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Abstract—Federated learning performance depends on the
data distribution, presenting lower performance in scenarios
where clients hold heterogeneous data. We propose a hierarchi-
cal client clustering system to mitigate the convergence obstacles
of federated learning in non-Independent and Identically Dis-
tributed (IID) scenarios. We identify in the server the existing
clusters executing an unsupervised clustering algorithm on the
bias vector of the last layer of the clients’ neural network.
We evaluate three clustering algorithms: K-Means, DBSCAN,
and OPTICS. The DBSCAN algorithm demonstrated better
clustering results, correctly identifying the clients’ clusters in
IID and non-IID data distributions. Finally, the results show
an increase of model accuracy by up to 16% compared to
traditional federated learning non-IID scenarios.

I. INTRODUCTION

Federated learning (FL), proposed by Google [1], has
become popular among researchers and industry due to its
ability to create machine learning models while preserving
users’ data privacy [2]. After the change in data processing
regulations in several countries, for instance, the California
Consumer Privacy Act (CCPA) in the USA and the General
Data Protection Regulations (GDPR) in Europe, the impor-
tance of federated learning research and adoption increased.

The most widely used algorithm for creating federated
models is FedAVG (Federated Averaging), introduced in
Google’s federated learning proposal. The algorithm uses a
client-server architecture, in which the global server shares
a model, and the clients return to the server only the trained
model weights. This procedure prevents the clients from shar-
ing their data and increases the system’s privacy. Nevertheless,
the non-Independent and Identically Distributed (non-I1ID)
distribution of the clients’ training data reduces the final
model performance when trained with FedAVG [3].

This paper proposes a hierarchical client clustering system'
to increase the efficiency of federated learning in scenarios
where clients have non-IID datasets. Clients, also called
nodes, are divided into clusters where the data is similar.
The proposal uses the last-layer neural network weights of
the clients as information to perform clustering to preserve
the client’s privacy. We use the last-layer neural network
weights, as it maintains statistical relationships with the
clients’ private data without revealing them [4]. Each cluster
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trains a personalized model with independent hyperparame-
ters and parameters, allowing high classification performance
on specific tasks. Our proposal can easily be extended to
identify network attacks and improve system privacy with a
high accuracy level.

We analyze different clustering models and show the
advantage of adopting the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [5] algorithm for
client clustering. DBSCAN can identify homogeneous and
heterogeneous data distributions from the client neural net-
work weights and outperforms the Ordering Points to Identify
the Clustering Structure (OPTICS) [6] and K-Means [7]
algorithms. Furthermore, the results show that the proposed
approach performs at least equal to traditional federated learn-
ing. For non-IID datasets, the FedAVG algorithm converges
with low accuracy after 100 global epochs. Nonetheless, the
current proposal achieves better results across all clusters in
10 global epochs, providing high classification performance.

II. RELATED WORK

The time to convergence of the global model in federated
learning is attributed to three main factors: communication
latency, processing capacity, and data representation. The first
two factors are related to the user device, while the third
depends on the data distribution collected and stored by the
client. The random client selection, however, shown in the
original proposal of federated learning [1], ignores these three
relevant characteristics. Therefore, several research groups
present proposals to reduce the convergence time of federated
learning and improve the final performance of the generated
model. The main improvement approaches include client
selection and personalized models. Usually, client selection
relies on device characteristics or clients’ data. The goal is to
decide the best subset of clients for the current training epoch,
increasing the average model performance. On the other
hand, model personalization allows the creation of models
specialized in clients’ characteristics, consequently improving
local model performance.

A. Client Selection for Efficient Training

Luo et al. [8] and Lai et al. [9] propose client selection
schemes that optimize the time to convergence in federated
learning environments. The authors argue that selection based
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only on the representativeness of the data decreases the total
number of epochs for model convergence. However, when
clients with higher computational latency participate, the
delay between epochs increases significantly. Nevertheless, a
selection based only on processing capacity may incur more
epochs for convergence if selected clients have irrelevant data.
Thus, the authors simultaneously consider the characteristics
of the devices and the distribution of the collected data to
reduce the convergence time of the global model.

