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Abstract— Network Function Virtualization (NFV) and Ser-
vice Function Chaining (SFC) offer flexible end-to-end services
that deploy virtual network functions in clouds of competing
providers. Orchestration of virtual network functions occurs
in a distributed and trustless environment that must tolerate
byzantine failures and collusion attacks. This paper proposes
BSec-NFVO, a blockchain-based system that secures orchestra-
tion operations in virtualized networks, ensuring auditability,
non-repudiation and integrity. We propose an NFV-tailored
blockchain and a transaction model. BSec-NFVO provides a
modular architecture to secure orchestration in a simple and
agile way. We develop a prototype of BSec-NFVO for the Open
Platform for Network Function Virtualization (OPNFV) with an
adaptation of the normal-case of a collusion-resistant consensus
protocol. The results show BSec-NFVO incurs low overhead to
the cloud orchestrator and presents stable performance as the
number of consensus participants increases.

I. INTRODUCTION

The Network Function Virtualization (NFV) technology
replaces hardware-based network functions by virtual net-
work functions (VNF) that run in commodity machines.
NFV reduces costs and offers flexible network management
by reimplementing middleboxes in software that can be
developed by a plethora of providers. Meanwhile, Software-
Defined Networking (SDN) can be used with NFV to steer
traffic through a sequence of virtual network functions1. The
result, Service Function Chaining (SFC) [1], creates an end-
to-end network function chain to provide on-demand services
tailored for each application. NFV and SFC are fundamental
to provide flexible traffic control and management for ser-
vices in next generation networks.

Network function virtualization and service function
chaining, however, incur new security challenges [2], [3].
As end-to-end service function chains may deploy virtual
network functions in domains of competing cloud providers,
we must ensure the service chain is built in a trustful manner
while in a trustless environment [4]. Furthermore, in a virtu-
alized scenario, tenants share the same cloud infrastructure.
A multi-tenant and multi-domain environment increases the
possibility of attacks inside the cloud, while also hindering
accountability of service providers. The impacts of possible
attacks become greater, since attacks to the host of VNFs
can compromise thousands of users simultaneously [3].

The FCAPS (Fault, Configuration, Administration, Per-
formance and Security) model is a standard for managing

1In the scope of this paper, the terms virtual network function (VNF) and
service function (SF) are used interchangeably.

telecommunications networks in single-provider centralized
environments. The NFV scenario, however, is a distributed
environment in which trust between providers is uncertain.
Providers offer distributed services through multiple clouds,
rising new challenges such as: i) ensure correctness of service
function chains; ii) identify the cloud provider, from the
participants of a service function chain, that is accountable
for a failure; iii) establish provenance, impact and total time
a failure remained undetected.

In previous works, the authors of this paper evaluated
the performance of service function chains in the Open
Platform for Network Function Virtualization (OPNFV) [5]
and analyzed the use of blockchain in OPNFV for securing
configuration and migration of virtual network functions [6].
This paper proposes, develops, and evaluates BSec-NFVO,
a blockchain-based system for agile and secure management
of service function chain orchestration operations2. BSec-
NFVO extends the premises of FCAPS to a multi-domain
environment. Our proposal guarantees transparency of or-
chestration operations and accountability of its authors by
immutably logging all instructions that manipulate a service
chain. The use of blockchain and public-key cryptography
ensures authenticity, integrity and non-repudiation of instruc-
tions, which allows confirming provenance. Therefore, BSec-
NFVO guarantees auditability of the performed operations,
which can be used for investigation and legal measures in
the case of a security incident.

The main contribution of this paper is proposing
blockchain and transaction models that provide traceability
in a multi-tenant and multi-domain NFV environment. We
implement a prototype of BSec-NFVO in the Open Platform
for Network Function Virtualization (OPNFV) with a sim-
plification of the Practical Byzantine Fault Tolerance (PBFT)
consensus protocol. In our main findings, we discover that:
i) the delay introduced by blockchain and transaction val-
idation is not significant; ii) BSec-NFVO is more efficient
in longer service chains; and iii) transaction throughput
remains stable while increasing the number of consensus
participants. The prototype offers the necessary infrastructure
for performing a secure orchestration and creating service
function chains.

II. RELATED WORK

Previous works address the problem of security vulnerabil-
ities in multi-tenant and multi-cloud NFV environments [7],

2Available at https://github.com/gfrebello/bsec-nfvo



Fig. 1. An example of a BSec-NFVO use case scenario in which a service function chain comprises VNFs located in several domains. Blockchain modules
immutably record operations issued by orchestrators of competing cloud providers.

