
FEDERATED LEARNING WITH ACCURATE MODEL TRAINING AND LOW
COMMUNICATION COST IN HETEROGENEOUS SCENARIOS

Lucas Airam Castro de Souza

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Mestre em
Engenharia Elétrica.

Orientadores: Miguel Elias Mitre Campista
Luís Henrique Maciel Kosmalski
Costa

Rio de Janeiro
Setembro de 2023

FEDERATED LEARNING WITH ACCURATE MODEL TRAINING AND LOW
COMMUNICATION COST IN HETEROGENEOUS SCENARIOS

Lucas Airam Castro de Souza

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO
PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU
DE MESTRE EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientadores: Miguel Elias Mitre Campista
Luís Henrique Maciel Kosmalski Costa

Aprovada por: Prof. Marcelo Gonçalves Rubinstein
Prof. Diogo Menezes Ferrazani Mattos
Prof. Miguel Elias M. Campista
Prof. Luís Henrique M. K. Costa

RIO DE JANEIRO, RJ – BRASIL
SETEMBRO DE 2023

de Souza, Lucas Airam Castro
Federated Learning with Accurate Model Training

and Low Communication Cost in Heterogeneous
Scenarios/Lucas Airam Castro de Souza. – Rio de
Janeiro: UFRJ/COPPE, 2023.

XVI, 51 p.: il.; 29, 7cm.
Orientadores: Miguel Elias Mitre Campista

Luís Henrique Maciel Kosmalski Costa
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2023.
Referências Bibliográficas: p. 44 – 48.
1. federated learning. 2. non-IID data. 3.

privacy. I. Campista, Miguel Elias Mitre et al.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Elétrica. III. Título.

iii

Aos meus pais e amigos.

iv

Agradecimentos

Primeiramente agradeço a Deus, por todas as oportunidades que tive e colocar ao
meu lado todas as pessoas que fizeram parte deste trabalho de forma direta ou
indireta. Agradeço aos meus pais, Altair Tadeu e Maria Aparecida, por sempre
incentivarem e se sacrificarem pela minha formação acadêmica. Sem eles, nada
disto seria possível. Ao meu tio João Bosco e minha amiga Patrícia D’Icarahy, por
me incentivarem e estarem presentes nas minhas conquistas acadêmicas. À minha
companheira Isamara Cristina que sempre esteve ao meu lado e me apoiou em todos
os momentos.

Aos professores Miguel Elias Mitre Campista e Luís Henrique Maciel Kosmalski
Costa por orientarem essa dissertação de mestrado e o trabalho desenvolvido ao longo
dos últimos 2 anos. Sem eles este trabalho não seria possível. Ao professor Otto
Duarte, que me orientou por aproximadamente 4 anos e despertou meu interesse para
a pesquisa científica. Sua orientação para o meu crescimento pessoal e profissional
estarão presentes em mim.

A todos os meus companheiros do Grupo de Teleinformática e Automação
(GTA), que me proporcionaram o maior crescimento pessoal e profissional que já tive
através de seus conselhos. Estes são os grandes responsáveis pela minha formação
profissional e pela qualidade desta dissertação. Em especial ao Gustavo Franco
Camilo e Gabriel Antonio Fontes Rebello, os quais participaram comigo em diversas
publicações e projetos de pesquisa.

Agradeço aos professores Diogo Menezes Ferrazani Mattos e Marcelo Gonçalves
Rubinstein por aceitarem participar da banca de avaliação desta dissertação. Ao
CNPq, CAPES, FAPERJ, FAPESP e RNP por viabilizarem este trabalho e fomentar
continuamente a pesquisa de alto nível no Brasil.

Este trabalho é uma maneira de retribuir ao povo brasileiro o investimento na
educação pública de qualidade e a confiança em mim depositada.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

APRENDIZADO FEDERADO COM TREINAMENTO DE MODELOS
ACURADOS E BAIXO CUSTO DE COMUNICAÇÃO EM CENÁRIOS

HETEROGÊNEOS.

Lucas Airam Castro de Souza

Setembro/2023

Orientadores: Miguel Elias Mitre Campista
Luís Henrique Maciel Kosmalski Costa

Programa: Engenharia Elétrica

O aprendizado federado (Federated Learning - FL) é uma abordagem descentral-
izada para treinar modelos de aprendizado de máquina sem divulgar dados privados
dos clientes participantes para um servidor. No entanto, o desempenho do FL de-
pende da distribuição dos dados, e o treinamento possui dificuldades para convergir
quando os clientes têm distribuições de dados distintas, aumentando o tempo geral
de treinamento e o erro de previsão do modelo final. Este trabalho propõe duas
estratégias para reduzir o impacto da heterogeneidade de dados em cenários de FL.
Primeiramente, é proposto um sistema hierárquico de agrupamento de clientes para
contornar os obstáculos de convergência em cenários com dados não independentes e
identicamente distribuídos (IID). A proposta identifica os grupos usando apenas um
modelo de teste e o vetor de rede neural de pesos da última camada.Os resultados
mostram que o sistema tem um desempenho de classificação melhor que o FedAVG,
aumentando a precisão em aproximadamente 16% em cenários não-IID. Além disso,
a primeira proposta é estendida ao implementar o ATHENA-FL, um sistema de
aprendizado federado que compartilha conhecimento entre diferentes grupos. O sis-
tema usa o modelo um-contra-todos para treinar um detector binário para cada
classe no grupo. Assim, os clientes podem compor modelos complexos combinando
múltiplos detectores. Os resultados mostram que o ATHENA-FL identifica correta-
mente as amostras, alcançando uma precisão até 10,9% maior do que o treinamento
tradicional. Por fim, o ATHENA-FL atinge custos de comunicação de treinamento
mais baixos do que a arquitetura MobileNet, reduzindo o número de bytes transmi-
tidos entre 25% e 97% nos cenários avaliados.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

FEDERATED LEARNING WITH ACCURATE MODEL TRAINING AND LOW
COMMUNICATION COST IN HETEROGENEOUS SCENARIOS

Lucas Airam Castro de Souza

September/2023

Advisors: Miguel Elias Mitre Campista
Luís Henrique Maciel Kosmalski Costa

Department: Electrical Engineering

Federated learning (FL) is a distributed approach to train machine learning
models without disclosing private data from participating clients to a central server.
Nevertheless, FL performance depends on the data distribution, and the training
struggles to converge when clients have distinct data distributions, increasing overall
training time and the final model prediction error. This work proposes two strategies
to reduce the impact of data heterogeneity in FL scenarios. Firstly, we propose a hi-
erarchical client clustering system to mitigate the convergence obstacles of federated
learning in non-Independent and Identically Distributed (IID) scenarios. Our pro-
posal identifies the clusters using only a test model and the clients’ last layer weights
neural network vector for a few training epochs for this model. The results show
that our system has a better classification performance than FedAVG, increasing
its accuracy by approximately 16% on non-IID scenarios. Furthermore, we improve
our first proposal by implementing ATHENA-FL, a federated learning system that
shares knowledge among different clusters. The proposed system also uses the one-
versus-all model to train one binary detector for each class in the cluster. Thus,
clients can compose complex models combining multiple detectors. Consequently,
ATHENA-FL can also reduce communication costs, providing an additional positive
aspect for resource-constrained scenarios. ATHENA-FL mitigates data heterogene-
ity by maintaining the clustering step before training to mitigate data heterogene-
ity. Our results show that ATHENA-FL correctly identifies samples, achieving up
to 10.9% higher accuracy than traditional training. Finally, ATHENA-FL achieves
lower training communication costs than MobileNet architecture, reducing the num-
ber of transmitted bytes between 25% and 97% across evaluated scenarios.

vii

ACRONYMS

ATHENA-FL - Avoiding sTatistical HEterogeiNety with one-versus-All in Feder-
ated Learning

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

CCPA - California Consumer Privacy Act

CEFL - Communication-Efficient Federated Learning

CFL - Clustered Federated Learning

CIFAR - Canadian Institute For Advanced Research

CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico

COPPE - Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em En-
genharia

DBSCAN - Density-Based Spatial Clustering of Applications with Noise

DCS - Decomposed Cosine Similarity

FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do
Rio de Janeiro

FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo

FedAVG - Federated Averaging

FedOVA - Federated OvA

FedTP - Federated learning by Transformer Personalization

FL - Federated Learning

FLEE - Federated Learning Early Exit of inference

viii

FlexCFL - Flexible Clustered Federated Learning

FMNIST - Fashion MNIST

GDPR - General Data Protection Regulations

GTA - Grupo de Teleinformática e Automação

Hier-SFL - Hierarchical Split Federated Learning

IFCA - Iterative Federated Clustering Algorithm

IID - Independent and Identically Distributed

LDA - Label-based Dirichlet Partition

MNIST - Modified National Institute of Standards and Technology

OPTICS - Ordering Points to Identify the Clustering Structure

OvA - One-versus-all

PEE - Programa de Engenharia Elétrica

RAM - Random Access Memory

RNP - Rede Nacional de Ensino e Pesquisa

StoCFL - Stochastic Clustered Federated Learning

TDT - Total Data Transmitted

UFRJ - Universidade Federal do Rio de Janeiro

ix

MATHEMATICAL NOTATION

B(k) - binarization function

Bmcc - amount of bytes transmitted to train the multiclass classifier

Bova - amount of bytes transmitted to train OvA detectors

c - number of clusters in the K-Means algorithm

Cova - One-versus-All model

edec - number of epochs for detector’s convergence

emcc - number of epochs for multiclass classification model convergence

Eq - cluster’s current epoch

Fkn - local objective for the n-th client to the k-th detector

Fn(w) - local objective function for the n-th client

fn(w) - loss function of the model for the n-th client

gj - j-th system’s cluster

G - total number of clusters

i - sample’s index

j - cluster’s index

k - detector’s index

l(xi, yi;w) - loss function for the prediction (xi, yi) with model parameter’s w

n - client’s index

pkn - selection probability of the n-th client during the k-th detector’s training

x

pn - client’s selection probability

rk - OvA detector

R - total number of detectors

sn - size of the n-th client dataset

s - number of samples among all clients

Tcmc - multiclass classifier’s size in bytes

Tdec - detector’s size in bytes

tol - tolerance to estimate model convergence

V a - model’s parameter search space

wk - detector’s model parameter

w - multiclass classifier model parameter

xi - features of the i-th sample

yi - true class of the i-th sample

ŷi - estimated class of the i-th sample

zt - cluster’s multiclass classification model

xi

Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1
1.1 Work Contributions . 2
1.2 Thesis Outline . 4

2 Related Work 5
2.1 Client Selection for Efficient Training 5
2.2 Personalized Models in Federated Learning 7
2.3 Clustered Federated Learning . 8
2.4 Contributions . 11

3 Federated Learning Concepts 13
3.1 Feature Distribution . 14
3.2 Data Distribution . 15
3.3 Problem Formulation . 15

4 Clustering Clients to Reduce Training Data Heterogeneity 17
4.1 Clients’ Clustering Procedure . 17
4.2 System initialization . 18
4.3 System Maintenance . 19

5 Combining Models from Different Clusters 22
5.1 Data Similarity-based Clients Clustering 22
5.2 Detector Training . 24
5.3 One-versus-All Model . 24

6 Development of the Prototype and Experimental Results 26
6.1 Evaluation of Cluster Models . 28
6.2 Performance Evaluation of Specific Models 29
6.3 ATHENA-FL Accuracy Evaluation 31

xii

6.3.1 IID Data Scenario . 33
6.3.2 Scenarios with Non-IID Data 35

6.4 ATHENA-FL Communication Evaluation 37

7 Conclusion and Future Work 42

References 44

A List of Publications 49

xiii

List of Figures

3.1 Federated learning architecture with four clients. Round n starts
with the aggregation server randomly selecting some clients. Selected
clients use their datasets to enhance the global model for epoch n− 1

and build the local model for epoch n. Each client communicates with
the aggregation server independently, and their datasets remain on
their devices throughout the training process. The aggregation server
receives local updates from clients and aggregates the responses to the
global model, generating the global model for round n. Finally, the
global model for round n is sent to clients. The process is repeated
until a stopping condition is reached, such as model convergence or
the maximum number of global epochs. 14