Rai et al. propose the irrelevance sampling metric for client
selection to improve the final accuracy of federated learning
models in IID and non-IID scenarios [10]. The objective
is to select clients considering the quality and quantity of
their samples. Each client computes its irrelevance sampling
metric and sends it to the server. The server then clusters the
clients according to the informed value in the following three
clusters: positive, negative, and zero. Finally, the proposed
methodology randomly selects the clients of each cluster with
a predefined fraction of each cluster to achieve faster model
convergence.

The selection of clients decreases the time to convergence
and increases the final accuracy of the model. The client
selection, however, is insufficient for practical purposes in
environments with heterogeneous data. Thus, an alternative
is model personalization, which fine-tunes clients’ models
according to their local data and improves their final per-
formance.

B. Personalized Models in Federated Learning

Dennis et al. [11] takes advantage of data heterogeneity to
produce an unsupervised federated learning algorithm. The
clients train a clustering model with their local data and send
the vectors that indicate the position of the clusters found in
the sample space to an aggregation server. The server then
runs a second clustering model based on clients’ responses
to identify the clusters in the environment. The greater the
distance between client distributions, the more effective the
detection of different clusters. The proposal has an application
for both the selection of clients and the personalization of
models.

IFCA (Iterative Federated Clustering Algorithm) [12] is a
proposal for clustering clients to personalize models. In the
proposal, clients are responsible for choosing their clusters.
In addition, the authors propose the employment of multi-
task learning, which consists of sharing some neural network
weights for clients who have data distributions with inter-
sections but are in different clusters. Delegating the process
of identifying clusters to the clients, however, the environ-
ment can be susceptible to malicious behavior and requires
more computational cost from the clients’ devices. Another
disadvantage of this proposal is to assume that the number
of clusters is previously known, which may be unfeasible
and can either overestimate or underestimate the number of
existing clusters.

CFL [13] is a proposal that recursively partitions federated
learning clients into more homogeneous clusters to mitigate

the problems generated by non-IID distributions. Partitioning
occurs whenever the loss gradient vector exceeds a pre-
established distance threshold. Nonetheless, clients’ recursive
partition leads to computational overhead on the aggregation
server because it runs the procedure at each global training
epoch.

Fraboni et al. propose a clustering sampling method for
client selection [14]. The authors provide two approaches for
clustering clients: client sample size and model similarity.
Nevertheless, the first approach highly depends on the clients’
informing their exact sample size to the aggregation server for
cluster definition. Therefore, this approach is susceptible to
clients’ malicious behaviors. On the other hand, the method
uses all model weights in the model similarity proposal, which
is not efficient.

We propose a model personalization system through client
clustering, unlike previous client selection proposals that only
consider optimizing a generic model across the entire feder-
ated learning system. The proposed approach aims at clus-
tering clients with homogeneous data. Thus, each computed
cluster holds IID data, benefiting the system participants in-
dividually. Furthermore, clustering clients can improve model
convergence in the cluster and increase the final performance
for specific learning tasks. We define the clusters with an
unsupervised clustering algorithm that receives clients’ neural
network weights as an input vector. Therefore, the proposal
maintains the privacy requirements of traditional federated
learning, since there is no private data sharing. In addition, the
proposal is agnostic to the clustering algorithm, eliminating
the need for prior knowledge of the number of existing
clusters.

IIT. HIERARCHICAL CLIENT CLUSTERING SYSTEM

This section presents the details of the proposal to create
accurate models with hierarchical clustering of clients. Firstly,
we approach the client’s clustering for the creation of cluster
models, and later we discuss the composition of more generic
models using cluster models. Finally, we discuss possible
attacks on the system and possible countermeasures intro-
duced by our proposal. The system is applied in a horizontal
federated learning environment, where clients sample data
with the same set of features.

The model generated is particular for a cluster of clients
with IID data, improving the system’s overall performance.
Thus, instead of having one global model, the proposed
system has n personalized models, called cluster models, for
each one of the n existing clusters sharing IID data.

Message exchanges between the clients and the server
are encrypted, and only the server knows the clients. This
prevents malicious clients from getting information about
other clients and using it to degrade the model, assuming the
server has not been compromised. Furthermore, it is assumed
that the server is honest, running the FedAVG algorithm for
aggregating the gradients correctly and combining the models
on demand. Clients are assumed to have stationary data so that
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the distance between the individual loss gradient vectors of
the selected clients and the average vector of the cluster for
a specific epoch.