[8]. The works indicate trust in cloud providers is uncertain
and that compromising a single VNF at the network core
endangers entire end-to-end services. Massonet et al. propose
an architecture for global configuration of security VNFs in
federated networks with automated deployment [9]. Khettab
et al. propose to secure multi-domain NFV environments by
dynamically instantiating security network functions such as
firewalls and intrusion detection systems [10]. The afore-
mentioned works assume the cloud is a trustful entity for
provisioning and storing data. Our work assumes a trustless
environment and uses the immutability and auditability prop-
erties of blockchain to prevent possible malicious behaviour
by cloud providers in NFV.

Other works propose the use of blockchain to ensure
transaction traceability in distributed trustless environments.
Zaowat and Hasan proposed SECAP, a blockchain-based
framework to securely store a provenance tree of cloud
applications [11]. The framework, however, only protects
the logs of application state changes. Bozic et al. propose
an architecture for managing execution states of virtual
machines using a blockchain-based system [12]. The system
logs instructions sent to the virtualization hypervisor on
the blockchain as transactions. The authors, however, only
protect virtual machine creation instructions and provide no
implementation of the proposed architecture.

We propose to secure and provide auditability of VNF or-
chestration operations using a private blockchain. A consen-
sus protocol that prevents collusion attacks without compro-
mising latency and throughput is mandatory in our proposal.
Hence, solutions based on Proof of Work or that only tolerate
crash failures do not attend the necessary demands. We adopt
a byzantine fault tolerant (BFT) protocol called Practical
Byzantine Fault Tolerance (PBFT) to promote low-latency
consensus while tolerating malicious behavior of up to one
third of participants [13], [14]. Unfortunately, to the best
of our knowledge there is no open source implementation
of the PBFT consensus for blockchains. The Hyperledger
Fabric project aims to implement PBFT and other BFT-based
blockchains in the future [15].

III. THE BSEC-NFVO SYSTEM

The main goal of BSec-NFVO is to protect all creation,
removal, and modification instructions of virtual machines,

virtual network functions, and service chains. In our pro-
posal, instructions are tenant-issued requests for orchestra-
tion operations. Our scenario is composed by orchestrators,
tenants, and cloud providers. Orchestrators are entities that
manipulate a service function chain according to the set
of instructions received from a tenant. Tenants are domain
clients that use a service provided by the service function
chain. Cloud providers are providers that manage a set of
data centers, also called a domain. BSec-NFVO allows all
orchestrators, tenants and cloud providers to easily verify
a local and immutable history of past instructions in a
blockchain to identify malicious participants in the network.

The NFV scenario implies big data center communica-
tion and comprises four key aspects: i) limited number of
identified providers, as each provider takes part in service
level agreements with tenants and other providers; ii) low
number of crash failures, due to the high availability of
big data centers; iii) high throughput and low latency in
end-to-end communication, as VNFs are implemented in
the network core; and iv) tolerance to malicious behavior
between competing providers and tenants. Furthermore, the
geographical location of network functions in an end-to-
end service may affect efficiency according to the VNF
role in a service function chain. Figure 1 illustrates an
example of a service function chain in an NFV scenario.
In the example, a service function chain comprises VNFs
hosted by competing cloud providers, thus creating a trustless
environment. Each provider has a domain, which contains a
single VNF orchestrator.

In BSec-NFVO, instructions that manipulate a service
chain become signed transactions. Each issued instruction
corresponds to a request transaction and a response trans-
action. Tenants sign request transactions and orchestrators
sign response transactions, and both types are validated
and agreed upon consensus. Thus, a signed transaction in
the blockchain is an irrefutable proof that a specific tenant
requested an operation and that an identifiable orchestrator
executed it. Because our main goal is to provide auditability,
the transaction content is visible to anyone in the network,
including tenants, orchestrators and consensus participants.
Other implementations could provide transaction confiden-
tiality by using public-key cryptography. Each instance of
BSec-NFVO contains a replica of the global blockchain, and



Fig. 2. The proposed system architecture. Tenants request orchestration operations through a web interface. The instructions are signed and sent to the
blockchain module as request transactions. The orchestration module reads transactions from the blockchain and communicates with the OPNFV cloud
orchestrator, which then returns the operation result to be signed and validated as a response transaction.

at least one instance must run in each domain.