4.1 Initialization of the proposed system. (1) The initial set of clients re-
ceives the test model. (2) Clients adjust the neural network weights
and return the bias vector from the last layer of the model to the
server. (3) The selection and aggregation server runs the clustering
algorithm to get the clusters from the system. (4) The server asso-
ciates new clients with clusters. 19

4.2 Proposed execution diagram. The first step is to allocate a new client
to an existing cluster. After the client is allocated to a cluster, tradi-
tional federated learning is performed in the cluster. 20

5.1 The ATHENA-FL execution scheme consists of 6 steps. Steps 1 to 4
are discussed in the previous chapter to mitigate the system’s statis-
tical heterogeneity by clustering clients according to the similarity of
the data. Step 5 shares detectors among other clusters. Finally, in
Step 6, a client can combine models from different clusters to create
a generic OvA model. 23

xiv

6.1 Accuracy evolution as a function of global epoch for customers with
IID datasets. The red line represents the traditional approach of
federated learning, while the blue and the green lines represent the
proposal of this work with clustering through DBSCAN and OPTICS,
respectively. 31

6.2 Evolution of the test accuracy as a function of global epoch for clients
with datasets that contain only two classes. The red line represents
the traditional approach, while the blue line represents the proposal
of this work. 32

6.3 Test accuracy evolution as a function of overall epoch for clients with
datasets containing only five classes. The red line represents the tra-
ditional approach, while the blue line represents the proposal in this
work. 32

6.4 Evolution of the test accuracy as a function of global epoch for clients
with datasets that contain only two classes. The clients’ datasets are
generated with the LDA using α − 0.5. The red line represents the
traditional approach, while the blue line represents our current proposal. 33

6.5 Final models’ accuracy on the CIFAR-10 dataset with IID distribution. 33
6.6 Final models’ accuracy on the MNIST dataset with IID distribution. 34
6.7 Final models’ accuracy on the FMNIST dataset with IID distribution. 34
6.8 Evolution of detector’s test accuracy over training epochs using the

CIFAR-10 dataset. 35
6.9 Accuracy of detectors over training epochs using the MNIST dataset. 35
6.10 Final models’ accuracy on the CIFAR-10 dataset with Non-IID dis-

tribution of 2 classes per client. 36
6.11 Final models’ accuracy on the MNIST dataset with Non-IID distri-

bution of 5 classes per client. 36
6.12 Final models’ accuracy on the FMNIST dataset with Non-IID distri-

bution of 5 classes per client. 37
6.13 Final models’ accuracy on the CIFAR-10 dataset with Non-IID dis-

tribution of 2 classes per client. 38
6.14 Final models’ accuracy on the MNIST dataset with Non-IID distri-

bution of 2 classes per client. 38
6.15 Final models’ accuracy on the FMNIST dataset with Non-IID distri-

bution of 2 classes per client. 39
6.16 Comparison between the size in bytes of different neural network ar-

chitectures. The model’s size directly depends on the number of pa-
rameters used by the architecture. 40

xv

List of Tables

2.1 Comparison of related works . 10

6.1 Parameters applied to the federated learning environment. 27
6.2 Analysis of the number of groups generated by the clustering algo-

rithms in different data distributions. The DBSCAN algorithm is
set to a minimum distance of 0.0279, while the minimum number of
samples of the OPTICS algorithm is set to 2. 28

6.3 Evaluation of the range of distances to identify 5 homogeneous groups
with DBSCAN algorithm as a function of the number of local epochs
executed by the clients. 29

6.4 Evaluation of the group models in the scenario where clients have
samples of only 2 classes. 30

6.5 Communication requirements, Total Data Transmitted (TDT), to
train the models until convergence in different datasets and sample
distribution settings. 41

xvi

Chapter 1

Introduction

Machine learning enables task automation by creating models that identify patterns
in datasets to predict or classify future data. In traditional machine learning sys-
tems, model training requires client-data collection, which usually reveals private
or sensitive information from the user or collection point [1]. Also, the high data
volume generated by devices imposes a challenge to this practice of centralizing in-
formation into a single point in the network. Therefore, Federated Learning (FL)
has emerged as a proposal for training machine learning models that preserve the
privacy of the user without sharing local data. Federated learning (FL), proposed by
Google [2], has become popular among researchers and industry due to the possibil-
ity of training machine learning models while preserving users’ data privacy [3–6].
After the change in data processing regulations in several countries, for instance,
the California Consumer Privacy Act (CCPA) in the USA and the General Data
Protection Regulations (GDPR) in Europe, the importance of federated learning
research and adoption increased.

Training in federated learning replaces data sharing with model parameter shar-
ing. In Federated Averaging (FedAVG), the most widely used algorithm for model
parameters’ aggregation in FL, clients train the model locally for a few epochs and
send the results to the aggregation server, which combines the individual trained
models into a single global model. Then, the aggregation server broadcasts the
global model back to the clients, which further improve it. The aggregation server
and clients repeat this process until the global model converges or the training
reaches the maximum global epochs, sending only the models’ parameters. Thus,
clients’ training samples remain stored locally, preserving data and user privacy.
Nevertheless, another problem persists when deploying FL on a large scale: clients
may have heterogeneous data generated from non-independent and identically dis-
tributed (non-IID) distributions, leading to convergence difficulty and suboptimal
performance [7, 8]. Therefore, a proposal that reduces the effects of data heterogene-
ity during model training and allows the generalization of the classifier to samples

1

originating from other data distributions becomes necessary. It can be achieved by
clustering clients comparing data similarity, which allows models to be trained on
IID data and quickly converge with high final classification performance [9].

1.1 Work Contributions

This work proposes a hierarchical client clustering system1 to increase the efficiency
of federated learning in scenarios where clients have non-IID datasets. Clients, also
called nodes, are divided into clusters where the data are similar. The proposal
uses clients’ last-layer neural network weights as input to perform clustering. The
last-layer neural network weights maintain statistical relationships with the clients’
private data without revealing them [10]. Thus, we maintain the same privacy model
as FedAVG. Firstly, each cluster trains a personalized model with independent hy-
perparameters and parameters, allowing high classification performance on specific
tasks. We also investigate how to tune the clustering algorithms’ hyperparameters
to best fit our scenario. Then, we extend the first proposal by providing a mecha-
nism to combine models created on different clusters, which we call ATHENA-FL
(Avoiding sTatistical HEterogeiNety with one-versus-All in Federated Learning)2, a
system that creates models with the one-versus-all (OvA) technique to enable model
sharing between groups. The one-versus-all model uses independently trained bi-
nary classifiers, which estimate the probability that a sample belongs to the class
identified by a detector. After training, the detectors are combined for sample clas-
sification. Each detector estimates the probability that the sample belongs to its
class, and the classifier labels the sample from the detector that generates the high-
est probability. Thus, the OvA method is used for efficient model sharing between
groups to create a generic model for classifying data from different groups.

We analyze different clustering models and show the advantage of adopting the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [11] al-
gorithm for client clustering. DBSCAN can identify homogeneous and heteroge-
neous data distributions from the client neural network weights and outperforms
the Ordering Points to Identify the Clustering Structure (OPTICS) [12] and K-
Means [13] algorithms. Furthermore, in the worst case, our results show that the
proposed approach performs equally to traditional federated learning. For non-
IID datasets, the FedAVG algorithm converges with low accuracy after 100 global
epochs. Nonetheless, the current proposal achieves better results across all clusters
in 10 global epochs, providing higher classification performance. Then, we evalu-
ate the ATHENA-FL proposal according to the accuracy evolution of the detectors.

1Available at https://github.com/GTA-UFRJ/Hierachical-Federated-Learning
2Available at https://github.com/GTA-UFRJ/ATHENA-FL

2

https://github.com/GTA-UFRJ/ATHENA-FL

Also, the evaluation compares the classification performance of the global model and
communication requirements for training the models. The accuracy of the models
depends on the diversity of the samples used for training the detectors, with the ac-
curacy of the OvA model up to 10.9% higher than the MobileNet architecture [14].
At the same time, the amount of bytes transmitted over all training epochs is re-
duced by up to 97.37% using the one-versus-all model instead of MobileNet. Thus,
the system provides an effective way to train models that maintain the privacy of
client data in scenarios with heterogeneous distributions.

We summarize our contributions as follows:

• High classification performance: We propose a system that achieves high
accuracy results under non-IID data distributions. Our proposal obtains these
results by assigning clients to a cluster where the data is more homogeneous.

• Low-communication requirement: The proposal uses clients’ last-layer
neural network weights as the input to perform client clustering. Thus, we
avoid the communication overhead of recursive clustering proposals. Also, we
reduce the amount of data used to cluster clients compared to a proposal that
sends a whole model.

• Privacy-preserving: Our proposal holds the same privacy model and as-
sumptions as FedAVG, given that the system shares only the model weights.

• Robust-classifier: The OvA model is used to combine the classifiers trained
among different clusters, which offers a classifier that is able to identify samples
generated in different clusters.

• Prototype: We implement a proof-of-concept of our proposed system. We
also present a practical evaluation of FedAVG under non-IID data distributions
and compare it with our proposal.

This master thesis is a set of the following publications:

• de Souza, L. A. C., Camilo, G. F., Sammarco, M., Campista, M. E. M., Costa,
L. H. M. - “Aprendizado Federado com Agrupamento Hierárquico de Clientes
para Aumento da Acurácia”. In Anais do XL Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuídos (pp. 545-558). (2022, May). SBC.

• de Souza, L. A. C., Camilo, G. F., Rebello, G. A. F., Sammarco, M., Camp-
ista, M. E. M., Costa, L. H. M. - “ATHENA-FL: Evitando a Heterogeneidade
Estatística através do Um-contra-Todos no Aprendizado Federado”. In Anais
do VII Workshop de Computação Urbana (pp. 40-53). (2023, May). SBC.
Honarable Mention.

3

We also have submitted two papers for an international conference and a journal
that are currently under review. Other publications produced during the master’s
research are listed in Appendix A.

1.2 Thesis Outline

This work is organized as follows. Chapter 2 reviews the state-of-the-art proposals
to increase the classification performance of federated learning systems and reduce
the impacts caused by data heterogeneity. Chapter 3 presents basic concepts about
the federated learning scenario, which are useful for understanding the proposal.
Chapter 4 describes our clustering proposal by formulating the problem and giving
details about the system’s architecture and protocols while Chapter 5 discusses
the use of one-versus-all to combine models and share information among clusters.
Chapter 6 presents the development of a prototype, evaluation, and analysis of
the obtained results. Chapter 7 concludes this work and discusses future research
directions. Besides, Appendix A shows the list of publications produced during the
master course.

4

Chapter 2

Related Work

Currently, one of the most relevant challenges regarding federated learning is in-
creasing the final model performance while reducing the total training time. The
time to convergence of the global model in federated learning is attributed to three
main factors: communication latency, processing capacity, and data representative-
ness. The first two factors are related to the user device, while the third depends
on the data distribution collected and stored by the client. Devices with more
computational power and better connectivity usually execute local epochs faster,
whilst users with more data that truly represent the problem can reduce the time
to global model convergence. Nonetheless, the initial federated learning proposal
ignores these three relevant characteristics and considers a uniform distribution for
the probability that a client participates in training [2]. Therefore, several research
groups present proposals to reduce the convergence time of federated learning and
improve the final performance of the generated model. Although hyperparameter
optimization is a promising alternative to FL scenarios [15], client selection [16] or
local model personalization [17] could also achieve faster convergence and higher
accuracy. The client selection modifies the likelihood function to reflect the client’s
ability to significantly contribute to model training in a global epoch, relying on
devices’ characteristics or clients’ data estimation. The goal is to decide the best
subset of clients for the current training epoch, increasing the average model per-
formance. Besides, model personalization allows the training of models specialized
in clients’ characteristics, consequently improving local model performance. Finally,
another strategy of model personalization is clustered FL, where the idea is to divide
clients into clusters to train models with similar data and achieve higher accuracy.

