
On the impact of deep neural network calibration on
adaptive edge offloading for image classification

Roberto G. Pachecoa,∗, Rodrigo S. Coutoa, Osvaldo Simeoneb

aUniversidade Federal do Rio de Janeiro - PEE/COPPE/GTA
bKing’s College London, KCLIP lab, Department of Engineering, London, United Kingdom

Abstract

Edge devices can offload deep neural network (DNN) inference to the cloud to

overcome energy or processing constraints. Nevertheless, offloading adds com-

munication delay, which increases the overall inference time. An alternative

is to use adaptive offloading based on early-exit DNNs. Early-exit DNNs have

branches inserted at the output of given intermediate layers. These side branches

provide confidence estimates. If the confidence level of the decision produced is

sufficient, the inference is made by the side branch. Otherwise, the edge offloads

the inference decision to the cloud, which implements the remaining DNN lay-

ers. Thus, the offloading decision depends on reliable confidence levels provided

by the side branches at the device. This article provides an extensive calibra-

tion study on different datasets and early-exit DNNs for the image classification

task. Our study shows that early-exit DNNs are often miscalibrated, overesti-

mating their prediction confidence and making unreliable offloading decisions.

To evaluate the impact of calibration on accuracy and latency, we introduce

two novel application-level metrics and evaluate well-known DNN models in a

realistic edge computing scenario. The results demonstrated that calibrating

early-exit DNNs improves the probabilities of meeting accuracy and latency

requirements.1

∗Corresponding author.
Email addresses: pacheco@gta.ufrj.br (Roberto G. Pacheco), rodrigo@gta.ufrj.br

(Rodrigo S. Couto), osvaldo.simeone@kcl.ac.uk (Osvaldo Simeone)
1©2023 This manuscript version is made available under the CC-BY-NC-ND 4.0 license

https://creativecommons.org/licenses/by-nc-nd/4.0/. DOI: https://doi.org/10.1016/
j.jnca.2023.103679

Accepted for publication to Journal of Network and Computer Applications July 22, 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jnca.2023.103679
https://doi.org/10.1016/j.jnca.2023.103679

Keywords: early-exit deep neural networks; edge computing; deep neural

network calibration; edge offloading

1. Introduction

Deep Neural Networks (DNNs) have presented an astonishing improvement

in their accuracy over the years [1, 2, 3, 4]. To achieve the accuracy required for

intelligent applications, DNN models have become increasingly deeper, requir-

ing high processing power to make inferences. For this reason, mobile devices5

generally gather raw data and offload DNN inference tasks to a cloud server.

The server can be equipped with the required computational resources, such as

Graphics Processing Units (GPUs) [5, 6]. However, cloud offloading may intro-

duce communication delays due to the network conditions between the mobile

device and the cloud server. Edge computing has emerged as a solution to10

circumvent excessive delays and communication overhead [5].

Edge computing moves computing resources closer to the end device, e.g., by

deploying computational resources on base stations [7]. This way, edge comput-

ing can reduce the communication delay inherent in a cloud-based deployment.

However, edge devices may have significantly less processing power compared to15

a cloud server and may not be able to support the desired reliability levels. DNN

model partitioning has been introduced to alleviate this problem by performing

an edge-cloud co-inference [6, 8, 9].

DNN partitioning chooses a partitioning layer to split the DNN model into

two parts. A mobile device gathers an input (e.g., an image) and sends it to the20

edge device, which processes the input layer-by-layer until the partitioning layer.

Next, the edge device offloads the partitioning layer’s output data to the cloud

server, which processes the remaining layers. The partitioning layer is chosen

by employing an optimization problem for a given objective, such as reducing

the inference time [9] or saving energy on the edge device [10]. This approach25

always offloads data to the cloud server, and its performance in terms of latency

is hence dependent on network conditions. Early-exit DNNs have emerged as a

2

Early-exit DNNs

offloading offloading

cloud

...

b1 bi bk

v1 vk ...vk+1 vN
input

edge
device

end
devices

Internet
access
network

Figure 1: Illustration of adaptive model partitioning between the edge device and the cloud

via early-exit DNNs.

more flexible alternative to DNN partitioning that can strike a more desirable

balance between edge and cloud processing [11, 12, 13].