The architecture of BSec-NFVO, depicted in Figure 2,
comprises three modules: i) the visualization module, which
serves as the interface between tenants and the NFV and
SFC services; ii) the orchestration module, which executes
instructions sent by tenants through the visualization module;
and iii) the blockchain module, which validates transactions
before execution by the orchestration module.

The Visualization Module aims to ease the specification
of an end-to-end service. This module comprises four main
components: i) a user-friendly web interface that allows a
tenant to manage hired services and to issue instructions;
ii) an access control manager that applies Service Level
Agreements (SLA) to each tenant and limits its access to the
hired services; iii) an orchestration client that communicates
with the orchestration module to read the current state of
services in the platform; and iv) a blockchain client that signs
instructions and sends the resulting request transactions to the
blockchain module. Client components communicate through
remote procedure calls (RPC) protected by the Transport
Layer Security (TLS) protocol.

The Orchestration Module executes instructions and
responds to read requests received from the visualization
module. The module comprises five main component: i) an
orchestration server that receives RPC calls from the visu-
alization module; ii) a database that records account infor-
mation of each tenant; iii) a permission control system that
verifies whether a tenant is authorized to issue the received
instruction; iv) a blockchain client that communicates with
the blockchain module to verify the existence of pending
instructions and to send signed response transactions; and
v) an Application Programming Interface (API) that connects
to the OPNFV platform to execute authorized instructions.

The Blockchain Module performs instruction validation
and comprises two components: a blockchain server and the
blockchain itself. The blockchain server receives RPC calls
for write and read requests to the blockchain. After each
time interval, on the order of seconds, the blockchain module
records every received transaction in a block, links it to the
hash function output of the previous block and signs it with a
key pair provided by its corresponding cloud provider. Each
blockchain module keeps a replica of the blockchain that
contains transactions approved in the consensus protocol.

IV. THE BLOCKCHAIN AND TRANSACTION MODELS

A blockchain is a replicated data structure that ensures
trust and agreement in a distributed system while dismissing
the need for a common central authority. The blockchain
works as a permanent and immutable ledger of ordered
transaction blocks that are identified by a digest of a crypto-
graphic hash function. Because the blockchain is replicated
in multiple network participants and every transaction is
signed, non-repudiation of transactions is guaranteed.

We propose and develop blockchain and transaction mod-
els to address the needs of the NFV scenario. Figure 3 depicts
the main difference between the BSec-NFVO blockchain and
a traditional structure. A BSec-NFVO block comprises two
sections: content, in which the public key of the blockchain
module that proposed the block is stored along with the pre-
vious block signature, and content signature. The proposed
content signature field provides auditability of the consensus
process by clearly identifying the blockchain module that
proposed the recorded block. We also provide the public
key of the signer in the block content and, thus, any entity
can verify the signature. Blockchain modules never emit
transactions, but each blockchain module has an asymmetric
key pair for signing blocks and consensus messages.

We define two types of transactions in the proposed archi-
tecture: request transactions, issued by tenants for recording
instructions, and response transactions, issued by orches-
trators for recording the execution output of the received
instruction. Hence, a request transaction is signed by the
tenant that proposes it and a response transaction is signed by
the orchestrator that executes the corresponding instruction.
BSec-NFVO transactions contain a header and a content
section. The header of each transaction contains the signature
of the content as generated by its emitter, which ensures
authenticity and transaction integrity. The content fields are:
type, which defines the transaction category; sender, which
contains the public key of the sender; timestamp, which
defines the moment in which the transaction was emitted. A
request transaction also contains an instruction field, which
defines the write instruction to be executed by an orches-
trator. A response transaction has three additional fields:
source transaction, which identifies the corresponding request
transaction to which it responds by the header; result, which
defines the response of the orchestrator to the requested
instruction; and error, which identifies potential errors in



Fig. 3. The BSec-NFVO blockchain. The consensus primary node signs the current block to ensure authenticity.

Fig. 4. The two types of transactions in BSec-NFVO. Tenants issue request
transactions and orchestrators issue response transactions. Every response
transaction is bound to a corresponding request transaction by the header.

the orchestration process. Every response transaction must
identify its corresponding request transaction, proving com-
munication between tenant and orchestrator occurred.

Blockchain modules validate transactions by verifying four
aspects: i) the transaction signature, to match the public key
of the sender; ii) the presence of every field as specified in
each transaction type definition; iii) the timestamp, according
to a predetermined threshold, to avoid the execution of
future and past transactions; and iv) the presence of the
candidate transaction in the blockchain, to avoid duplicates.
For request transactions, the instruction field semantics is
also verified to avoid the execution of arbitrary instructions.
Invalid transactions are immediately discarded. Transaction
validation is performed locally on each blockchain module.