A. Proposed System

The proposed system for training federated models is
composed of an initialization followed by two phases. The
division of clients aims to minimize the heterogeneity of the
data used for training the global model. For this, during the
system initialization, the server performs a global round of
federated learning, selecting all the clients in the network.
Clients locally calculate the neural network weights with their
data and return the result to the server. After receiving the
response from the clients, the server executes the first phase
after initialization, which is to uniquely allocate clients to
clusters. The server uses a clustering algorithm to determine
the number of clusters and the clients of each cluster. As a re-
sult, clients with similar neural network weights are allocated
to the same homogeneous cluster. Note that cluster creation
occurs without the need to access the client’s samples, which
is a requirement for keeping privacy. After cluster creation,
the second phase starts, consisting of traditional federated
learning training among clients in the same cluster. Therefore,
in the proposed system, there are at least £ > 1 specific mod-
els, where k is the number of clusters generated by the server.
In addition, clients can generate on-demand combinations
of cluster models to form generic models that are capable
of classifying generated samples into distinct distributions.
Unlike traditional federated learning, the proposal calls the
federated learning server a selection and aggregation server,
because, in addition to aggregating the results, the server is
responsible for selecting and storing each client’s cluster.

B. System initialization

The steps in Fig. 1 are performed to initialize the system. In
the first step, the server shares the test model with an initial
set of clients. The clients adjust the test model parameters
with their local data and return only the bias vector from the
last layer to the selection and aggregation server. The server
runs the clustering algorithm and saves the existing clusters.
Once clusters are established, new clients will not be able to
generate new clusters, only allocated to existing clusters. The
initial model of each cluster may differ from the test model,
as the server can adjust the model hyperparameters according
to the data from each cluster. Adding new clients to a cluster
only affects training if the model has not converged. After
model convergence, new clients only receive the final model
from the cluster. Furthermore, the proposal predicts a fixed
number of clusters after initialization, assuming that clients
have stationary data. If all clients in a cluster fail simulta-
neously, the aggregation server stores information about the
cluster, consisting of the training state and current model.
This is important as the failed clients can be recovered, and
new clients can be eventually allocated to the cluster. The
clustering algorithm is not run to identify new clusters. It

is used to identify malicious actions and assign new clients
to existing clusters instead. The system is agnostic to the
clustering model used, allowing the administrator to select
the clustering algorithm that best suits the requirements.
The proposal assumes that the administrator has relevant
information to adjust the clustering algorithms before defining
the clusters, e.g., existing classes and a small dataset. Another
hypothesis is that the clients’ learning tasks are the same, e.g.,
image classification.

Selection and

New Client Aggregation Server

R<VBO

Federated Learning Environment

OO

Cluster 2 Cluster 3
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Figure 1. Initialization of the proposed system. (1) The initial set of clients
receives the test model. (2) Clients adjust the neural network weights and
return the bias vector from the last layer of the model to the server. (3)
The selection and aggregation server runs the clustering algorithm to get the
clusters from the system. (4) The server associates new clients with clusters.

C. Dynamics of Clients in the System

The entry of new clients into the environment is shown in
Fig. 2. The new client who wants to participate in federated
training asks the selection and aggregation server for a new
cluster. The server sends the client a test template, which
is identical for all new clients. After this step, the client
calculates the update of the test model and sends the result
to the server. With the responses from the clients, the server
runs a clustering algorithm and associates the client with a
cluster. Finally, federated learning is traditionally performed
independently in each cluster.

Clients are clustered according to the model update sent
to the aggregation server. Nevertheless, it was experimentally
verified that the final layers of the model retain more informa-
tion about the data. Thus, one can reduce the communication
cost of the system, by sending only part of the deep neural
network to the server.

Fig. 2 details the steps developed by the proposal for the
creation of system models. The client requests the server to
be included in a cluster. The server sends the test model
to the client to obtain statistical information. This step is
fundamental in the proposal, as it clusters clients without
revealing data privacy. The client updates the test model with
its private data and sends part of the result to the selection
and aggregation server. After receiving the response from
the client, the server runs the clustering algorithm adjusted
at system startup to determine which cluster the new client
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Figure 2. Proposed execution diagram. The first step is to allocate a new
client to an existing cluster. After the client is allocated to a cluster, traditional
federated learning is performed in the cluster.