Early-exit DNNs leverage the fact that not all inputs are equally difficult30

to classify. Therefore, distinct inputs may require a different number of neural

layers to achieve a sufficiently reliable confident prediction. Early-exit DNNs

consist of a DNN backbone into which side branches are inserted along interme-

diate layers, as shown in Figure 1. Given an input, side branches estimate the

accuracy of their inference outputs based on a confidence metric. Then, they35

compare the obtained confidence with an application-defined threshold to decide

if the prediction is sufficiently accurate. Hence, early-exit DNNs can accelerate

inference time by avoiding the need to run all layers since a significant portion

of inputs may be classified at side branches. BranchyNet [11] and SPINN [12]

allows the classification of a sample at side branches when the estimated accu-40

racy is larger than a tunable threshold. Early-exit DNNs and DNN partitioning

can be combined to implement an adaptive offloading strategy, illustrated in

Figure 1, whereby classification at the edge occurs if a side branch provides a

sufficiently accurate prediction. Otherwise, offloading to the cloud is carried out

to process the remaining layers and perform remote classification [14, 15].45

A successful adaptive offloading via early-exit DNNs requires that the side

branches provide an accurate measure of uncertainty. This measure should

gauge whether the inference decisions are sufficiently confident to be terminated

on a side branch [16]. To address this problem, DNN calibration emerges as an

3

alternative approach.50

DNN calibration refers to the process of adjusting the confidence estimates

produced by the DNN to align with the actual accuracy of its predictions. In

other words, calibration aims to ensure that the confidence estimates accurately

reflect its actual prediction accuracy. Guo et al. [17] experimentally demon-

strated that DNNs are typically miscalibrated, making overconfident predic-55

tions. An overconfident side branch would erroneously decide to classify an

input at the edge device, decreasing the accuracy.

While reference [17] did not address the calibration problem in early-exit

DNNs, this work fills this gap by analyzing the impact of calibration for adap-

tive offloading via early-exit DNNs2. SPINN [12] also applied a calibration60

method in an offloading scenario. Nevertheless, reference [12] does not discuss

or analyze the impact of calibration on adaptive offloading, which is the focus

of our work. In the context of adaptive offloading, early-exit DNN calibration

is particularly crucial because the offloading decision depends on reliable confi-

dence levels provided by the side branches at the edge device. If the confidence65

estimates are miscalibrated and the prediction accuracy is overestimated, the

offloading decisions may be unreliable, decreasing the overall accuracy. First,

we show via experiments that miscalibration significantly affects the offloading

decision’s reliability. Next, we calibrate early-exit DNN models by applying the

state-of-the-art temperature-scaling calibration method introduced in [17].70

We evaluate the impact of calibration using state-of-the-art models, demon-

strating an improvement in terms of two novel metrics, namely the edge infer-

ence outage probability and the missed deadline probability. The edge outage

probability quantifies the ability of an early-exit DNN model to meet a required

accuracy level for inference at the edge device. In other words, this metric quan-75

tifies the probability that an edge device fails to meet the accuracy requirement

when performing the inference locally at the edge device. Therefore, this metric

is a key indicator of the reliability and effectiveness of edge computing systems,

2A preliminary version of this work appeared in [14].

4

particularly in resource-constrained devices. On the other hand, the missed

deadline probability accounts for the probability of meeting accuracy and in-80

ference latency requirements when performing the inference at the edge or the

cloud. This metric is particularly relevant in applications that demand a critical

deadline. A high missed deadline probability indicates that the system cannot

meet the required performance objectives and may need to adjust the offloading

decisions or allocate additional resources to meet the requirements.85

We evaluate the proposed metrics by implementing a realistic edge comput-

ing scenario encompassing an NVIDIA Jetson Nano board as the edge com-

puting and an Amazon EC2 (Elastic Compute Cloud) instance as the cloud

server. We instantiate the cloud servers in two countries to evaluate network

conditions. Our evaluations experimentally demonstrate that early-exit DNN90

calibration can improve accuracy due to more reliable offloading decisions, lead-

ing to better overall performance. However, it comes at the cost of additional

communication delay due to more offloading between the edge device and the

cloud. This delay can impact overall inference time and should be carefully

considered in designing an adaptive offloading system.95

In summary, we list this article’s contributions as follows:

• We evaluate the calibration impact on several state-of-the-art early-exit

DNNs and experimentally demonstrate that the side branches are over-

confident. Hence, they can wrongly decide to classify samples at the edge

device.100

• We adopt the state-of-the-art temperature-scaling calibration method from

[17] to address the outlined calibration problem. We experimentally eval-

uate the impact of calibration in terms of two novel metrics, namely the

edge inference outage probability and the missed deadline probability, pro-

viding extensive experimental insights.105

This article is organized as follows. Section 2 reviews related work. Section 3

describes the adaptive offloading scenario via early-exit DNNs. We present the

adopted concepts and notation in Section 4. Section 5 presents the proposed

5

metrics that evaluate the calibration impact considering application-defined re-

quirements. Then, Section 6 analyzes the impact of calibration on several early-110

exit DNN models. Next, Section 7 uses these metrics to evaluate the calibration

impact on a realistic adaptive edge offloading scenario. Finally, Section 8 con-

cludes this article and presents the next research steps.

2. Related Work

In the conference version of this work [14], we analyze calibration for early-115

exit DNNs by considering AlexNet. This article extends the analysis to a va-

riety of early-exit DNN models. Furthermore, we implement a realistic edge

computing scenario, while our former work uses simulation-based estimates of

processing and communications delays. The following review of works focuses

on early-exit DNNs, DNN model partitioning, and DNN model calibration.120

2.1. Early-Exit DNNs

Early-exit DNNs have been applied to different tasks, such as image classi-

fication [11, 12, 15], image segmentation [18, 19], and natural language process-

ing [20, 21].

Many works have proposed advances in early-exit DNN design. BranchyNet125

[11] allocates branches at the beginning of the DNN architecture to classify the

input as soon as possible. SPINN [12] inserts the side branches equidistantly

along the DNN backbone. HAPI [22] co-optimizes the early-exit placement and

threshold fine-tuning to meet application requirements. Similarly, FlexDNN [23]

optimizes the side branches placement along the DNN backbone to find an130

optimal early-exit DNN architecture, aiming to maximize the benefits of the

early-exit strategy. Our article follows SPINN’s methodology on how to place

the side branches to simplify the analysis, focusing on the calibration aspect.

Other works, such as Liet al. [24] and Farhadi et al. [25], adapt DNN model

complexity according to the input to perform a device-edge co-inference sce-135

nario. However, they do not calibrate the DNN. Specifically, Liet al. [24] present

6

the framework Edgent, which enables device-edge co-inference via an early-exit

strategy, adjusting the appropriate DNN depth to balance the benefits of us-

ing powerful cloud resources and nearby edge resources. Meanwhile, Farhadi et

al. [25] terminate the inference using a lightweight DNN model at the device140

or send the inference to a deeper one at the edge. Similarly, Dong et al. [26]

developed an early-exit module that guides difficult samples through the DNN

backbone, bypassing the computation of side branches. This approach reduces

on-device computation required at the edge device. Samikwa et al. [27] explore

the benefits of employing the early-exit strategy in IoT environments. Their145

work analyzes the reduction in inference time and energy consumption using

an early-exit strategy in IoT environments. Samikwa et al. [27] conclude that

adopting an early-exit strategy in an IoT environment can reduce inference

time and energy consumption under varying network conditions and computing

resources.150

Other articles focus on accelerating the early-exit inference by hardware, us-

ing Field-Programmable Gate Array (FPGAs) or hardware for edge computing,

such as Nvidia Jetson Nano board [28, 29]. Our work employs an Nvidia Jetson

Nano board as the edge device to follow this direction.

All the works mentioned previously, except for SPINN [12], do not cali-155

brate early-exit DNN models. However, SPINN does not analyze the impact

of calibration. In contrast, this article conducts a comprehensive study of the

calibration impact on offloading decisions provided by early-exit DNNs.

2.2. DNN Model Partitioning

DNN model partitioning splits a DNN model in a fixed manner for a given160

offloading objective. Most existing works choose the partitioning layer, at which

the offloading occurs, using an algorithm that minimizes different metrics, such

as inference time and energy consumption [6, 8, 9, 12, 30]. Our work considers

the partitioning layer at the last side branch.