A. Consensus in BSec-NFVO

In order to be efficient and robust, we select a Byzantine
Fault Tolerant (BFT) consensus protocol instead of Proof
of Work or a consensus that only tolerates crash failures.
The chosen BFT consensus protocol presents low latency
and tolerate malicious behavior of up to one third of partic-
ipants [13], [14]. We develop a BSec-NFVO prototype that
implements a simplified version of the Practical Byzantine
Fault Tolerance (PBFT) consensus protocol. Our implemen-
tation does not account for exception conditions nor leader
election, but behaves similar to the PBFT protocol in normal
conditions. Our implementation is, thus, fit for a proof of
concept and for the performed prototype evaluation.

We propose a three-phase operation sequence simplifica-
tion of the conventional five-phase sequence of the normal-
case PBFT. The three phases are depicted in Figure 5:
i) pre-prepare, in which the primary node, also referred
to as the leader, creates a signed block containing a new
set of candidate transactions and broadcasts it to all par-
ticipants; ii) prepare, in which each participant validates
the transactions locally and broadcasts its decision through
signed messages; and iii) commit, in which each participant
broadcasts its final result through signed messages after
receiving more than two thirds of signed votes. In the commit

phase, every prepare message received by a participant is
included in the final message as a proof of consensus.

It is important to note that we discard the traditional
request and response phases of PBFT because they oc-
cur asynchronously when employed in a blockchain-based
application. Due to the immutability characteristic of the
blockchain, all states are verifiable by anyone at any time.
Hence, the request and response phases are not necessary.
Although the private blockchain network comprises tenants
and cloud providers, only cloud providers participate in
consensus, reducing overall consensus time and increasing
throughput. If a blockchain module is not the primary node,
it relays every received transaction to the primary node. The
primary node proposes a new block that contains a set of all
transactions received before the start of the current round.

V. PERFORMANCE EVALUATION OF BSEC-NFVO

BSec-NFVO uses the Open Platform for Network Function
Virtualization (OPNFV) for creating service function chains.
OPNFV implements service function chaining as described
in RFC 7665 [1] and uses the Network Service Header
protocol. The evaluation of the BSec-NFVO prototype aims
to measure three key aspects: i) the overhead introduced
by blockchain and transaction validation in the OPNFV
environment; ii) the performance of the simplified consensus
protocol; and iii) the blockchain size increase rate, which
affects the cost of storing replicas.

To evaluate the system overhead, we install and configure
BSec-NFVO in an Intel 16-core Xeon E5-2650 32 GB
RAM that acts as the controller of an OPNFV environment
deployed in the GTA/UFRJ laboratory. The compute nodes
consist of three servers: one Intel 8-Core Xeon X5570 96 GB
RAM (node 1), one Intel 8-Core i7-6700 64 GB RAM (node
2) and one Intel 8-Core i7-2600 32 GB RAM (node 3). A
top of rack switch connects all servers in a LAN with 1 Gb/s
network interfaces. A personal computer issues instructions
to the visualization module through HTTP requests. Every
signature in the prototype uses 2048-bit RSA keys and
the PKCS#1-PSS signature standard as implemented by the
PyCryptodome3 cryptography library.

The first experiment evaluates the delay introduced by our
BSec-NFVO proposal. First, we evaluate the time overhead
caused by signing instructions and validating transactions
without exchanging consensus messages in the network.
Thus, we use a single-consensus blockchain module. We
measure the tenant-platform communication delay between
an HTTP request for creating a service function chain, issued

3The library is available at https://github.com/Legrandin/pycryptodome



Fig. 5. The proposed three-phase operation sequence for the PBFT normal-case: pre-prepare, prepare and commit. After the commit phase, the new block
is appended to the blockchain in each participant blockchain module.

by a tenant through the BSec-NFVO web interface, and
its response, i.e. the confirmation that the instruction will
be executed by the cloud orchestrator. Figure 6(c) shows
that, with a 95% confidence interval, the blockchain-induced
additional delay is about 0.06 s or 3%, indicating the time
overhead introduced by the blockchain is not significant.