2.1 Client Selection for Efficient Training

Luo et al. [18] and Lai et al. [19] propose client selection schemes that optimize the
time to convergence in federated learning environments. The authors argue that se-

5

lection based only on the representativeness of the data decreases the total number
of epochs for model convergence. However, when clients with higher computational
latency participate, the delay between epochs increases significantly. Nevertheless,
a selection based only on processing capacity may incur more epochs for conver-
gence if selected clients have irrelevant data. On the one hand, increasing the time
between epochs implies a higher overall delay, as federated learning environments
are generally synchronous and wait for all clients to respond or time out. On the
other hand, selecting clients with higher computational power to reduce the time
between epochs may incur more epochs for convergence if the selected clients have
statistically insignificant data for the learning task. There is a trade-off between the
number of epochs for model training and the total time for each epoch. Thus, the
authors simultaneously consider the devices’ characteristics and their data distribu-
tion relevance to reduce the convergence time of the global model. While Luo et
al. propose a non-convex function regarding the expected number of epochs based
on clients’ previous updates, Lai et al. avoids the linear programming, creating a
selection function that evaluates clients’ training losses.

Wang et al. propose to apply reinforcement learning for client selection [10].
The reinforcement learning agent is previously trained to select and return the best
clients for each global training epoch given the current global model state and clients’
information. The system estimates clients’ statistical relevance through the loss
gradient vector sent to the aggregation server. This procedure maintains the privacy
of the client’s data. Fu et al. present a survey of client selection systems and
frameworks in federated learning [16]. Their paper presents the state-of-the-art
in client selection and compares their main differences, demonstrating that client
selection has great potential to produce more accurate models in federated learning
with less training time.

FedProx is a framework to reduce the effects of statistical and system hetero-
geneity [20]. The difference between FedProx and FedAVG is the flexible amount
of work the clients perform. While FedAVG distributes an equal amount of work
to all clients, FedProx considers individual hardware constraints to assign work to
clients proportionally. Also, the authors propose inserting a regularization term on
the local objective function to minimize the impact of non-IID data in the federated
network.

Nishio and Yonetani propose a protocol for client selection in federated learn-
ing [21] in which clients with higher processing capabilities and lower communication
latency are prioritized in the presented selection scheme. Liu et al. propose a hier-
archical architecture for federated learning [22], which performs local aggregations
on clients, partial aggregation at the network edges, and global convergence in the
cloud. Processing data at the edge decreases communication latency, but the re-

6

stricted number of devices can make it difficult for the global model to converge.
Cloud processing, however, can access more devices and capture more data variance
at the cost of higher communication latency. Thus, the authors apply federated
training on levels: client-edge and edge-cloud. Clients maintain low latency for
communication with the edge, and the cloud can access the models generated at
the edges. Hierarchical Split Federated Learning (Hier-SFL) [23] is an FL frame-
work that divides the neural network into three different levels, client-edge-cloud, to
train the model. Thus, each one of the neural network parts has an associated loss
function, which is adjusted separately. Hier-SFL objective is to reduce the commu-
nication overhead during the training. However, the distribution of data generated
by clients is not taken into account, which can affect the performance of models in
scenarios with non-IID distributions.

Rai et al. propose the irrelevance sampling metric for client selection to improve
the final accuracy of federated learning models in IID and non-IID scenarios [24].
The objective is to select clients considering the quality and quantity of their sam-
ples. Each client computes its irrelevance sampling metric and sends it to the server.
The server then clusters the clients according to the informed value in the follow-
ing three clusters: positive, negative, and zero. Finally, the proposed methodology
randomly selects the clients of each cluster to achieve faster model convergence.

Fraboni et al. propose a clustering sampling method for client selection [25]. The
authors provide two approaches for clustering clients: client sample size and model
similarity. Nevertheless, the first approach highly depends on the clients’ informing
their exact sample size to the aggregation server for cluster definition. Therefore,
this approach is susceptible to clients’ malicious behaviors. On the other hand, the
method uses all model weights in the model similarity proposal, which introduces
communication overhead.

The selection of clients decreases the time to convergence and increases the final
accuracy of the model. The client selection, however, is insufficient for practical
purposes in environments with heterogeneous data. Thus, an alternative is model
personalization, which fine-tunes clients’ models according to their local data and
improves their final performance.

2.2 Personalized Models in Federated Learning

Federated learning by Transformer Personalization (FedTP) is a framework for re-
ducing data heterogeneity by transforming datasets and personalizing models [26].
FedTP objective is to define the basis of a transformation. In this transformation,
the client data is similar, and they can personalize their models in some layers,
overcoming the convergence problems. However, the proposal generates significant

7

communication overhead, requiring a long time to adjust the projection parameters
and for the model to converge.

Federated Learning Early Exit of inference (FLEE) is a hierarchical-federated
learning framework that splits the model into three different geolocations [27]. The
model’s division between the cloud, edge, and end device allows using the method of
early exit inference from neural networks. Furthermore, FLEE’s hierarchical division
of the training reduces the impact caused by non-IID data distributions on the model
convergence, as the authors assume that the data have higher similarity according
to the geographic distance of the clients.

Ditto [28] is a framework for personalized federated learning. The authors sep-
arate the optimization problem into two parts: global optimization and local opti-
mization. Global optimization considers the contribution of all clients to the model,
while local optimization adjusts the client’s model according to the local data. Also,
the authors provide two definitions: robustness and fairness in federated learning
environments. Robustness expresses the model’s capacity to achieve high accuracy
even in heterogeneous data or data poisoning attacks. Fairness represents how dif-
ferent clients’ performance is when using local test data.

Dennis et al. [29] take advantage of data heterogeneity to produce an unsuper-
vised federated learning algorithm. The clients train a clustering model with their
local data and send the vectors that indicate the position of the clusters found in
the sample space to an aggregation server. The server then runs a second clustering
model based on clients’ responses to identify the clusters in the environment. The
greater the distance between client distributions, the more effective the detection of
different clusters. The proposal has an application for both the selection of clients
and the personalization of models.

Zhu et al. propose using one-versus-all classification scheme to mitigate the
impact of heterogeneous data in training federated learning models [30]. Their
Federated OvA (FedOVA) algorithm uses models for binary classification and selects
clients having samples of the target class to perform the training. Nevertheless, their
proposal lacks a study on the impact of the model creation and an adequate protocol
for detector training. ATHENA-FL clusters clients according to data distributions,
before training the OvA model, thus reducing detector training time.

2.3 Clustered Federated Learning

Clustered federated learning is a subfield of model personalization in federated learn-
ing research. This subfield focuses on creating strategies to arrange FL clients into
groups, reducing data heterogeneity. The proposals are mostly differentiated by
clustering strategy, metrics, and training.

8

Communication-Efficient Federated Learning (CEFL) is an FL-based framework
for medical-data model training [31]. The authors determine the similarity between
clients by calculating the Euclidean distance of the clients’ neural network weights.
Based on similarity, the system clusters clients using the Louvain method [32]. In
each group, the client with the highest sum of similarity is the leader. The leader
performs federated training of the model’s first layers with leaders from other groups.
The model’s final layers are trained individually in each group.

Stochastic Clustered Federated Learning (StoCFL) [33] is a federated learning
framework that clusters clients according to the cosine similarity. The proposal in-
troduces two models: the global model and the cluster model. The global model
maintains information from all clusters, while clients only participate in model train-
ing inside the cluster they are involved. Meanwhile, there is a high cost to the
system’s clients, who must simultaneously train the two models.

Iterative Federated Clustering Algorithm (IFCA) [34] is a proposal for clustering
clients to personalize their models. In the proposal, clients are responsible for choos-
ing their clusters. In addition, the authors propose the use of multi-task learning,
which consists of sharing some neural network weights for clients who have data dis-
tributions with intersections but are in different clusters. Nevertheless, the downside
of delegating the process of identifying groups to the clients is that the environment
becomes susceptible to malicious behavior and requires more computational costs
from the clients’ devices. Another disadvantage of this proposal is to assume that
the number of groups is known a priori, which may be unfeasible and can either
overestimate or underestimate the number of existing clusters.

Clustered Federated Learning (CFL) [36] recursively partitions federated learn-
ing clients into more homogeneous groups. This procedure mitigates the problems
generated by non-IID distributions. Partitioning occurs whenever the loss gradient
vector exceeds a pre-established distance threshold. Nonetheless, clients’ recursive
partition leads to computational overhead on the aggregation server because it runs
the procedure at each global training epoch. Ouyang et al. [9] present ClusterFL,
a framework for creating homogeneous client groups in federated learning environ-
ments. ClusterFL periodically verifies groups to detect inefficient clients, which
results in a fast convergence time of the group model. Nonetheless, their proposal
introduces unnecessary computational overhead due to periodic model retraining.
Furthermore, both proposals do not apply cross-cluster model sharing for clients
with generic tasks.

Flexible Clustered Federated Learning (FlexCFL) [35] is a framework that con-
siders clients’ data distribution time shifts. The grouping strategy is static, which
avoids rescheduling clients for each epoch, as [36] and [34] do. Also, the framework
uses only a subset of clients to determine the number of clusters in the system and

9

Table 2.1: Comparison of related works
Work Strategy to

Reduce Het-
erogeneity

Strategy
Algorithm

Strategy
Input

Iterative Hierarchy
Level

[9] Client Clus-
tering

Periodic clus-
tering

All models’
weights

YES 1

[10] Client Selec-
tion

Reinforcement
learning

All Weights NO 0

[18] Client Selec-
tion

Optimization Users’
resources

NO 0

[19] Client Selec-
tion

Client’s util-
ity measure-
ment

Users’
resources

NO 0

[20] Client Selec-
tion

Model regu-
larization

Proximal
term value

NO 0

[21] Client Selec-
tion

Optimization Users’
resources

YES 0

[22] Hierarchical
Training

Geographical
training

Users’
Location

NO 2

[23] Hierarchical
Training

Hierarchical
early-exit

Transformed
Data

YES 2

[24] Client Selec-
tion

Irrelevance
measurement

Irrelevance
Metric

NO 0

[25] Client Selec-
tion

Clustered
sampling

Sample size
or similarity

NO 0

[26] Model Person-
alization

Learn-to-
personalize

Local data NO 0

[27] Hierarchical
Training

Hierarchical
early-exit

Users’ Loca-
tion

NO 2

[28] Model Person-
alization

Two-steps op-
timization

All Weights YES 2

[29] Client Clus-
tering

Distributed
clustering

Users’
centroid

NO 1

[30] Model Person-
alization

One-versus-
All

Users’
response

NO 0

[31] Client Clus-
tering

Louvain
method

Euclidean
distance

NO 1

[33] Client Clus-
tering

Cosine simi-
larity

Users’ loss
function

NO 1

[34] Client Clus-
tering

Iterative clus-
tering

Clients’
decision

YES Multiple

[35] Client Clus-
tering

DCS All Weights YES 1

[36] Client Clus-
tering

Recursive
clustering

Loss gradi-
ent vector

YES Multiple

Our Client Clus-
tering

Generic
clustering

Last Layer
Weights

NO 1

10

calculate the Decomposed Cosine Similarity (DCS). The remaining clients are clus-
tered after the decision about the number of clusters. Before each round, the authors
execute a strategy to detect if the clients remain with the same distribution or if
it has changed. When the distance exceeds a predefined threshold, the client needs
to perform the clustering step again. Nevertheless, the proposal requires higher
computational resources than our proposal to detect the data shift.

2.4 Contributions

Our contribution is divided into two parts. First, we propose a model personalization
system through client clustering, unlike previous client selection proposals that only
consider optimizing a generic model across the entire federated learning system.
Our system aims at clustering clients with homogeneous data. Like other CFL
proposals, the clustering process increases the accuracy and reduces the training
time of the models of each cluster, as it makes the training data more homogeneous.
Furthermore, clustering clients can improve model convergence in the cluster and
increase the final performance for specific learning tasks. Nevertheless, our proposal
avoids interactive steps or sending the whole model to the clustering algorithm,
therefore it reduces the overhead of defining the clusters. We define the clusters with
an unsupervised clustering algorithm that receives clients’ neural network weights
as an input vector. Therefore, the proposal maintains the privacy requirements of
traditional federated learning, since there is no private data sharing. In addition,
the proposal is agnostic to the clustering algorithm, eliminating the need for prior
knowledge of the number of existing clusters. In this part of the proposal, clients
only retain local cluster knowledge and are limited to specific tasks, like classifying
data similar to the cluster training data.