belongs to. The cluster information is sent to the client and
their identity is added to the cluster list. Finally, the server
sends the current m; model of the cluster to the client,
allowing it to participate in the federated training. From this
stage, federated training takes place in the traditional way in
the g; cluster in which the client was allocated. At each F;
epoch of the cluster, the server randomly selects a fraction of
clients to adjust the parameters of the cluster model. If the
client is selected, it calculates the new p; weights and sends
them to the server for aggregation. Finally, the server sends
the updated model m; to the clients of the cluster g; and a new
epoch, E;, for the cluster begins. The process is repeated until
a stopping condition is reached, such as a model performance
convergence criterion, e.g., accuracy within a low variation
threshold in consecutive epochs, or a maximum number of
global epochs executed F;

max *

IV. PROTOTYPE DEVELOPMENT AND EVALUATION

A prototype of the system was developed using Python
v3.9.1 with flower v0.18.0 for the development of the feder-
ated learning environment and the scikit-learn library v1.0.1
to create the cluster models. The experiments were carried out
on an Intel i7-8700 CPU 3.20 GHz server with 6 processing
cores and 32 GB of RAM. The experimental results of the
evaluation of the models present the average obtained among
all the clients and a confidence interval of 95%. For training
the models and evaluating the performance of the proposal,
the dataset CIFAR-10 [15] is used. The dataset consists of
60,000 color images with a dimension of 32x32 belonging
to 10 different classes. Each class has the same number of

samples. In the experiments, the term traditional federated
learning is equivalent to FedAVG without the clusters.

A. Evaluation of Cluster Models

The first step of the system clusters the clients from the
update vector sent to the server. Thus, Experiment I evaluates
ways of clustering clients based on the information provided.
In this experiment, the hyperparameters of three clustering
algorithms are analyzed: K-Means [7], OPTICS [6] and
DBSCAN [5].

K-Means is a widely adopted algorithm for clustering tasks.
Its main hyperparameter is the number of %k clusters existing
in a given dataset. Nevertheless, defining this hyperparameter
in an unknown dataset is an arduous task, as there is a
prior need to know the number of existing clusters. Thus,
there is a higher computational cost to use an iterative
approach and estimate the best number of clusters. In this
way, OPTICS appears as a more practical alternative, as it
requires the minimum number of samples to form a cluster
as a hyperparameter. Moreover, setting a minimum number
of samples per large cluster can still generate heterogeneous
clusters. Finally, an alternative to the previous algorithms
is DBSCAN. Besides the ability to configure a minimum
number of samples to create a cluster, DBSCAN uses the
maximum distance between two samples as a hyperparameter.
Therefore, it is possible to practically establish a direct
relationship between the clients’ replies to define if they have
IID data.

The clustering results show that the algorithm that best
divides clients when varying the scenarios was DBSCAN
using a minimum distance of 0.0279 between client vectors.
In the three scenarios, DBSCAN optimally clustered the
clients, overcoming OPTICS in the IID scenario by identify-
ing only one cluster. Furthermore, the three clustering models
generated the same clusters in the non-IID scenarios. The next
experiments evaluate the models generated after clustering the
clients.

The three algorithms were evaluated with respect to the
clustering of clients for different initialization hyperparame-
ters. The K-Means algorithm establishes an optimal threshold
for the performance evaluation experiments of the proposal
because as the non-IID scenarios are created in a controlled
way, the optimal number of clusters is known in advance.
For the IID case, K-Means is configured to create clusters
with at least two clients in order to guarantee the consistency
of federated learning. The purpose of this configuration is to
verify the impact on accuracy when the number of clusters is
overestimated, dividing clients unnecessarily. So three is the
number of clusters that maintain a minimum of two clients
per cluster for K-Means.

A relevant evaluation is to determine the distance that
allows DBSCAN to identify the clusters whose data are 1ID
in the experimental scenarios. Thus, it is necessary to vary
the distance hyperparameter and check how many clusters
the model returns. The distance between the neural network
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weights of the clients strongly depends on the number of local
epochs of the clients. Increasing the number of local epochs
implies specializing the neural networks on the training data
and, thus, producing vectors that are more distant from each
other. On the other hand, clients that have datasets with
similar distributions, when specializing their weights, produce
vectors that remain close.