In a second experiment we aim to measure the mem-
ory overhead generated by public-key cryptography oper-
ations in the proposed blockchain and transaction mod-
els. Therefore, we issue empty transactions and empty
blocks. The typical instruction in OPNFV includes the
instruction itself and its optional parameters that may
point to a configuration model, e.g. "opnfv create-vnf
-config=vnf.conf". Hence, except for specific cases
such as sending the configuration file content directly in the
instruction, we expect an instruction to contain no more than
dozens of bytes. The total size of empty transactions is 637 B
for request transactions and 655 B for response transactions
while the total size of an empty block is 859 B. These
values indicate a high memory overhead for instructions
and demonstrate the high cost of ensuring authenticity and
integrity of transactions. The values, however, are plausible
in cloud environments, in which network, memory and disk
resources are notably abundant. Stressing the system to
obtain the maximum transactions throughput, we obtain an
average number of 3808 transactions per block. Therefore,
the size of a block typically ranges from kB to MB and the
block signature overhead is not significant.

In a third experiment, we aim to evaluate the performance
of the simplified consensus protocol in creating a service
function chain. We deploy all VNFs in the same compute
node to minimize overheads introduced by the OPNFV
platform [5]. Figure 6(b) shows the creation time of a service
function chain versus an increasing number of component
VNFs. The results show a direct relation between creation
time and the number of chained VNFs. This is due to
OPNFV, which sequentially creates each VNF from an image
in a virtual machine before chaining. The average VNF
creation time is 30.1 seconds and the introduction of a
PBFT-based consensus incurs a delay of up to 20 seconds,
for the 9-node case. The results demonstrate the overhead
introduced by consensus is inversely proportional to the chain
size and that the dominant term for long service chains is
the instantiating time. Hence, BSec-NFVO is more effective
to protect end-to-end services composed by many VNFs.

The fourth experiment evaluates the throughput of the

proposed architecture. We deploy several blockchain and
orchestration modules as independent processes in the same
host with a dedicated CPU core and 4 GB memory each.
The host machine is an Intel 32-core Xeon E5-2650 192 GB
RAM. Figure 6(c) shows the impact on system throughput
as instruction size increases. The evaluation considers only
request transactions because both types of transactions have
similar sizes. We select the sizes considering the typical
length of an instruction in OPNFV, using one byte per
character for encoding. Hence, we expect larger sizes to rep-
resent complex instructions, which require more parameters.
The results show the prototype throughput remains stable
when increasing the number of consensus participants for
all instruction sizes, except when compared to the single-
consensus case, in which no consensus messages are ex-
changed. Throughput also remains stable when increasing
instruction size up to 64 B. The minimum processing capabil-
ity between the primary node and the remaining participants
determines an 803.3 transactions per second upper bound.

The last experiment, shown in Figure 6(d), evaluates
the growth rate of a blockchain for increasing instruction
sizes. We use a constant rate of 100 transactions per second
to simulate a production environment in which transactions
represent requests issued by tenants. Experiments using 10
and 500 transactions per second generated similar results.
The results show that, for instructions of up to 64 B, the
blockchain growth rate reaches 100 kB/s per consensus
participant and grows significantly for instruction sizes above
256 B. The near-constant growth rate for transactions of less
than 64 B is due to the overhead generated by signatures,
which produces minimum transaction and block sizes.

VI. CONCLUSION
The network function virtualization technology provides

end-to-end services by chaining virtual network functions
between competing cloud infrastructures in a trustless envi-
ronment. In this multi-tenant and multi-domain scenario, it is
important to define and locate failures to identify malicious
agents that compromise the good behavior and quality of
service of thousands of users simultaneously. This paper
proposes BSec-NFVO, a blockchain-based system that pro-
vides the necessary security for orchestrating virtual network
functions in a multi-domain and multi-tenant environment.
BSec-NFVO offers secure services by ensuring auditability
of all operations that manipulate a service function chain.

We propose and implement NFV-adapted blockchain and
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Fig. 6. BSec-NFVO prototype performance evaluation: overhead, consensus protocol, and blockchains growth rate.

transaction models. We implement a prototype of BSec-
NFVO in the Open Platform for Network Function Virtu-
alization (OPNFV) with a simplification of a byzantine fault
tolerant consensus protocol to provide low-latency consensus
while tolerating collusion of up to one third of consensus
participants. The results show the delay introduced by the
blockchain is not significant, and that BSec-NFVO is more
effective in longer service chains. The peak throughput of
the prototype is 803.3 transactions per second. Throughput
remains stable for an increasing number of consensus par-
ticipants and for instruction sizes of up to 64 B. For future
works, we will formalize the adapted consensus protocol and
use blockchain to ensure consistency under byzantine faults
for software defined networking controllers.
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