Also, we extend our system to implement ATHENA-FL, a federated learning
system based on clustering clients by data distribution similarity and training neu-
ral network models through the one-versus-all (OvA) approach. This second part
provides a way to combine the models generated in different clusters and to share
knowledge among clusters. Initially, it maintains the clients’ clustering scheme. Un-
like previous proposals, each cluster trains multiple models, which are detectors of
the classes present in the clients’ datasets. At the end of training the models of each
group, it is possible to ensemble them to detect the class of samples outside the
cluster by using the OvA model. The performance of ATHENA-FL is compared to
FedAVG using the MobileNet [14] and MobileNetV2 [37] architecture, lightweight
deep neural networks for image classification. Furthermore, the experiments com-
pare the communication cost of the two approaches, calculated through the number
of bytes transmitted per client during training. We show that there is a trade-off

11

between the number of existing classes and the accuracy of the one-versus-all model
when the clusters have few classes and there are structural similarities in data out-
side the cluster, e.g., cats and dogs have similar shapes. More classes in the system
imply more detectors, which must be trained with more diverse data for a better
distinction between classes and to learn the most important data characteristics to
better classify the new samples. Thus, detectors trained with few classes present a
lower performance on out-of-group data, reducing the accuracy of the OvA model.

Table 2.1 summarizes the characteristics and comparisons of all related works.
We classify the works due to the strategy to reduce heterogeneity, the algorithm used,
the algorithm input, whether the approach is iterative, and how many hierarchical
levels there are. The strategies to reduce training heterogeneity are client selection,
hierarchical training, model personalization, or client clustering. Besides, there are
multiple algorithms used, which depend on different inputs. The algorithm also
determines if the strategy is iterative. Regarding the clustering level, 0 means that
the proposal uses a single global model, and 1 the proposal has clusters where each
one has a cluster global model. Multiple or 2 clustering levels mean that the cluster
can be divided into one or more sub-clusters.

12

Chapter 3

Federated Learning Concepts

Figure 3.1 exhibits the execution diagram of the proposal presented by Google.
First, the aggregation server randomly selects a set of clients that will participate
in epoch n. In the example in Figure 3.1 clients 1 and 4 are selected. In this step,
the clients calculate the new model state for epoch n − 1 using local data. The
computed models are transferred to the aggregation server, which aggregates into
the epoch n global model. Among the existing aggregation algorithms, the most
popular is the Federated Average (Federated Average - FedAVG), which calculates
the weights’ average in each model layer to perform the model update. Federated
learning average is formulated as an optimization problem in which we search for
an optimal solution that minimizes the loss function by adjusting the w model’s
parameter over the parameter space V a as formulated in Equation 3.1. After aggre-
gation, the global model for epoch n is generated and the aggregation server shares
it with all clients. The process runs until one of the stopping conditions is met,
such as the maximum number of epochs, classification performance, or convergence
of classification metrics:

min
w∈V a

(
f(w)

def
=

N∑
n=1

pnFn(w)

)
. (3.1)

In the formulation above, N is the number of clients in the system and pn is the
neural network weights of the n-th client, a.k.a model’s parameter, pn ≤ 1 and∑

n pn = 1. In FedAVG, pn = sn/s, where sn is the size of the n-th client dataset
and s is the number of samples among all clients. Fn(w) is the local objective
function for the client n. Fn(w) =

1
sn

∑
k∈sn fi(w). The function fi(w) is related to

l(xi, yi;w), the loss function for the prediction (xi, yi) with model parameter’s w. FL
algorithms’ convergence conditions depend on feature distribution among clients and
data distribution. Hence, we define the classification of federated learning according
to the feature distribution and discuss how the data can be distributed in the system.

13

Figure 3.1: Federated learning architecture with four clients. Round n starts with
the aggregation server randomly selecting some clients. Selected clients use their
datasets to enhance the global model for epoch n − 1 and build the local model
for epoch n. Each client communicates with the aggregation server independently,
and their datasets remain on their devices throughout the training process. The
aggregation server receives local updates from clients and aggregates the responses to
the global model, generating the global model for round n. Finally, the global model
for round n is sent to clients. The process is repeated until a stopping condition is
reached, such as model convergence or the maximum number of global epochs.

3.1 Feature Distribution

Federated learning has three classifications according to the characteristics that each
client has [38]: Horizontal, vertical, or federated transfer learning.

Horizontal federated learning: In horizontal federated learning, clients have
the same feature space and learning task, however, clients’ samples are different.
Horizontal learning has difficulty establishing previously which features the clients
should collect and use in model training. However, the training and aggregation
process is simple, as all clients use identical input sizes.

Vertical federated learning: Another form of federated learning is vertical,
which assumes a scenario in which clients have non-intersecting feature distributions.
This is the most challenging type of learning, as clients collect data that can vary
in dimension, making the global model creation process more complex. However,
there is no need to communicate which features are extracted, so clients have a more
robust privacy model.

Transfer federated learning: This classification assumes that the participants
have some similarities in the learning task. Thus, it is possible to train a model a few
epochs in a dataset and afterward, execute a fine-tuning in neural network weights

14

with the final learning task to improve the model performance.

3.2 Data Distribution

In this section, we discuss sources of non-IID data distributions. Ma et al. iden-
tify five scenarios where data are heterogeneous among clients: Feature distribution
skew, label distribution skew, vertical federated learning, label inconsistency, and
quantity skew [7], which we consider in this work. Below are the details and char-
acteristics of each one:

Feature distribution skew: When a client collects data, it can be specific
rather than general. Therefore, the features might significantly differ from one user
to another. The data can be related to geographical locations, such as temperature
data, or even to user personality, such as vocabulary and handwriting traces.

Label distribution skew: Datasets that have imbalance classes have this type
of heterogeneity. For instance, client 1 has 80% samples of class 1 while the other 20%
are samples of the remaining classes, and client 2 has the opposite data behavior,
20% samples are from class 1 and the 80% are distributed among the remaining
classes. Our experiments consider specifically this type of heterogeneity.

Vertical federated learning: This learning scenario is inherently Non-IID
since clients have different feature space distributions.

Label inconsistency: Clients may disagree with sample labels. This can occur
because the parties disagree on which class a sample belongs to, or the labeling
processing lacks a well-defined protocol to assign classes to samples. For example,
categorical features such as “good”, “regular”, and “bad” might subjectively change
according to the professional responsible for defining a sample class.

Quantity skew: In this scenario, clients significantly differ in the dataset size.
For instance, client 1 has |s1| = 2, 000 while client 2 has |s2| = 500, 000. The
difference between quantity skew and label distribution skew is that in quantity
skew sample might originate from the same distribution but with different sample
sizes among the clients.

3.3 Problem Formulation

The developed work focuses on federated learning with horizontal data distributions
and assumes that the aggregation server communicates to the clients the input size
they will collect before starting the training process. We also assume that all data
pre-processing is well-established and executed by clients before the training. Also,
our non-IID tests are based on the label distribution skew scenarios. Thus, for the
first part of this work, we cluster the clients to avoid statistical heterogeneity in

15

the training set. We assume that the clusters are homogeneously created, therefore,
clients have similar samples of the same classes.

The second part comprises the sharing of intra-cluster models using the OvA
method, in which each cluster trains detectors for all existing classes in the client
datasets. Besides, the server together with the clients uniquely identifies existing
classification tasks and labels. In this way, new classes can be incorporated into the
system without loss of generality concerning existing models. Furthermore, there
are no equal labels for samples belonging to different classes in the system before
clustering. Our system, in this part, uses the weights of the last layer as input for a
clustering algorithm, which assigns clients to one of the G clusters. The second part
of the thesis, ATHENA-FL, uses one detector per class. Thus, instead of minimizing
a single objective function as FedAVG, our system minimizes the classification error
for each detector rk by adjusting the parameter wk:

min
wk∈V a

(
rk(wk)

def
=

N∑
n=1

pknFkn(wk)

)
, (3.2)

where rk(wk) is the detector of the k-th class, pkn is the selection probability of the
n-th client during the k-th detector’s training. Finally, Fkn(wk) is the local objective
for the n-th client to the k-th detector.

The following chapters present our two proposals in detail, explaining the system
execution and how we avoid data heterogeneity.

16

Chapter 4

Clustering Clients to Reduce
Training Data Heterogeneity

This chapter presents the details of the first part of our proposal, which consists of
a method to create accurate models with hierarchical clustering of clients. Firstly,
we approach the client’s clustering for the creation of cluster models, and later
we discuss the composition of more generic models using cluster models. Finally,
we discuss possible attacks on the system and countermeasures introduced by our
proposal. The system is applied in a horizontal federated learning environment,
where clients sample data with the same set of features.

The model generated is specialized for a cluster of clients with IID data, im-
proving the system’s overall performance. Thus, instead of one global model, the
proposed system has z personalized models, called cluster models, for each of the g

existing clusters sharing IID data.
We assume that message exchanges between the clients and the server are en-

crypted, and only the server knows the clients. This prevents malicious clients from
getting information about other clients and using it to degrade the model, assuming
the server has not been compromised. Furthermore, it is assumed that the server is
honest, running the FedAVG algorithm for aggregating the gradients correctly and
combining the models on demand. Clients are assumed to have stationary data so
that the distance between the individual loss gradient vectors of the selected clients
and the average vector of the cluster for a specific epoch remains the same.

4.1 Clients’ Clustering Procedure

The proposed system for training federated models is composed of an initialization
followed by two phases. The division of clients aims to minimize the data hetero-
geneity during the global model training. Hence, during the system initialization,

17

the server performs a global epoch of federated learning, selecting all the clients in
the network. Clients locally calculate the neural network weights with their data
and return the result to the server. After receiving the response from the clients,
the server executes the first phase after initialization to allocate clients into clusters.
The server uses a clustering algorithm to determine the number of clusters and the
clients of each cluster. As a result, clients with similar neural network weights are
allocated into the same cluster. Note that cluster creation occurs without the need
to access the client’s samples, which is a requirement for keeping privacy. Also,
we use only the last-layer weights, avoiding the transmission of the whole model.
Besides, we need only to communicate the model and retrieve the weights one time,
avoiding the iterative process overhead present in other proposals. After cluster
definition, the second phase starts, consisting of traditional federated learning train-
ing among clients in the same cluster. Therefore, in the proposed system, there
are at least G ≥ 1 specific models, where G is the number of clusters generated
by the server. Unlike traditional federated learning, the proposal calls the feder-
ated learning server a selection and aggregation server, because, besides aggregating
the results, the server is responsible for selecting and keeping track of each client’s
cluster.

We define two system’s stages: initialization and maintenance. The initialization
comprise the steps to create the system’s clusters with the initial clients, while the
maintenance consists of the steps to cluster new clients once the cluster were defined.
Thus, Section 4.2 discusses our premises for the system initialization and how we
execute the clustering. Then, Section 4.3 exhibits the procedure for one or more
clients that arrive after the system initialization.

4.2 System initialization

The steps in Fig. 4.1 are performed to initialize the system. In the first step, the
server shares the test model with all known clients. The clients adjust the test model
parameters with their local data and return only the bias vector from the last layer
to the selection and aggregation server. The server runs the clustering algorithm
and saves the existing clusters. Once clusters are established, new clients will not be
able to generate new clusters, only allocated to existing ones. The initial model of
each cluster may differ from the test model, as the server can adjust the model hy-
perparameters according to the data from each cluster. Nevertheless, cluster model
optimization is out of the scope of this work. Adding new clients leads to different
procedures, depending on whether the model training is finished or not. New clients
can participate in the model training if they ingress before model convergence, or
they only receive the model if they ingress after model convergence. Furthermore,

18

Figure 4.1: Initialization of the proposed system. (1) The initial set of clients
receives the test model. (2) Clients adjust the neural network weights and return
the bias vector from the last layer of the model to the server. (3) The selection and
aggregation server runs the clustering algorithm to get the clusters from the system.
(4) The server associates new clients with clusters.

the proposal predicts a fixed number of clusters after initialization, assuming that
clients have stationary data. If all clients in a cluster fail, the aggregation server
stores information about the cluster, consisting of the training state and current
model. This is important as the failed clients can be recovered, and new clients can
be eventually allocated to the cluster. After initialization, the clustering algorithm
is no longer used to identify new clusters. It is used to identify malicious actions
and assign new clients to existing clusters instead. The system is agnostic to the
clustering model used, allowing the administrator to select the clustering algorithm
that best suits the requirements. The proposal assumes that the administrator has
relevant information to adjust the clustering model hyperparameters before com-
puting the clusters, e.g., existing classes and a small dataset. Another hypothesis is
that the clients’ learning tasks are the same, e.g., image classification.

