments confirm that even with the security procedures proposed, the system

is scalable and presents low latency. The developer is responsible for choosing a

scalable and resource-efficient database, and for programming the processing tasks

in an optimized way to achieve high-performance requirements. Experiments run

on a single computer, whereas cloud computing usually leverages virtualization and

distributed processing and storage. Future works must deal with intensive processing

tasks distributed between multiple virtual machines and multiple enclaves to extend

the result’s external validity to scenarios more similar to the cloud.
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Chapter 4

Software Development Kit and

Demonstration

This section presents CACIC-DevKit: a tool for developers to use CACIC

architecture, described in Chapter 3, to build IoT systems. The development of

this tool is motivated by the fact that CACIC architecture is flexible in terms

of data sources, user interfaces, processing tasks, and databases. Therefore, the

CACIC-DevKit tool aims to abstract CACIC’s security and access control mecha-

nisms for developers not specialized in enclave development. The CACIC-DevKit

code repository is available at https://github.com/GTA-UFRJ/CACIC-DevKIt, and

has more than 8,8k lines of code. The documentation can be found at https:

//cacic-devkit.readthedocs.io/en/latest/index.html. The chosen software

license is MIT, allowing for modification and redistribution of copies as long as

they include the copyright information provided in the repository. Finally, a video

demonstrating the tool based on a use case is available at https://youtu.be/

CFEsD-25Mp0.

4.1 CACIC-DevKit Functionalities

CACIC-DevKit offers functions, listed in blue in Table 4.1, for developers to

build secure IoT systems. While functions in blue compose CACIC’s core, functions

in black must be programmed by the developer, depending on the use case. Refer to

Figure 3.1 for identifying the parts of the architecture that make up the core, repre-
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sented in blue. The steps for developing a system with the proposed functionalities

are summarized as follows:

1. program the processing tasks (Function 4) and associate than to a publica-

tion message type. The M[publication] fields are described in Section 3.1.

The developer can call auxiliary functions (Functions 5, 6, and 7) from the

CACIC’s core for querying previous data, for example. These auxiliary func-

tions automatically implement security verifications and access control;

2. program database interfaces (Functions 1, 2, and 3);

3. program the client interface, which can call Functions 8, 9, and 10 for inter-

acting with CACIC;

4. program the data sources, which can call Functions 8, 9, and 10. A sensor can

directly send M[publication] to the server or an access point can intercept

sensor data and build the messages.

An advantage of decoupling core and use case application is the ability to abstract

the security mechanisms, making it easier for non-specialists in the area to develop

secure systems.

Figure 4.1 presents a possible execution flow of an application built using

CACIC-DevTool functions. The developer programs the client interface, which sends

a M[publication] using client publish(). The developer defines how the mes-

sage parameters are chosen and how the communication key (CK) is stored, according

to the use case. Upon receiving the message, the server parses its fields, reads the CK

and SK from the disk, and enters the enclave. Then, the enclave unseals the keys, de-

crypts the M[publication] encrypted fields, performs the security checks, identifies

the processing task function using the type field, and calls the function. All these

operations are performed inside the CACIC server’s core, such that the processing

tasks function receives the raw data and parameters. That way, the developer can

program a function to process its data without worrying about enclaves, security

checks, and message formats. After the enclave encrypts the result returned from

the processing task with the SK, it calls publish db(). Since it is the developer

that programs this function, it will perform the publication according to the chosen

database that best suits the use case.
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Table 4.1: Functions in black must be programmed according to the use case, while

functions in blue are part of the core of CACIC-DevKit. The documentation details

each function’s arguments, as well as in which file it must be implemented.