7

2.3. DNN Model Calibration165

The calibration of a DNN model refers to the extent to which the model’s

predictive confidence reflects the accuracy of its decisions [31]. DNNs output

confidence levels along with their decisions through uncertainty metrics such as

the top-1 value of a softmax output layer [12]. For a perfectly calibrated DNN,

a confidence value of α ∈ [0, 1] for a given subset of inputs implies that the170

model correctly classifies α · 100% of such inputs.

Several works have reported that DNNs, especially Convolutional Neural

Networks (CNNs) such as ResNets [3] and MobileNet [2], are poorly calibrated,

despite the growing improvements in terms of accuracy [17, 32, 31]. More specif-

ically, Guo et al. [17] demonstrate that more accurate DNNs often imply a worse175

calibration, typically providing overconfident predictions. To address the cali-

bration problem, reference [17] evaluates several calibration methods for differ-

ent datasets. Their work concludes that temperature scaling [17] is the most

effective calibration method, especially for computer vision applications. How-

ever, Guo et al. do not address the calibration problem in early-exit DNNs and180

its impact on edge inference offloading. Minderer et al. [31] suggest that recent

non-convolutional DNN models, such as MLP-Mixer [33] and Vision Transform-

ers [34], are well calibrated as compared to CNN models. Bayesian learning

offers a general framework to ensure the calibration of machine learning mod-

els [35]. Our work focuses on early-exit DNNs that use CNNs as the backbone185

architecture.

Table 1 summarizes the related work and highlights their differences com-

pared to this study. In Table 1, we consider that a paper employs a realistic

adaptive offloading scenario if the work implements edge-cloud co-inference by

deploying an early-exit DNN at the edge and evaluates it using a real network190

infrastructure.

8

Table 1: Comparison with related works.

Reference
Classifies

images

Employs

early-exit

DNNs

Calibrates

the model

Analyzes the

impact of

calibration

Considers a

realistic adaptive

offloading scenario

[11] Yes No No No No

[12] Yes Yes Yes No Yes

[15] Yes Yes Yes No Yes

[18, 19] No Yes No No No

[20, 21] No Yes No No No

[25] No No No No Yes

[26] Yes Yes No No No

[24] Yes No No No Yes

[28, 29] Yes Yes No No No

[27] Yes Yes No No No

[6, 30] Yes No No No No

[8] Yes No No No No

[9] Yes Yes No No Yes

[17, 32, 31] Yes No Yes Yes No

[14] Yes Yes Yes Yes No

This work Yes Yes Yes Yes Yes

3. Adaptive Offloading Via Early-exit DNNs

DNNs can be described as a sequence of neural layers that can extract fea-

tures from inputs. In general, shallow DNNs (i.e., DNNs with few neural layers)

can extract simple features, while deeper DNN models can extract more com-195

plex features and obtain more accurate predictions. Early-exit DNNs classify

some inputs based on feature representation obtained by shallow neural layers,

while other inputs rely on features provided by deeper layers to be classified.

The intuition behind this approach is that distinct samples may not require

9

features of equal complexity to be classified [11].200

Figure 1 illustrates an early-exit DNN with multiple side branches inserted

into its intermediary layers. The vertices v1, · · · , vN represent the DNN back-

bone’s layers. The vertices b1, · · · , bk are the side branches, each of which con-

tains a fully-connected layer capable of classifying inputs based on the features

extracted in the previous layers v1, · · · , vi. Following SPINN’s methodology, we205

insert side branches equidistantly after intermediate layers along the DNN back-

bone. In the experimental results, we insert five side branches as [12]. Thus, we

have six exits, including the DNN backbone’s output layer.

After placing the side branches, we split the image dataset into training,

validation, and testing sets. We train the early-exit DNN following the method-210

ology presented by BranchyNet [11] for an image classification task. We employ

the softmax cross-entropy loss function as the objective function for each exit.

Let (x,y) be an example, with input x and one-hot class vector y; C be the

set of possible classes, and p̂i(x|θ) be the probability vector provided by the

i-th exit for model parameter vector θ. The probability vector p̂i(x|θ) provides

an estimate of the probability that an input x belongs to each of the predefined

classes. The loss function for example (x,y), at the i-th exit, is defined as

Li(x,y|θ) = − 1

|C|
∑
c∈C

yc · log(p̂i,c(x|θ)), (1)

where yc and p̂i,c(x|θ) are respectively the c-th elements of vectors y and

p̂i(x|θ), which correspond to class c ∈ C. The probability vector p̂i(x|θ) is

computed through the softmax layer as in

p̂i(x|θ) = softmax(zi(x|θ)) ∝ exp(zi(x|θ)), (2)

where zi(x|θ) is the logit vector provided by i-th exit’s fully-connected layer,

and the exponential function in (2) is applied element-wise.