4.3 System Maintenance

The entry of new clients into the environment is shown in Figure 4.2. The new
client that wants to participate in federated training demands the selection and

19

Figure 4.2: Proposed execution diagram. The first step is to allocate a new client
to an existing cluster. After the client is allocated to a cluster, traditional federated
learning is performed in the cluster.

aggregation server of a new cluster identifier. The server sends the client a test
model, which is identical for all new clients and is also used to generate the system’s
clusters. After this step, the client calculates the update of the test model and
sends the result to the server. With the responses from the clients, the server runs a
clustering algorithm and associates the client with an existing cluster. Finally, the
FedAVG algorithm is performed independently in each cluster.

Fig. 4.2 details the steps developed by the proposal for the creation of system
models. Initially, the client requests the server to be included in a cluster and
execute similar steps as the discussed in the system initialization phase. The server
sends the test model to the client to obtain statistical information. This step is
paramount in the proposal, as it clusters clients without revealing data privacy.
The client updates the test model with its private data and sends part of the result
to the selection and aggregation server. After receiving the response from the client,
the server runs the clustering algorithm adjusted at system startup to determine
which cluster the new client belongs to. The cluster information is sent to the client
and their identity is added to the cluster list. Finally, the server sends the current
zt cluster’s model to the client, allowing it to participate in the federated training.

20

From this stage, federated training takes place in the traditional way in the gj cluster
in which the client was allocated. At each Eq cluster’s epoch, the server randomly
selects a fraction of clients to adjust the parameters of the cluster model. If the
client is selected, it calculates the new w′ weights and sends them to the server for
aggregation. Finally, the server sends the updated model zt+1 to the clients of the
cluster gj, and a new epoch, Eq+1, for the cluster, begins. The process is repeated
until a stopping condition is reached, such as a model performance convergence
criterion, e.g., accuracy within a low variation threshold in consecutive epochs, or a
maximum number of global epochs executed Eqmax .

Our proposal can be used in scenarios when clients have distinct data distribu-
tions, like an image-processing scenario where clients collect different classes and
try to learn how to classify them. We test our proposal in a scenario where clients
have label distribution skew, to simulate the non-IID scenario within image datasets.
These results are shown in Section 6.1 and 6.2.

21

Chapter 5

Combining Models from Different
Clusters

This section presents the ATHENA-FL system, an improvement of the previous clus-
tering proposal. ATHENA-FL introduces the intra-clustering information sharing,
through the OvA model. Thus, we present the OvA model and the implemented
changes in the training phase.

ATHENA-FL is a federated learning system for training models, ensuring data
privacy. Our system relies on a set of clients clustered according to data similar-
ity. Client clustering allows the training of machine learning models more efficiently
than the initial federated learning proposal [2] under non-IID data distributions,
increasing the final accuracy and reducing the total epochs for model convergence.
Nevertheless, clustering creates specific models, which usually can only classify sam-
ples generated from the same cluster. Thus, we propose the adoption of the OvA
model to share models trained on different clusters and to create generic models.
The OvA learning model consists of training binary detectors for each data label.
Each detector gives the probability that a sample belongs to its class. Since they
execute a binary classification, their training process is easier and converges faster
than a deep neural network for multi-class classification. We combine the detectors
and take the one that provides the greatest probability to assign a sample predicted
label. Figure 5.1 displays the steps proposed for executing the system.

5.1 Data Similarity-based Clients Clustering

Initially, the system arranges clients into clusters according to the data similar-
ity. This step produces clusters in which the training data are independent and
identically distributed. IID datasets facilitate model convergence and increase final
classification performance [39]. Nevertheless, to maintain the privacy assumptions

22

Figure 5.1: The ATHENA-FL execution scheme consists of 6 steps. Steps 1 to 4 are
discussed in the previous chapter to mitigate the system’s statistical heterogeneity
by clustering clients according to the similarity of the data. Step 5 shares detectors
among other clusters. Finally, in Step 6, a client can combine models from different
clusters to create a generic OvA model.

of Federated Learning, ATHENA-FL indirectly obtains from clients’ data distribu-
tion for client clustering. Thus, we use a test model, in which clients execute a
few training epochs with their local data. The aggregation server uses these model
weights as input for the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) clustering algorithm to identify the different data distributions and as-
sign clients to their clusters. Figure 5.1 shows the steps executed by ATHENA-FL.
Firstly, Steps 1 to 4 group clients according to data similarity as presented in Chap-
ter 4.

Unlike detectors, the model used for testing is a deep model for multiclass clas-
sification, as it is necessary to compare data distributions across all clients at this
step. The clustering process ends with Step 4, which trains the detectors. New
clients, absent in the group creation stage, must request the server to be allocated
into a cluster by executing the previous steps.

23

5.2 Detector Training

Detector models are trained independently, both concerning models from different
clusters and detectors trained within each cluster. Thus, this step can be parallelized
to reduce the models’ training time. Each group has a total of k detectors, which
can vary according to the group, and the system has R detectors in total.

Thus, in Step 4 of Figure 5.1 the system trains detectors for each class. Training
starts with the selection and aggregation server determining which detector will be
trained federated into a group. After defining the class of interest, the server sends
this information so that the clients can pre-process the labels. The pre-processing
consists of transforming the original labels of all client samples into binary labels.
Thus, the detector’s training needs an auxiliary function to binarize the labels ac-
cording to the current detector. The binarization function is defined as:

B(k) =
∑
n∈G

1k(sn), (5.1)

if the i-th label belongs to the k-th class, the function returns 1 and zero otherwise.
The convergence time for each detector is reduced due to the clients’ clustering

that has approximately IID datasets. However, the models generated in the cluster
are specific and detect only the existing classes that belong to the cluster. Thus,
after its convergence, each detector is made available in the detector’s database of
the system in Step 5 of Figure 5.1. This allows clients from other groups to build
one-versus-all models with detectors generated in the whole system.

We highlight two advantages of using this approach. First, detectors are smaller,
hence the time between training epochs is reduced compared to deeper neural net-
works. Secondly, the OvA model can identify the classes present on other clusters
easily, since we merely combine the detectors from the system’s detectors database.

5.3 One-versus-All Model

Step 6 allows the creation of a generic model, which uses detectors trained in other
clusters. After sharing models in the ATHENA-FL’s detectors database, clients
select the detectors of interest to create the one-versus-all model, Cova. Equation 5.2
shows the classification process of a sample x. Cova returns ŷ, the estimate class for
sample x.

Cova(x) = argmax
i∈[1,R]

rk(x). (5.2)

The model comprises several detectors rk, which classify the sample x and return
the probability that the sample belongs to the class k. The classifier Cova assigns to

24

the sample the label that has the highest probability among all detectors. ATHENA-
FL allows a parallel classification process, given that, as detectors are independent
of each other, each model can simultaneously generate the sample’s probability of
belonging to the detector’s class.

25

Chapter 6

Development of the Prototype and
Experimental Results

We develop a system prototype in Python v3.9.1 with Flower v0.18.0 [40] for the de-
velopment of the federated learning environment, the scikit-learn library v1.0.1 [41]
to create the cluster models, and the Keras v2.6.0 library to create the deep learning
models. The experiments were executed on an Intel Xeon CPU E5-2650 2.00 GHz
server with 32 processing cores and 504 GB of RAM. We show experimental results
of the models’ evaluation, with the average accuracy obtained among all the clients
and a 95% confidence interval. We compare our proposal with FedAVG because
other approaches use different models or datasets. Thus, FedAVG establishes a
baseline comparison with the state-of-the-art algorithms.

For our first proposal, the evaluated scenario uses the configuration values dis-
played in Table 6.1. Not all clients are selected for training in a global epoch, thus
the percentage of selected clients indicates how many of them execute a global epoch
model update simultaneously. There is an exception during the system initialization
when we select all clients to create the system’s clusters. In addition, test accuracy
and loss results are constructed from the selection of all clients at each global epoch.
After allocating the clients into groups, the hyperparameters are adjusted according
to the group data, e.g., reducing the number of neurons in the final layer due to the
absence of all classes in the group. Therefore, the server is responsible for perform-
ing the hyperparameter tuning process on each group for the best performance of
the models.

ATHENA-FL scenario has 50 clients that train the model during 5 local epochs
for 200 global epochs, with a selection probability of 20%. The selection probability
is the percentage of clients selected within each cluster for training global epoch.
We use a batch size of 32 samples, and the accuracy results are obtained from the
selection of all clients at the end of each global epoch.

We train and evaluate the performance of models on three image datasets:

26

Table 6.1: Parameters applied to the federated learning environment.
Parameter Settings

Number of clients 10
Percentage of selected clients 50%

Number of global epochs 100
Number of local epochs 5

Size of local batches 32

CIFAR-10 [42], MNIST [43], and Fashion-MNIST (FMNIST) [44]. The CIFAR-10
dataset has 60,000 samples and a total of 10 classes representing objects or ani-
mals. The images are colored with 3 matrix, which represents RGB channels and
have 32x32 pixels each. The second dataset, MNIST, has 70,000 samples divided
into 10 classes, which represent handwritten decimal digits. FMNIST also has 10
classes and 70,000 samples representing different fashion clothes, divided into 60,000
for training and 10,000 for testing. MNIST and FMNIST images are provided in
grayscale, originally 28x28 pixels. We process the datasets to extend to 32x32 pixels
to use the same neural network architecture in all data. The datasets are equally
balanced among existing classes.

The neural network architecture used in the OvA model was adapted from a
dog and cat image identification problem, establishing a simple model for binary
classification [45]. Then, this neural network architecture was adapted to be the
basis of the detectors used in the one-versus-all model due to its small size and its
high capacity to correctly identify samples.

The deep architectures used in classification tasks with multiple classes are Mo-
bileNet and MobileNetV2. MobileNetV2 was chosen because it is the architecture
used in the classification example of the CIFAR-10 dataset in the Flower framework,
while MobileNet was selected due to the shorter inference time and is shallower than
MobileNetV2.

We conduct five experiments: (i) identify the best clustering algorithm and its
parameters; (ii) test the performance of our clustering proposal and compare it with
FedAVG; (iii) verify the detectors’ accuracy and compare it with a complex model
trained with FedAVG; (iv) define the number of epochs necessary for both models
to converge, and finally, (v) estimate the total amount of bytes transmitted during
the training process for the two alternatives. Evaluations (i) and (ii), discussed in
Section 6.1 and 6.2 respectively, are related to the first part of our work while the
remaining are related to ATHENA-FL. Experiments (iii) and (iv) are discussed in
Section 6.3, while the last one is presented in Section 6.4.

27

6.1 Evaluation of Cluster Models

The first step of the system clusters the clients from the update vector sent to
the server. Thus, Experiment I evaluates ways of clustering clients based on the
information provided. In this experiment, the hyperparameters of three clustering
algorithms are analyzed: K-Means [13], OPTICS [12] and DBSCAN [11].

K-Means is a widely adopted algorithm for clustering tasks. Its main hyperpa-
rameter is the number of c clusters existing in a given dataset. Nevertheless, defining
this hyperparameter in an unknown dataset is an arduous task, as it is required to
estimate the number of existing clusters in advance. To circumvent that, one may
want to use an iterative approach and estimate the most suitable number of clus-
ters, which is a computationally expensive task. In this way, OPTICS appears as a
more practical alternative, as it requires the minimum number of samples to form
a cluster as a hyperparameter. Nevertheless, setting a minimum number of samples
is not enough for large clusters, as the same problem of data heterogeneity would
recursively appear. Hence, an alternative to the previous algorithms is DBSCAN.
Besides the possibility to configure a minimum number of samples to create a cluster,
DBSCAN uses the maximum distance between two samples as a hyperparameter.
Therefore, it is possible to find a practical approach to separate clients into clusters
using test model replies. Each cluster contains clients with IID data.