Number Function
Architecture Part

that calls the function
Functionality

1 publish db() DB Interface Inserts data into the database using a command

2 query db() DB Interface Queries data from the database using a command

3 multi query db() DB Interface Queries multiple data from the database using a command

4
task name()

(user-defined)

Message processing

module

Processes data according to the request received in M[pub]

and generates a result

5 enclave query db() Processing Task
Queries previously published data for use in the

processing task

6 enclave multi query db() Processing Task Analogous to the above function, but for multiple data

7 enclave get payload()
Processing Task

Message processing module

Data is accompanied by metadata. The function returns

the raw data.

8 client publish()
User Equipment

Sensor/Access Point
Builds a M[pub] and sends it to the server

9 client query()
User Equipment

Sensor/Access Point
Builds a M[con] and sends it to the server

10 client register() User Equipment Builds a M[reg] and sends it to the server

4.2 Use Case and Demonstration

This section describes a use case for the tool based on smart grids. The goal

is to demonstrate the tool’s compatibility with user interfaces, sensors with limited

processing capability, and databases widely adopted in commercial systems. The use

case also helps users interested in learning the tool, offering codes that exemplify the

function’s usage. Eibl et al. demonstrate that data regarding energy consumption

processed in the cloud reveal private information, such as the number of people using

a facility at a given time [6]. In this scenario, CACIC allows energy companies or

research centers to access energy consumption patterns without accessing individual

data generated by smart meters. For this purpose, the client can send a publication

message requesting the server to aggregate samples in the enclave and make the

processing results available to the selected institutions.

The system demonstration uses a sensor designed with an ESP32 development

board featuring a 32-bit Dual-Core microcontroller, running at 240 MHz, with 420

kB of RAM and WiFi 802.11b/g/n connectivity. The sensor also uses a SCT-013

current sensor and a ZMPT101B voltage sensor. The sensor’s firmware, programmed

in C++, processes voltage and current signals with the help of the EmonLib library.
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Figure 4.1: Execution flow for a M[publication]. The functions in blue are imple-

mented in the core, while functions in black must be programmed by the developer.

The solid arrows represent a function call or return, while the dashed arrows indicate

a network message. The lock represents enclave functions.

It periodically sends consumption data using the HTTP protocol to an access point.

The architecture is agnostic to the communication protocol within the client’s local

network, as the threat model does not account for client-side attacks. A Raspberry

Pi 3 Model-B, equipped with a 64-bit Quad-Core CPU running at 3.2 GHz and 1

GB of RAM, runs a WLAN access point software in C++. This software intercepts

data from the sensor and constructs the publication messages for CACIC. The server

is the same used for evaluating the architecture performance in Section 3.3, and

also hosts an SQLite 3 database management system. The client uses a Linux

computer running a management application with both a command-line interface

and a graphical user interface, implemented using Qt Framework 6.4.1, as shown in

Figure 4.2. This application is used to remotely configure the access point and to

interact with the server using CACIC’s messages. Figure 4.3 illustrates the topology

used for this demonstration.

The demonstration starts with the client registering itself using the manage-
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Figure 4.2: (a) Start menu. (b) Menu for configuring the IDs permitted to access

each type. (c) Publication request menu. (d) Window with the result of a query.

Figure 4.3: The client LAN (left side) communicates with the CACIC server (right

side) through the Internet, using CACIC messages, in green. The green key rep-

resents the client CK, shared with the server. Both the access point and the user

equipment use it to encrypt the messages.

ment application. Through the interface, the client selects a public ID and a secret

CK, and shares this information with the server’s enclave and the access point. The

ID and CK can be generated by hashing a username and a password, respectively.
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The security of the key generation process is not within the scope of this work.

Then, the client uses the application to select access permissions for each type of

publication message to be sent (Figure 4.2b). The use case implementation defines

two types of data publication requests: publication consumption measured and

publication consumption aggregated. Both the client application and the access

point store a dictionary, associating each type of publication message with a list of

access permissions. The storage format for access permissions, ID, and CK can vary

for different use case implementations.