B. Performance Evaluation of Specific Models

The second experiment evaluates the behavior of the pro-
posal when all clients’ datasets are IID. The goal is to
evaluate the performance of the proposal when using different
clustering algorithms and verify the impact on accuracy when
there are more clusters than needed. The hyperparameter k of
K-Means was initially set to 5 was set to 5. This hyperparam-
eter is decremented until clusters with the minimum number
of participants are established. So, through this approach,
Experiment II uses £ = 3. OPTICS was configured with a
minimum number of clients equal to 2, and it also generated
clusters unnecessarily. On the other hand, DBSCAN, when
analyzing the vectors of clients, correctly identified only one
cluster, once the dataset is IID.
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Figure 3. Accuracy evolution as a function of global epoch for customers
with IID datasets. The red line represents the traditional approach of federated
learning, while the blue and the green lines represent the proposal of this
paper with clustering through DBSCAN and OPTICS, respectively.

The result of Fig. 3 indicates the average behavior of
accuracy in all 10 clients using the traditional approach and
the current proposal. The proposal, even using K-Means and
OPTICS for clustering, has a final accuracy value close to
the traditional case, despite dividing clients into clusters un-
necessarily in this experiment. Thus, it can be concluded that
there is no significant loss of performance even when clients
have IID datasets and are divided into clusters. Furthermore,
the experiment demonstrates the ability of the DBSCAN
algorithm to identify that creating clusters is unnecessary in
this case. Table 3 demonstrates that the behavior in each
cluster is similar to the average behavior shown in Fig. 3.
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Figure 4. Evolution of the test accuracy as a function of global epoch for
clients with datasets that contain only two classes. The red line represents
the traditional approach, while the blue line represents the proposal of this
paper.

In the third experiment, the data distributions on the clients
are non-IID, with only two classes present in their datasets.
The goal of this experiment is to compare the performance
of the model generated through traditional federated learning
with the one created by the current proposal, in which the
data distribution is non-IID. To do this, the 6,000 samples
of a class are split among five clients to create balanced
datasets. Fig. 4 displays the experimental mean result among
all clusters, illustrated in the figure as the blue line, and
the traditional result, represented by the red line. Traditional
federated learning is affected by the level of data heterogene-
ity, while the current proposal allows for high classification
performance.

The experiment also analyzes the individual behavior of
the clusters’ models. The results show that the first cluster
has an accuracy of (56 + 3)%, while the second has an
accuracy of (63 £ 3)%. Although there is a cluster with higher
performance, even the low performance of the first cluster is
higher than that obtained when using the traditional proposal.
Thus, it can be concluded that the proposal successfully
mitigated the effects of heterogeneity in the scenario with
five classes per client.

The fourth experiment again evaluates the performance of
the proposal for non-IID datasets. The difference from the
third experiment is the reduction in the number of classes
each client has to two classes. The results shown in Fig. 5
show similar behavior to the third experiment for both cases,
but with a better final performance. This fact can be explained
by the difficulty of the problem, simplified to a binary
classification.

The fifth experiment evaluates the clustering approach in a
non-IID scenario where the clients’ datasets are not limited to
samples of a subset of classes, thus creating a more realistic
scenario. We build the datasets of this experiment through
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Figure 5. Test accuracy evolution as a function of overall epoch for

clients with datasets containing only five classes. The red line represents
the traditional approach, while the blue line represents the proposal in this
paper.
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Figure 6. Evolution of the test accuracy as a function of global epoch for
clients with datasets that contain only two classes. The clients’ datasets are
generated with the LDA using oo —0.5. The red line represents the traditional
approach, while the blue line represents our current proposal.

the Label-based Dirichlet Partition (LDA), which generates
the data based on the number of clients and non-1ID degree.
Figure 6 shows the results of Experiment V. Our approach
increases by more than 14% the accuracy compared with
traditional federated learning.

V. CONCLUSION

We proposed a system to increase the performance of fed-
erated learning when clients have non-1ID data distributions.
The DBSCAN clustering algorithm, which requires only the
minimum distance between samples as a hyperparameter,
provided a high ability to detect the existing clusters even
when clients have IID datasets. Besides, the proposed system

outperformed traditional federated learning when the clients’
datasets are non-IID in all the evaluated scenarios. The
generated models exhibited high classification performance
and few epochs to converge, approximately ten global epochs.
The traditional model, however, achieved low classification
performance even after 100 global epochs for non-IID data.
The accuracy showed an improvement of approximately 16%
in the best case. The proposal will be extended to non-
stationary scenarios in future work to deal with the concept
drift of the data, where the aggregation server can change
clusters on demand.
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