The three clustering models correctly generated the same clusters in the non-IID
scenarios. Nevertheless, in the IID scenario, DBSCAN optimally clustered the clients
by identifying only one cluster, overcoming OPTICS. Hence, the clustering results
show that the most consistent algorithm is DBSCAN, configured with a minimum
distance of 0.0279 between client vectors, which we further explain how we reach
this value. The next experiments evaluate the models generated after clustering the
clients.

The three algorithms were evaluated with respect to the clustering of clients for
different initialization hyperparameters. Table 6.2 displays the number of gener-
ated groups and hyperparameter values for the DBSCAN and OPTICS algorithms.
Values for K-Means are omitted from the table, as the algorithm’s hyperparameter
directly indicates the number of groups. The K-Means algorithm establishes an op-

Table 6.2: Analysis of the number of groups generated by the clustering algorithms
in different data distributions. The DBSCAN algorithm is set to a minimum distance
of 0.0279, while the minimum number of samples of the OPTICS algorithm is set
to 2.

Scenario IID Non-IID 2 Classes Non-IID 5 Classes
Algorithm DBSCAN OPTICS DBSCAN OPTICS DBSCAN OPTICS

Clusters (#) 1 5 5 5 2 2

28

Table 6.3: Evaluation of the range of distances to identify 5 homogeneous groups
with DBSCAN algorithm as a function of the number of local epochs executed by
the clients.

Local Epochs Minimum Distance Maximum Distance
2 classes 5 classes 2 classes 5 classes

5 0.0023 0.0508 0.0488 0.4496
10 0.0023 0.0083 0.0475 0.0904
20 0.0024 0.0067 0.0568 0.0939
50 0.0048 0.0063 0.0722 0.1184

timal threshold for the performance evaluation experiments of the proposal because
as the non-IID scenarios are created in a controlled way, the optimal number of clus-
ters is known in advance. For the IID case, K-Means is configured to create clusters
with at least two clients in order to guarantee the consistency of federated learn-
ing. The purpose of this configuration is to verify the impact on accuracy when the
number of clusters is overestimated, dividing clients unnecessarily. So three is the
number of clusters that maintain a minimum of two clients per cluster for K-Means.

A relevant evaluation is to determine the distance that allows DBSCAN to iden-
tify the clusters whose data are IID in the experimental scenarios. Thus, it is
necessary to vary the distance hyperparameter and check how many clusters the
model returns. The distance between the neural network weights of the clients
strongly depends on the number of local epochs of the clients. Increasing the num-
ber of local epochs implies specializing the neural networks on the training data
and, thus, producing vectors that are more distant from each other. On the other
hand, clients that have datasets with similar distributions, when specializing their
weights, produce vectors that remain close. Table 6.3 displays the values found for
the minimum and maximum distances that can be assigned to DBSCAN so that
the model determines the correct number of existing groups. The result indicates
that using 10 local epochs, with a distance between [0.0083, 0.0475], allows us to
correctly identify the existing groups. Thus, the implementation adopts the value
for the distance hyperparameter of the DBSCAN algorithm as 0.0279, which is the
average value of the range.

6.2 Performance Evaluation of Specific Models

The second experiment evaluates the behavior of the proposal when all clients’
datasets are IID. The goal is to evaluate the performance of the proposal when
using different clustering algorithms and verify the impact on accuracy when there
are more clusters than needed. The hyperparameter c of K-Means was initially set
to 5. This hyperparameter is decremented until clusters with the minimum number

29

of participants are established. So, through this approach, Experiment II uses c = 3.
OPTICS was configured with a minimum number of clients equal to 2, and it also
generated clusters unnecessarily. On the other hand, DBSCAN, when analyzing the
vectors of clients, correctly identified only one cluster, once the dataset is IID.

The result of Fig. 6.1 indicates the average behavior of accuracy in all 10 clients
using the traditional approach and the current proposal. The proposal, even using
K-Means and OPTICS for clustering, has a final accuracy value close to the tradi-
tional case, despite dividing clients into clusters unnecessarily in this experiment.
Thus, it can be concluded that there is no significant loss of performance even when
clients have IID datasets and are divided into clusters. Furthermore, the experiment
demonstrates the ability of the DBSCAN algorithm to identify that creating clusters
is unnecessary in this case. Table 6.4 demonstrates that the behavior in each cluster
is similar to the average behavior shown in Fig. 6.1.

In the third experiment, the data distributions on the clients are non-IID, with
only two classes present in their datasets. The goal of this experiment is to compare
the performance of the model generated through traditional federated learning with
the one created by the current proposal, in which the data distribution is non-IID.
Thus, the 6,000 samples of a class are split among five clients to create balanced
datasets. Fig. 6.2 displays the experimental mean result among all clusters, illus-
trated in the figure as the blue line, and the traditional result, represented by the
red line. Traditional federated learning is affected by the level of data heterogeneity,
while the current proposal allows for high classification performance.

The experiment also analyzes the individual behavior of the clusters’ models. The
results show that the first cluster has an accuracy of (56 ± 3)%, while the second
has an accuracy of (63 ± 3)%. Although there is a cluster with higher performance,
even the low performance of the first cluster is higher than that obtained when using
the traditional proposal. Thus, it can be concluded that the proposal successfully
mitigated the effects of heterogeneity in the scenario with five classes per client.

The fourth experiment again evaluates the performance of the proposal for non-
IID datasets. The difference from the third experiment is the reduction in the
number of classes each client has to two classes. The results shown in Fig. 6.3

Table 6.4: Evaluation of the group models in the scenario where clients have samples
of only 2 classes.

Group Identifier Number of Clients in the Group Test Accuracy (%)
1 2 81.05 ± 0.03
2 2 71.0 ± 0.4
3 2 75.3 ± 0.4
4 2 81.5 ± 0.1
5 2 80.4 ± 0.3

30

Figure 6.1: Accuracy evolution as a function of global epoch for customers with
IID datasets. The red line represents the traditional approach of federated learning,
while the blue and the green lines represent the proposal of this work with clustering
through DBSCAN and OPTICS, respectively.

show similar behavior to the third experiment for both cases, but with a better
final performance. This fact can be explained by the difficulty of the problem,
simplified to a binary classification. Table 6.4 shows that although some groups
have a slightly lower final performance, the result is higher than using traditional
federated learning. Finally, it is possible to conclude that for groups 1 and 4 the
performance improvement over the traditional proposal is close to 16%, indicating
the relevance of the current proposal.

The fifth experiment evaluates the clustering approach in a non-IID scenario
where the clients’ datasets are not limited to samples of a subset of classes, thus
creating a more realistic scenario. We build the datasets of this experiment through
the Label-based Dirichlet Partition (LDA), which generates the data based on the
number of clients and non-IID degree. Figure 6.4 shows the results of Experiment V.
Our approach increases by more than 14% the accuracy compared with traditional
federated learning.

6.3 ATHENA-FL Accuracy Evaluation

We evaluate ATHENA-FL on IID and non-IID data distributions. The non-IID data
distributions are considered in two scenarios, in the first one each client has samples
of only two classes of the dataset, and the second considers clients with samples of

31

Figure 6.2: Evolution of the test accuracy as a function of global epoch for clients
with datasets that contain only two classes. The red line represents the traditional
approach, while the blue line represents the proposal of this work.

Figure 6.3: Test accuracy evolution as a function of overall epoch for clients with
datasets containing only five classes. The red line represents the traditional ap-
proach, while the blue line represents the proposal in this work.

five different classes.

32

Figure 6.4: Evolution of the test accuracy as a function of global epoch for clients
with datasets that contain only two classes. The clients’ datasets are generated with
the LDA using α− 0.5. The red line represents the traditional approach, while the
blue line represents our current proposal.

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.5: Final models’ accuracy on the CIFAR-10 dataset with IID distribution.

6.3.1 IID Data Scenario

The detectors quickly converge to a high accuracy value, as shown in Figure 6.8,
and the final performance of the one-versus-all model for the CIFAR-10 dataset is
(95.5±0.3)%, as shown in Figure 6.5. Meanwhile, the architecture MobileNetV2 has
a final accuracy of (73±1)% and the MobileNet has (66±2). In the MNIST dataset,
the performance is better, with (99.3± 0.1)% and (99.8± 0.1)% for MobileNet and

33

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.6: Final models’ accuracy on the MNIST dataset with IID distribution.

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.7: Final models’ accuracy on the FMNIST dataset with IID distribution.

ATHENA-FL, as shown in Figure 6.6. However, MobileNetV2 is too complex for
those data and has an overfitting problem, leading to only (7.69 ± 0.01) accuracy.
Finally, the FMNIST shows that MobileNetV2 has the best performance in the IID
setting, with (91 ± 1) against only (8 ± 1) for the MobileNet and (67.0 ± 0.5) for
ATHENA-FL, as exhibited in Figure 6.7.

Thus, the experiment shows that under IID settings, ATHENA-FL has compet-
itive results, but in some scenarios, the detectors might need to be well-adjusted
to have a better performance. The variation in performance between the datasets
is due to the difficulty of the problem presented by each one. MNIST has simpler
grayscale images, which are simpler for classification. Therefore, the detectors have
higher accuracy and less variance in this dataset than in CIFAR-10, which has color
images with more elements. Finally, the shapes of clothes in the FMNIST dataset

34

0 50 100 150 200

Epoch

60

70

80

90

100

A
c
c
u
ra

c
y
 (

%
)

Detector 0

Detector 1

Detector 2

Detector 3

Detector 4

Detector 5

Detector 6

Detector 7

Detector 8

Detector 9

Figure 6.8: Evolution of detector’s test accuracy over training epochs using the
CIFAR-10 dataset.

0 50 100 150 200

Epoch

98.0

98.5

99.0

99.5

100

A
c
c
u
ra

c
y
 (

%
) Detector 0

Detector 1

Detector 2

Detector 3

Detector 4

Detector 5

Detector 6

Detector 7

Detector 8

Detector 9

Figure 6.9: Accuracy of detectors over training epochs using the MNIST dataset.

are difficult to distinguish. Thus, we need more complex models to differentiate
them. This behavior is also observed in the other evaluated scenarios.

6.3.2 Scenarios with Non-IID Data

Scenarios with non-IID data consider distributions of data where clients own only a
subset of the classes of the dataset. In the first non-IID case, clients have samples
from five distinct classes. Figure 6.10, 6.11, and 6.12 show the final performance
of the one-versus-all model, MobileNet and MobileNetV2. ATHENA-FL provides
the best accuracy results for all datasets in this setting, having with the CIFAR-10

35

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.10: Final models’ accuracy on the CIFAR-10 dataset with Non-IID distri-
bution of 2 classes per client.

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.11: Final models’ accuracy on the MNIST dataset with Non-IID distribu-
tion of 5 classes per client.

dataset 10% higher accuracy compared to the MobileNet, which is the second-best
model, and 10.9% higher accuracy in the MNIST dataset. Thus, the experiment
demonstrates that ATHENA-FL has the potential to increase the classification ac-
curacy up to 10.9% under the Non-IID setting compared to the MobileNet model
trained purely with FedAVG.

The last scenario considers a Non-IID data distribution with two classes per
client. For the CIFAR-10 dataset, the observed accuracy is (30±3)% combining the
detectors, while the MobileNet and MobileNetV2 architectures have a final accuracy
of (20±10)% in this configuration, shown in Figure 6.13. The accuracy of ATHENA-
FL was (47±1)% for the MNIST dataset, while the deep models achieved an accuracy

36

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.12: Final models’ accuracy on the FMNIST dataset with Non-IID distri-
bution of 5 classes per client.

of (40±10)% and (10±5)% for MobileNet and MobileNetV2 respectively, exhibited
in Figure 6.14. Lastly, MobileNet has (22± 2)%, MobileNetV2 has (60± 20)%, and
ATHENA-FL has (50.0± 0.7)% accuracy in the FMNIST dataset, in Figure 6.15.

The results show that when the detectors are trained on datasets with more
classes, the final classification performance is better since they can learn more pat-
terns of the whole data distribution. This behavior can be explained by the higher
variance of data from classes that are not of the detector’s class. The greater vari-
ance of data in other classes allows the detector to identify more relevant features
in the data of interest, instead of just differentiating specific image features that are
not representative of the problem. For instance, the detectors trained in the MNIST
dataset with only classes 2 and 3 have trouble differentiating 5 and 8 which have
similar shapes. Nonetheless, we see that in MNIST and CIFAR-10, ATHENA-FL
was able to reach up to 7% and 10% accuracy compared to the best deeper model.