To optimize the early-exit DNN model, we jointly train all the exits by215

adopting an overall loss function given by the weighted sum of the loss function

of each exit as L(x,y|θ) =
∑N

i=1 ωi ·Li(x,y|θ), where N is the number of exits,

10

and the weights ωi increase linearly according to the exit position in the early-

exit DNN model [12]. The loss function L(x,y|θ) is averaged over all examples

(x,y) in the training set.220

As illustrated in Figure 1, the early-exit DNN is split into two parts: the

first part being implemented on the edge device and the second remotely at the

cloud server. Side branches are included only in the first part. At inference

time, given an input x, the device estimates the prediction confidence for the

i-th side branch as the probability of the most likely class

fi(x|θ) = max
c∈C

p̂i,c(x|θ). (3)

If the confidence value is greater or equal to a predefined target threshold ptar,

the device concludes that the i-th side branch can classify the input and inference

terminates by classifying the input as the class with the largest probability in

vector p̂i(x|θ), i.e., the class

ŷi(x|θ) = argmax
c∈C

p̂i,c(x|θ). (4)

Otherwise, the input is processed by the subsequent layers until it reaches the

next side branch, following the same procedure described above.

If no side branches reach the desired accuracy level ptar, the edge device

offloads data to the cloud, which processes the remaining DNN backbone’s layers

until the output layer. The cloud server then sends the prediction and its225

confidence level back to the edge device. If the confidence level does not reach

the target ptar, the classification uses the most confident predicted class among

all exits.

We next describe early-exit DNN calibration, which is the focus of this work

and a key step in performing reliable offloading.230

4. Early-Exit DNN Calibration

An early-exit DNN model is well-calibrated if it outputs a prediction confi-

dence value fi(x|θ) that reflects the true probability of correct classification, i.e.,

11

the model’s accuracy. Formally, an early-exit DNN model is perfectly calibrated

at side branch i if, for all inputs x, we have the equality

P [ŷi(x|θ) = y | fi(x|θ) = p] = p, for all p ∈ [0, 1], (5)

where ŷi(x|θ) is the predicted class in (4), fi(x|θ) is the confidence level (3),

and y is the ground-truth label [17]. The probability in (5) is taken with respect

to the true distribution of the data when conditioned on the confidence level (3)

being equal to p. Equation (5) states that the confidence fi(x|θ) in (3) provided235

by the early-exit DNN model perfectly reflects the actual probability of correct

classification.

4.1. Temperature Scaling

Temperature scaling (TS) is a post-processing calibration method that scales

the early-exit DNN’s logit vector zi(x|θ) for the i-th exit to enhance calibra-

tion [17, 31]. With a temperature parameter T , the calibrated probability vector

is given by

p̂TS
i (x|θ) = softmax

(
zi(x|θ)

T

)
, (6)

where the scaling is applied element-wise. The parameter T accordingly modifies

the estimated confidence value in (3) as

fTS
i (x|θ) = max

c∈C
p̂TS
i,c (x|θ). (7)

Note that TS does not impact the accuracy since it scales all elements of zi(x|θ)

by the same constant.240

4.2. Optimizing the Temperature

To optimize the temperature T , following [17, 31], we gather the confidences

values fi(x|θ) and the predicted class ŷi(x|θ) provided by all the exit branches i

for each input x in the validation dataset. With this information, we implement

TS in DNNs in one of two ways, which are described next.245

Global TS: Global TS utilizes the collected confidences levels {fi(x|θ)}

and corresponding predicted classes {ŷi(x|θ)} to optimize a single parame-

ter T for all exits i. This is done by minimizing over T the validation loss

12

Training
Calibration

Training
set

Validation
set

model

Testing
set

model

T

Validation
set

Model
Evaluation
Metric

Figure 2: Methodology for calibrating an early-exit DNN model.