From now on, the access point can receive samples from the sensor and

use the client publish() function (Section 4.1) to forward a message of type

publication consumption measured to the server. There is no processing task

associated with this message, so the server simply inserts the encrypted data into the

database. Next, the client application can send a publication consumption aggre-

gated (Figure 4.2c) to the server to calculate the total energy consumption and pro-

vide the result to an institution, for example. In this case, the developer’s processing

task function running inside the server’s enclave uses the enclave multi query

db() function (Section 4.1) to retrieve previous data of type publication consump-

tion measured and add them up. If another client sends a publication consumption

aggregated, the server refuses to perform aggregations with data for which access

has not been granted by the data owner. The application also provides an inter-

face to send a data query message, allowing the filtering of parameters such as

types and IDs. Figure 4.2d depicts a user application screen displaying the re-

sult of a valid query, where only the data accessible to the user is returned by the

server’s enclave. The application allows exporting the data in Comma Separated

Values (CSV) format for processing in other software applications. The demon-

stration video showcases installation instructions, other screens of the application,

and the testing environment featuring the described equipment. Figure 4.4 shows a

print screen of the server logs generated while processing a M[publication] of type

publication consumption aggregated.
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Figure 4.4: The publisher key (CK), the storage key (SK), and the decrypted publi-

cation request are only accessible inside the enclave. The content of the decrypted

publication message is an SQLite query filtering the previous data that must be

aggregated inside the enclave. The result is automatically encrypted and inserted

into the database, without developer intervention.
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Chapter 5

Conclusions

This undergraduate project proposes, implements, and evaluates an archi-

tecture to process IoT data in clouds using enclaves. This work differs from others

by considering a scenario where an attacker has almost complete control over the

server. Therefore, it combines traditional cryptography solutions with trusted ex-

ecution environments, which are state-of-the-art solutions to protect computations

in untrusted parties. The goal is to allow clients to customize who can access their

data, even in a scenario where a malicious superuser inside the cloud infrastruc-

ture wants to steal clients’ data to obtain financial advantages, for example. The

performance analysis revealed that the enclave adds only 0.1 ms to the latency for

publishing and querying data and that the system processes thousands of requests

per second, without introducing a significant CPU and memory overhead.

This work also implements, demonstrates, and documents CACIC-DevKit,

a tool for developing generic IoT systems using the proposed architecture. The

goals are to simplify the development of IoT systems using enclaves and to confirm

that the CACIC architecture is compatible with commercial sensors, interfaces, and

databases. For this, an energy consumption data management use case was imple-

mented. The system was demonstrated using a sensor, an access point, and a data

management application in a real testbed.

In future work, the architecture must be extended to protect the data within

sensors and access points. The system could be equipped with a feature for clients

to publish their own data processing codes to be protected in the cloud enclave. The

architecture must be extended to allow more complex access control rules based on
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expiration timestamps or restrictions for data usage, for example. The performance

evaluation must also be extended to analyze the use of enclaves for machine learn-

ing, deep learning, and federated learning within CACIC, given the relevance of

these technologies in cloud applications. These enclave performance measurements

are relevant since they help the research community optimize trusted computing

systems and applications. Future performance analysis can use specialized tools

for microbenchmarking, in order to identify the bottlenecks and find improvement

opportunities [33]. Therefore, another promising future research direction is the

implementation of distributed processing and storage architectures using enclaves.

Some researchers in the GTA team consider using CACIC-DevKit in future

projects for protecting and processing sensitive data concerning vehicular networks

and private machine learning models. These new potential use cases will help the

repository and the documentation to evolve.
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Sistemas Distribúıdos, pp. 573–586, SBC, 2022.

[12] THOMAZ, G. A., GUERRA, M. B., SAMMARCO, M., et al., “Tamper-

proof access control for IoT clouds using enclaves”, Ad Hoc Networks, v. 147,

pp. 103191, 2023.

[13] THOMAZ, G., GUERRA, M., SAMMARCO, M., et al., “CACIC-DevKit: Con-
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