6.4 ATHENA-FL Communication Evaluation

The objective of this experiment is to evaluate the cost of communication between
the clients and the aggregation server while training the one-versus-all models and
a deep neural network to classify multiple classes. The communication evaluation
considers the total number of bytes transmitted on average to perform model train-
ing. Let Tdec be the size in bytes of the detector, edec be the probability density
function that indicates the number of epochs necessary for the detector to converge,
E[edec] the expected values of edec, and R the number of existing detectors in the
problem of classification, the average amount of bytes transmitted per client Bova

37

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.13: Final models’ accuracy on the CIFAR-10 dataset with Non-IID distri-
bution of 2 classes per client.

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.14: Final models’ accuracy on the MNIST dataset with Non-IID distribu-
tion of 2 classes per client.

can be expressed by the following relation, for the one-versus-all learning model:

Bova = Tdec ×R× E[edec]. (6.1)

On the other hand, the communication cost of neural network architectures for
multi-class classification Bmcc is given by:

Bmcc = Tmcc × E[emcc], (6.2)

where Tmcc is the size and emcc is the probability density function that indicates
the number of epochs required for the convergence of the multiclass classification

38

 FedAVG

 (MobileNet)

 FedAVG

 (MobileNetV2)

 ATHENA-FL

 (Ours)

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Figure 6.15: Final models’ accuracy on the FMNIST dataset with Non-IID distri-
bution of 2 classes per client.

model, while E[emcc] is the expected value of emcc. The values of Tdec and Tmcc are
deterministic and depend on the neural network architecture used. Figure 6.16 shows
the comparison between the size in bytes of the different neural network architectures
evaluated in this work. Using the Keras library to create the models, each detector
has Tdec = 551k bytes. Nonetheless, the MobileNetV2 architecture has 9.2MB,
while MobileNet and Xception have 13MB and 81MB, respectively. The number
of detectors is also a deterministic value that depends only on the dataset used
for evaluation, which in the tested cases has the value R = 10. Furthermore, the
expected values of edec and emcc, E[edec] and E[emcc], are obtained experimentally,
through training performance along the epochs. When the model does not show
a significant improvement concerning previous epochs, the training is considered
finished. Analyzing the costs presented, so that the communication cost of the
one-versus-all model is lower or equivalent to the multiclass neural network model,
it is necessary that the total amount of bytes transmitted for training the models
are related as follows: Bova ≤ Bmcc. To verify the validity of the relationship and
thus the communication efficiency of the OvA model, it is necessary to estimate the
values of E[edec] and E[emcc].

The criterion to determine the epoch at which the model converged consists
of comparing the accuracy in the current epoch with the accuracy in the previous
epoch. If the epoch is in the limit of tol = 0.001% the previous epoch, we consider
that the model has converged. The adopted value of tol allows considering cases
in which the model is stable only over a short interval. Increasing the value of tol
implies reducing the number of epochs required for convergence, but it decreases the
final classification performance. The opposite occurs when we reduce the parameter.

39

MobileNetV2 MobileNet Xception Detector
100

101

102

103

104

105

 M

o
d
e
l
S

iz
e
 (

k
B

)

Figure 6.16: Comparison between the size in bytes of different neural network ar-
chitectures. The model’s size directly depends on the number of parameters used
by the architecture.

The accuracy results from analysis over the training epochs presented in Sec-
tion 6.3.1 according to the adopted convergence criterion, allows the estimation
of the value E[edec] and E[emcc] for the datasets in each experimental setup. We
show the results of ATHENA-FL compared with MobileNet in Table 6.5. The Mo-
bileNetV2 model needs hundreds of epochs to converge. For conciseness, we only
show the results of MobileNet due to its faster convergence in tens of epochs in most
scenarios.

After estimating the number of epochs necessary for the models to converge, it
is possible to compare them in its scenario using properly the Equations 6.1 and 6.2.
The results show how many bytes each neural network model needs to transmit dur-
ing the training, and finally, we compare the economy of both approaches computing
1−Bova/Bmcc.

In the IID setting, the detectors converge in a few epochs, reducing over 75% of
bytes transmitted. A second highlight is the data used to train and test the models.
ATHENA-FL converges faster than MobileNet in MNIST and FMNIST, which have
grayscale images and, therefore, use a single channel to represent the pixels.

We observe that in all scenarios, ATHENA-FL reduces the total amount of bytes
transmitted during the training execution. In the worst-case scenario, our approach
saves at least 25% of the bytes transmitted. For the best case scenario, we can reduce
by approximately 97% the communication requirements for training the model.

40

Table 6.5: Communication requirements, Total Data Transmitted (TDT), to train
the models until convergence in different datasets and sample distribution settings.

IID Non-IID 5 Non-IID 2
Dataset Model E[e]

(#)
TDT
(MB)

E[e]
(#)

TDT
(MB)

E[e]
(#)

TDT
(MB)

CIFAR-10
ATHENA-FL 7 37.635 12 64.517 14 75.270
FedAVG 30 378.106 23 289.881 8 100.828
Economy (%) - 90.05 - 77.74 - 25.35

MNIST
ATHENA-FL 4 21.506 24 129.034 4 21.506
FedAVG 7 88.225 58 731.005 65 819.230
Economy (%) - 75.62 - 82.35 - 97.37

FMNIST
ATHENA-FL 5 26.88 81 435.49 21 112.91
FedAVG 44 554.56 151 1903.10 80 1008.30
Economy (%) - 95.15 - 77.12 - 88.8

41

Chapter 7

Conclusion and Future Work

We have proposed a system to increase the performance of federated learning when
clients have non-IID data distributions. Our contribution is divided into two parts.
Firstly, we propose a clustering strategy that increases client’s accuracy by clustering
them to train the FL model over IID datasets. Secondly, we extended the first
scenario for intra-cluster information sharing. Therefore, in the first part, clients
have only specific models while the second part allows them to have more generic
models and classify data outside their cluster.

Both proposals maintains the privacy of the client’s data given that it uses the
weight values of the final layer of the client’s neural networks for clustering. As
the final layers of the neural network positively relate to the existing classes in the
dataset, it is possible to send only a part of the neural network to perform the
clustering of the clients. The data size is significantly lower than if we use the whole
weight matrix, and this is an important feature because it could save energy, network
resources and reduce the latency for data transfer.

The DBSCAN clustering algorithm, which requires only the minimum distance
between samples as a hyperparameter, provides high ability to detect the exist-
ing clusters even when clients have IID datasets. Besides, the proposed system
outperformed FedAVG when the clients’ datasets are non-IID in all the evaluated
scenarios. The generated models exhibited high classification performance and few
epochs to converge, approximately ten global epochs. The traditional model, how-
ever, achieved low classification performance even after 100 global epochs for non-IID
data. The accuracy showed an improvement of approximately 16% in the best case.

Furthermore, the system applies the one-versus-all model to create a generic
classifier, which shares knowledge among clusters. The results show that communi-
cation during the training epochs is efficient, reducing between 25.35% and 97.37%
total transmitted bytes compared to the FedAVG approach with the MobileNet
neural network. The accuracy of the OvA model depends on the data distribution
scenario used during the training step, being up to 10.9% higher in the best case

42

and presenting a better performance than the model trained with FedAVG in most
of the evaluated scenarios.

In future works, we will implement the proposal’s security guarantees, providing
a protocol tolerant to malicious participants’ updates. Also, the proposal will be
extended to non-stationary scenarios in future work to deal with the data concept
drift, where the aggregation server can change clusters on demand.

43

References

[1] LIU, B., DING, M., SHAHAM, S., et al. “When Machine Learning Meets Pri-
vacy: A Survey and Outlook”, ACM Computing Surveys (CSUR), v. 54,
n. 2, pp. 1–36, 2021.

[2] MCMAHAN, B., MOORE, E., RAMAGE, D., et al. “Communication-efficient
Learning of Deep Networks from Decentralized Data”, Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

[3] DE SOUZA, L. A. C., REBELLO, G. A. F., CAMILO, G. F., et al. “DFed-
Forest: Decentralized Federated Forest”. In: International Conference on
Blockchain, pp. 90–97. IEEE, 2020. doi: 10.1109/Blockchain50366.2020.
00019.

[4] DJENOURI, Y., MICHALAK, T. P., LIN, J. C.-W. “Federated Deep Learning
for Smart City Edge-based Applications”, Future Generation Computer
Systems, v. 147, pp. 350–359, 2023.

[5] LI, D., LAI, J., WANG, R., et al. “Ubiquitous Intelligent Federated Learning
Privacy-preserving Scheme under Edge Computing”, Future Generation
Computer Systems, v. 144, pp. 205–218, 2023.

[6] SINGH, S., RATHORE, S., ALFARRAJ, O., et al. “A Framework for Privacy-
preservation of IoT Healthcare Data using Federated Learning and
Blockchain Technology”, Future Generation Computer Systems, v. 129,
pp. 380–388, 2022.

[7] MA, X., ZHU, J., LIN, Z., et al. “A State-of-the-Art Survey on Solving Non-
IID Data in Federated Learning”, Future Generation Computer Systems,
v. 135, pp. 244–258, 2022.

[8] ZHAO, Y., LI, M., LAI, L., et al. “Federated Learning with Non-IID Data”,
arXiv preprint arXiv:1806.00582, 2018.

[9] OUYANG, X., XIE, Z., ZHOU, J., et al. “ClusterFL: a Similarity-Aware Feder-
ated Learning System for Human Activity Recognition”. In: Proceedings

44

of the International Conference on Mobile Systems, Applications, and Ser-
vices, pp. 54–66, 2021.

[10] WANG, H., KAPLAN, Z., NIU, D., et al. “Optimizing Federated Learning on
Non-IID Data with Reinforcement Learning”. In: IEEE INFOCOM, pp.
1698–1707, 2020.

[11] ESTER, M., KRIEGEL, H.-P., SANDER, J., et al. “A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise”. In: KDD,
pp. 226–231, 1996.

[12] ANKERST, M., BREUNIG, M. M., KRIEGEL, H.-P., et al. “OPTICS: Order-
ing Points to Identify the Clustering Structure”, ACM Sigmod record, pp.
49–60, 1999.

[13] MACQUEEN, J. “Some Methods for Classification and Analysis of Multivari-
ate Observations”. In: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pp. 281–297, 1967.

[14] HOWARD, A. G., ZHU, M., CHEN, B., et al. “MobileNets: Efficient Convo-
lutional Neural Networks for Mobile Vision Applications”, arXiv preprint
arXiv:1704.04861, 2017.

[15] NETO, H. N. C., DUSPARIC, I., MATTOS, D. M., et al. “FedSA: Accelerating
Intrusion Detection in Collaborative Environments with Federated Simu-
lated Annealing”. In: International Conference on Network Softwarization
(NetSoft), pp. 420–428. IEEE, 2022.

[16] FU, L., ZHANG, H., GAO, G., et al. “Client Selection in Federated
Learning: Principles, Challenges, and Opportunities”, arXiv preprint
arXiv:2211.01549, pp. 1–8, 2022.

[17] TAN, A. Z., YU, H., CUI, L., et al. “Towards Personalized Federated Learning”,
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–17,
2022.

[18] LUO, B., XIAO, W., WANG, S., et al. “Tackling System and Statistical Hetero-
geneity for Federated Learning with Adaptive Client Sampling”. In: IEEE
INFOCOM, pp. 1739–1748, 2022.

[19] LAI, F., ZHU, X., MADHYASTHA, H. V., et al. “Oort: Efficient Federated
Learning via Guided Participant Selection”. In: USENIX OSDI, pp. 19–
35, 2021.

45

[20] LI, T., SAHU, A. K., ZAHEER, M., et al. “Federated Optimization in Hetero-
geneous Networks”, Proceedings of Machine Learning and Systems, v. 2,
pp. 429–450, 2020.

[21] NISHIO, T., YONETANI, R. “Client Selection for Federated Learning with
Heterogeneous Resources in Mobile Edge”. In: International Conference
on Communications, pp. 1–7, 2019.

[22] LIU, L., ZHANG, J., SONG, S., et al. “Client-Edge-Cloud Hierarchical Fed-
erated Learning”. In: International Conference on Communications, pp.
1–6, 2020.