∑
i

∑
x,y LTS

i (x,y|θ), where LTS
i (x,y|θ) = − 1

|C|
∑

c∈C yc · log(p̂TS
i,c (x|θ)) and

the sum is over all validation examples.250

Per-branch TS: Per-branch TS uses only the collected confidence levels

{fi(x|θ)} and predicted classes {ŷi(x|θ)} provided by the i-th exit to optimize

a distinct temperature parameter Ti at each branch. The parameter Ti is opti-

mized by minimizing the validation loss
∑

x,y LTS
i (x,y|θ), where the sum runs

over all validation examples.255

Figure 2 presents a diagram summarizing the methodology for calibrating

an early-exit DNN model. The “Training” box illustrates the essential proce-

dures required to train and validate the early-exit DNN model, as explained in

Section 3. Then, the trained model is saved to the next stage, named “Model

calibration”, in which calibration is performed using the validation set as ex-260

plained in Section 4. This stage employs the global TS and per-branch TS

methods presented previously to find the optimal temperature vector T . This

section uses the global TS and per-branch TS methods mentioned earlier to

determine a temperature vector T . Once the temperature vector is derived,

the “Metric evaluation” stage uses the trained model and T to evaluate the265

performance of calibration under the metrics presented next.

4.3. Calibration Metrics

Reliability diagrams plot the expected accuracy as a function of prediction

confidence, providing a common way to visualize the calibration of a model.

For each i-th exit, the reliability diagram is obtained by grouping confidence

levels {fi(x|θ)} evaluated on the validation data into m equal-sized interval

bins Bi,1, · · · , Bi,m. Each bin Bi,j contains inputs x whose confidence fi(x|θ)

13

lies in the interval
(
j−1
m , j

m

]
. The expected accuracy of the i-th exit for each

bin Bi,j is computed as

Acc(Bi,j |θ) =
1

|Bi,j |
∑

x∈Bi,j

1[ŷi(x|θ) = y], (8)

where the sum is over validation examples (x,y) in bin Bi,j . We similarly

evaluate the average confidence of i-th exit within a bin Bi,j as

Conf(Bi,j |θ) =
1

|Bi,j |
∑

x∈Bi,j

fi(x|θ). (9)

To build a reliability diagram for the i-th side branch, we gather the confidence

levels fi(x|θ) and the predicted class ŷi(x|θ) for all validation examples. If a

DNN model is well-calibrated at branch i, then its reliability diagram should270

approximate an identity function, as defined in (5).

While reliability diagrams provide a fine-grained visual representation of

calibration, the Expected Calibration Error (ECE) returns a single numerical

value that quantifies calibration [17]. This metric is computed as

ECE =

m∑
j=1

|Bi,j |
n

· |Acc(Bi,j |θ)− Conf(Bi,j |θ)|, (10)

where n is the total number of inputs in the validation dataset. By (10), for

each i-th exit, the ECE computes the average per-bin accuracy Acc(Bi,j |θ) and

confidence level Conf(Bi,j |θ) weighted by the number of samples in each bin

Bi,j .275

5. Application-Level Metrics

In order to evaluate the performance at the application level, we consider the

average accuracy of the decisions made at the edge and at the cloud as well as two

novel metrics, first introduced in the conference version [14] of this work, which

accounts for the interplay of accuracy and offloading latency. The first metric,280

referred to as edge inference outage probability, measures the model’s ability

to guarantee an accuracy requirement via inference at the edge. The second

14

metric, referred to as missed deadline probability, accounts for the probability

in meeting both accuracy and inference latency requirements when allowing for

inference at the edge or at the cloud.285

5.1. Average Accuracy Metrics

We define the average edge accuracy Accedge(θ) as the fraction of test ex-

amples classified at any of the edge side branches that are correctly classified.

The average total accuracy Acctotal(θ) is similarly defined as the fraction of test

examples that are correctly classified, irrespective of whether detection is done290

at the edge or at the cloud.

5.2. Edge Inference Outage Probability

In practice, as discussed in Section 3, one is interested in attaining the desired

level of accuracy ptar. Therefore, a more suitable measure of performance in

terms of accuracy is the fraction of inputs that are classified with an accuracy295

level larger than ptar. Following a similar approach as that used in Section 4.3 to

introduce reliability diagrams, we divide test inputs into batches and evaluate

the average accuracy Accedge(Bb|θ) for each batch Bb. Note that only inputs

classified at the edge are included in the average. The edge inference outage

probability is then defined as300

P out
edge =

∑NB

b=1 1[Accedge(Bb) < ptar]

NB
, (11)

where NB is the number of batches B1, · · · , BNB
.