[23] QIN, T., CHENG, G., WEI, Y., et al. “Hier-SFL: Client-Edge-Cloud Collab-
orative Traffic Classification Framework based on Hierarchical Federated
Split Learning”, Future Generation Computer Systems, 2023.

[24] RAI, S., KUMARI, A., PRASAD, D. K. “Client Selection in Federated Learning
under Imperfections in Environment”, AI, v. 3, n. 1, pp. 124–145, 2022.

[25] FRABONI, Y., VIDAL, R., KAMENI, L., et al. “Clustered Sampling: Low-
Variance and Improved Representativity for Clients Selection in Federated
Learning”. In: International Conference on Machine Learning, pp. 3407–
3416. PMLR, 2021.

[26] LI, H., CAI, Z., WANG, J., et al. “FedTP: Federated Learning by Transformer
Personalization”, IEEE Transactions on Neural Networks and Learning
Systems, 2023.

[27] ZHONG, Z., OTHERS. “FLEE: A Hierarchical Federated Learning Framework
for Distributed Deep Neural Network over Cloud, Edge and End Device”,
ACM TIST, pp. 1–24, 2022. Disponível em: <https://doi.org/10.

1145/3514501>.

[28] LI, T., HU, S., BEIRAMI, A., et al. “Ditto: Fair and Robust Federated Learn-
ing through Personalization”. In: International Conference on Machine
Learning, pp. 6357–6368. PMLR, 2021.

[29] DENNIS, D. K., LI, T., SMITH, V. “Heterogeneity for the Win: One-Shot
Federated Clustering”, arXiv preprint arXiv:2103.00697, 2021.

[30] ZHU, Y., MARKOS, C., ZHAO, R., et al. “FedOVA: One-vs-All Training
Method for Federated Learning with Non-IID Data”. In: IEEE IJCNN,
pp. 1–7, 2021.

46

https://doi.org/10.1145/3514501
https://doi.org/10.1145/3514501

[31] CHU, D., JAAFAR, W., YANIKOMEROGLU, H. “On the Design of
Communication-Efficient Federated Learning for Health Monitoring”,
IEEE GLOBECOM, pp. 1–6, 2022.

[32] BLONDEL, V. D., OTHERS. “Fast Unfolding of Communities in Large Net-
works”, Journal of Statistical Mechanics: Theory and Experiment, pp.
1–12, 2008.

[33] ZENG, D., HU, X., LIU, S., et al. “Stochastic Clustered Federated Learning”,
arXiv preprint arXiv:2303.00897, 2023.

[34] GHOSH, A., CHUNG, J., YIN, D., et al. “An Efficient Framework for Clustered
Federated Learning”, arXiv preprint arXiv:2006.04088, 2020.

[35] DUAN, M., LIU, D., JI, X., et al. “Flexible Clustered Federated Learning for
Client-Level Data Distribution Shift”, IEEE Transactions on Parallel and
Distributed Systems, v. 33, n. 11, pp. 2661–2674, 2022.

[36] SATTLER, F., MÜLLER, K.-R., SAMEK, W. “Clustered Federated Learning:
Model-Agnostic Distributed Multitask Optimization under Privacy Con-
straints”, IEEE Transactions on Neural Networks and Learning Systems,
2020.

[37] SANDLER, M., HOWARD, A., ZHU, M., et al. “MobileNetV2: Inverted Resid-
uals and Linear Bottlenecks”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

[38] YANG, Q., LIU, Y., CHEN, T., et al. “Federated Machine Learning: Concept
and Applications”, Transactions on Intelligent Systems and Technology
(TIST), v. 10, n. 2, pp. 1–19, 2019.

[39] WANG, J., LIU, Q., LIANG, H., et al. “Tackling the Objective Inconsistency
Problem in Heterogeneous Federated Optimization”, NeurIPS, v. 33,
pp. 7611–7623, 2020.

[40] BEUTEL, D. J., TOPAL, T., MATHUR, A., et al. “Flower: A Friendly Fed-
erated Learning Research Framework”, arXiv preprint arXiv:2007.14390,
2020.

[41] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., et al. “Scikit-learn:
Machine Learning in Python”, Journal of Machine Learning Research,
v. 12, pp. 2825–2830, 2011.

[42] KRIZHEVSKY, A., NAIR, V., HINTON, G. “The CIFAR-10 Dataset”, online:
http://www. cs. toronto. edu/kriz/cifar. html, v. 55, n. 5, 2014.

47

[43] LECUN, Y., CORTES, C., BURGES, C. J. “MNIST Handwritten Digit
Database”. http://yann.lecun.com/exdb/mnist/, 2010. Disponível em:
<http://yann.lecun.com/exdb/mnist/>.

[44] XIAO, H., RASUL, K., VOLLGRAF, R. “Fashion-MNIST: A Novel Image
Dataset for Benchmarking Machine Learning Algorithms”, arXiv preprint
arXiv:1708.07747, 2017.

[45] SANGUINETI, M. “Cats VS Dogs Convolutional Classi-
fier”. Towards Data Science, 2021. Acessado em 25
de agosto de 2023https://towardsdatascience.com/
cats-vs-dogs-convolutional-classifier-44ec04c8eb7a.

48

http://yann.lecun.com/exdb/mnist/
https://towardsdatascience.com/cats-vs-dogs-convolutional-classifier-44ec04c8eb7a
https://towardsdatascience.com/cats-vs-dogs-convolutional-classifier-44ec04c8eb7a

Appendix A

List of Publications

The following works were published during the elaboration of this master thesis:

• Couto, R. S., Mattos D. M. F., Moraes, I. M., Caminha, P. H. C., Medeiros, D.
S. V., de Souza, L. A. C., Táparo, F. G., Campista, M. E. M., and Costa L. H.
M. K. - “Gerenciamento e Orquestração de Serviços em O-RAN: Inteligência,
Tendências e Desafios”, in Minicursos do XLI Simpósio Brasileiro de Redes
de Computadores e Sistemas Distribuídos (SBRC 2023), Brasília, Brazil, May
2023.

• de Souza, L. A. C., Camilo, G. F., Rebello, G. A. F., Sammarco, M.,
Campista, M. E. M., Costa, L. H. M. K. - “ATHENA-FL: Evitando a Hetero-
geneidade Estatística através do Um-contra-Todos no Aprendizado Federado”.
In Anais do VII Workshop de Computação Urbana (pp. 40-53). (2023, May).
SBC. Honorable Mention.

• de Souza, L. A. C., Rebello, G. A. F., Camilo, G. F., Campista, M. E. M.,
Costa, L. H. M. K. - “GITI-CB: Gestao de Identidade com Troca de Infor-
maçoes entre Correntes de Blocos”. In Anais do VI Workshop em Blockchain:
Teoria, Tecnologias e Aplicações (pp. 43-56). (2023, May). SBC.

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Campista, M. E. M.,
Costa, L. H. M. K. - “Posicionamento Lucrativo de Nós e Criaçao de Rotas
de Baixo Custo na Rede Relâmpago”. In Anais do XLI Simpósio Brasileiro
de Redes de Computadores e Sistemas Distribuídos (pp. 57-70). (2023, May).
SBC. Honorable Mention.

• de Souza, L. A. C., Camilo, G. F., Campista, M. E. M., Costa, L. H. M.,
Duarte, O. C. M. - “Enhancing Automatic Attack Detection through Spectral
Decomposition of Network Flows”. In Global Communications Conference
(GLOBECOM) (pp. 2074-2079). (2022, December). IEEE.

49

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Potop-Butucaru,
M., Amorim, M. D., Campista, M. E. M., Costa, L. H. M. K. - “Topological
Evolution Analysis of Payment Channels in the Lightning Network”. In Latin-
American Conference on Communications (LATINCOM) (pp. 1-6). (2022,
November). IEEE.

• Rebello, G. A. F., Camilo, G. F., Guimarães, L. C., de Souza, L. A. C.,
Duarte, O. C. M. - “Security and Performance Analysis of Quorum-based
Blockchain Consensus Protocols”. In 6th Cyber Security in Networking Con-
ference (CSNet) (pp. 1-7). (2022, October). IEEE.

• de Souza, L. A. C., Camilo, G. F., Rebello, G. A. F., Campista, M. E.
M., Costa, L. H. M. K. - “Gestão Segura e Escalável de Identidades através
de Múltiplas Corrente de Blocos”. In Anais Estendidos do XXII Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais (pp.
167-170). (2022, September). SBC.

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Potop-Butucaru,
M., Amorim, M. D., Campista, M. E. M., Costa, L. H. M. K. - “Análise
da Evolução Topológica da Rede Lightning de Canais de Pagamento”. In
Anais do XXII Simpósio Brasileiro em Segurança da Informação e de Sistemas
Computacionais (pp. 71-84). (2022, September). SBC.

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Thomaz, G. A.,
Potop-Butucaru, M., Amorim, M. D., Costa, L. H. M. K. - “Redes de Canais
de Pagamento: Provendo Escalabilidade para Pagamentos em Criptomoedas”.
(2022). SBC.

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Thomaz, G. A., Potop-
Butucaru, M., Amorim, M. D., Campista, M. E. M., and Costa L. H. M. K.
- “Redes de Canais de Pagamento: Provendo Escalabilidade para Pagamen-
tos em Criptomoedas”, in Minicursos do XL Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuídos (SBRC 2022), Fortaleza, Brazil, May
2022.

• de Souza, L. A. C., Camilo, G. F., Sammarco, M., Campista, M. E. M.,
Costa, L. H. M. - “Aprendizado Federado com Agrupamento Hierárquico de
Clientes para Aumento da Acurácia”. In Anais do XL Simpósio Brasileiro de
Redes de Computadores e Sistemas Distribuídos (pp. 545-558). (May 2022).
SBC.

• Camilo, G. F., de Souza, L. A. C., Campista, M. E. M., Costa, L. H. M.,
Duarte, O. C. M. - “A Blockchain-based System for Secure and Distributed

50

Virtual Network Functions Orchestration”. In International Conference on
Communications (ICC) (pp. 347-352). (2022, May). IEEE.

• Thomaz, G. A., Camilo, G. F., de Souza, L. A. C., Duarte, O. C. M. - “Archi-
tecture and Performance Comparison of Permissioned Blockchains Platforms
for Smart Contracts”. In Global Communications Conference (GLOBECOM)
(pp. 1-6). (2021, December). IEEE.

• Alvarenga, I. D., Camilo, G. F., de Souza, L. A. C., Duarte, O. C. M. -
“DAGSec: A Hybrid Distributed Ledger Architecture for the Secure Manage-
ment of the Internet of Things”. In International Conference on Blockchain
(Blockchain) (pp. 266-271). (2021, December). IEEE.

• Rebello, G. A. F., Camilo, G. F., Guimaraes, L. C., de Souza, L. A. C.,
Thomaz, G. A., Duarte, O. C. M. - “A Security and Performance Analysis
of Proof-based Consensus Protocols”. Annals of Telecommunications. (2021).
1-21.

• Thomaz, G. A., Camilo, G. F., de Souza, L. A. C., Duarte, O. C. M. -
“Uma Análise Comparativa da Arquitetura e Desempenho de Plataformas de
Corrente de Blocos Permissionadas para Contratos Inteligentes”. In Anais do
IV Workshop em Blockchain: Teoria, Tecnologias e Aplicaçoes (pp. 114-127).
(2021, August). SBC.

51

	List of Figures
	List of Tables
	Introduction
	Work Contributions
	Thesis Outline

	Related Work
	Client Selection for Efficient Training
	Personalized Models in Federated Learning
	Clustered Federated Learning
	Contributions

	Federated Learning Concepts
	Feature Distribution
	Data Distribution
	Problem Formulation

	Clustering Clients to Reduce Training Data Heterogeneity
	Clients' Clustering Procedure
	System initialization
	System Maintenance

	Combining Models from Different Clusters
	Data Similarity-based Clients Clustering
	Detector Training
	One-versus-All Model

	Development of the Prototype and Experimental Results
	Evaluation of Cluster Models
	Performance Evaluation of Specific Models
	ATHENA-FL Accuracy Evaluation
	IID Data Scenario
	Scenarios with Non-IID Data

	ATHENA-FL Communication Evaluation

	Conclusion and Future Work
	References
	List of Publications