5.3. Missed Deadline Probability

A missed deadline is defined as the event that occurs when either the average

inference time is larger than an application-defined latency deadline ttar or when

the average total accuracy is smaller than an accuracy requirement ptar. The305

missed deadline probability is thus a measure of the fraction of inputs that

are reliably classified within an acceptable maximal latency. Unlike the edge

15

inference outage, which is edge-focused, the missed deadline probability is an

end-to-end application performance metric.

To evaluate the missed deadline probability, we again divide the test inputs

x into image batches B1, · · · , BNB
. For each batch, we measure the average

inference time Tinf(Bb|θ) and the average total accuracy Acctotal(Bb|θ). The

missed deadline probability is defined as

Pmd(θ) =

NB∑
b=1

(1− 1[Tinf(Bb|θ) ≤ ttar] · 1[Acctotal(Bb|θ) ≥ ptar])

NB
(12)

6. Numerical Results on Calibration310

In this section, we present numerical results with the aim of quantifying the

calibration performance in terms of reliability diagrams, ECE (see Section 4.3),

and probability of offloading with and without TS. The next section will focus

on application-level performance metrics. We provide the code used in this

article in an open repository3.315

6.1. DNN Models and Datasets

The evaluations in this section use, as DNN backbones, MobileNetV2 [2],

ResNet18 [3], VGG16 [36], and ResNet152 [3]. Many papers often employ these

well-known DNN models for image classification tasks [12, 37, 38, 39]. We use

the Caltech-256 [40] and Cifar-100 [41] datasets, which are well-known bench-320

marks to evaluate proposals in image classification [42, 12, 22, 15]. We split all

datasets into 80%/10%/10% for train/validation/test. Other implementation

details can be found in Appendix A.

6.2. Reliability Diagrams

This subsection evaluates the benefits of TS in calibrating early-exit DNNs325

based on reliability diagrams and the ECE metric. For conciseness, we only

3https://github.com/pachecobeto95/early_exit_calibration

16

https://github.com/pachecobeto95/early_exit_calibration

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=5.05

Ideal
Accuracy

(a) No-calibration - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=1.63

Ideal
Accuracy

(b) Global TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=4.07

Ideal
Accuracy

(c) Per-branch TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=7.82

Ideal
Accuracy

(d) No-calibration - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=4.44

Ideal
Accuracy

(e) Global TS - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=6.09

Ideal
Accuracy

(f) Per-branch TS - 5.

Figure 3: Reliability diagrams for early-exit MobileNetV2 models on Caltech-256 before (left-

most) and after (middle and rightmost) calibration. Each row shows the reliability diagram

for a given side branch and the corresponding ECE (Expected Calibration Error).

present results for Caltech-256 since Cifar-100 leads to similar conclusions (see

our open repository).

Figures 3 and 4 present reliability diagrams for each of the considered early-

exit DNN models with no calibration as well as with global and per-branch330

TS. We focus on the third and fifth side branches. The reliability diagrams of

early-exit VGG16 and Resnet152 are in Appendix B. The dashed line in the

diagrams represents the ideal case, in which the model is perfectly calibrated

(i.e., Acc(Bi,j |θ) = Conf(Bi,j |θ)). Each plot also shows the ECE value, which

is zero only for an ideally calibrated DNN. These results indicate that non-335

calibrated side branches are miscalibrated, providing overconfident predictions.

In contrast, TS obtains a significantly lower ECE, with global TS outperforming

per-branch TS.

17

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=10.58

Ideal
Accuracy

(a) No-calibration - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=3.74

Ideal
Accuracy

(b) Global TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=3.27

Ideal
Accuracy

(c) Per-branch TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=6.3

Ideal
Accuracy

(d) No-calibration - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=2.88

Ideal
Accuracy

(e) Global TS - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=4.02

Ideal
Accuracy

(f) Per-branch TS - 5.

Figure 4: Reliability diagrams for early-exit ResNet18 on Caltech-256 before (leftmost) and

after (middle and rightmost) calibration. Each row shows the reliability diagram for a given

side branch and the corresponding ECE (Expected Calibration Error).

6.3. Offloading Probability

Next, we evaluate the impact of calibrating an early-exit DNN on the of-340

floading probability. Figures 5 and 6 show the probability of classifying at the

edge considering a given number k of side branches. The results show that

calibration reduces the probability of classifying inputs at the edge device as

compared to a non-calibrated model. Furthermore, Figure 5 shows that global

TS reduces the probability of classifying inputs at the edge more as compared345

to per-branch TS. This is expected since, for this model, per-branch TS is more

overconfident than global TS, as shown in Figure 3. For ResNet18, Figure 6

shows that global TS and per-branch TS obtain similar results.

7. Experimental Results on Application-Level Performance

This section first evaluates the impact of calibration in terms of average ac-350

curacy metrics and then turns to the probability metrics introduced in Section 5.

18

0.5 0.6 0.7 0.8 0.9
ptar

0.0

0.1

0.2

0.3

0.4

P[
In

fe
re

nc
e

on
 E

dg
e] No-calibration

Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.5 0.6 0.7 0.8 0.9
ptar

0.5

0.6

0.7

0.8

0.9

1.0

P[
In

fe
re

nc
e

on
 E

dg
e]

No-calibration
Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 5: Probability of classifying inputs at the edge for early-exit MobileNetV2 on Caltech-

256.

0.5 0.6 0.7 0.8 0.9
ptar

0.0

0.1

0.2

0.3

0.4

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.5 0.6 0.7 0.8 0.9
ptar

0.5

0.6

0.7

0.8

0.9

1.0
P[

In
fe

re
n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 6: Probability of classifying inputs at the edge for early-exit ResNet18 on Caltech-256.

0.5 0.6 0.7 0.8 0.9
ptar

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

Ed
ge

 A
cc

ur
ac

y

No-calibration
Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.5 0.6 0.7 0.8 0.9
ptar

0.60

0.65

0.70

0.75

0.80

Av
er

ag
e

Ed
ge

 A
cc

ur
ac

y

No-calibration
Global TS
Per-branch TS

(b) Five side branches(k = 5).

Figure 7: Accuracy on the edge using an early-exit MobileNetV2 on Caltech-256.

19

For the latter, we rely on an experimental setup involving an actual edge device

and cloud server, as detailed in Section 7.2.

7.1. Average Accuracy Before and After Calibration

We start by evaluating the impact of calibration on the average accuracy355

in the same numerical setting considered in the previous section. We refer to

Section 5 for a definition of the average accuracy metrics. First, we focus on

the average accuracy at the edge.

0.5 0.6 0.7 0.8 0.9
ptar

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

Ed
ge

 A
cc

ur
ac

y

No-calibration
Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.5 0.6 0.7 0.8 0.9
ptar

0.60

0.65

0.70

0.75

0.80

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(b) Five side branches (k = 5).

Figure 8: Accuracy on the edge considering an early-exit ResNet18 on Caltech-256.

Figures 7 and 8 show the accuracy at the edge as a function of the target

reliability level ptar. These results indicate that calibrating the side branches sig-360

nificantly improves their accuracy at the edge over non-calibrated side branches,

with global TS outperforming per-branch TS. Furthermore, Figure 9 evaluates

the average total accuracy versus ptar. For brevity, we assess only early-exit

DNNs with five side branches. This figure shows that calibrated early-exit

DNNs can outperform non-calibrated ones for any ptar value.365

7.2. Experimental Setup

To evaluate the other application-level metrics introduced in Section 5, we

use an Nvidia Jetson Nano4 board as the edge device and an Amazon EC25 vir-

4https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
5https://aws.amazon.com/ec2/

20

0.5 0.6 0.7 0.8 0.9
ptar

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

To
ta

l A
cc

ur
ac

y
No-calibration
Global TS
Per-branch TS

(a) MobileNetV2.

0.5 0.6 0.7 0.8 0.9
ptar

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

To
ta

l A
cc

ur
ac

y

No-calibration
Global TS
Per-branch TS

(b) ResNet18.

Figure 9: Average total accuracy for early-exit DNNs with five side branches on Caltech-256.

tual machine as the cloud server. The edge device is located in Rio de Janeiro,

Brazil, and runs an Ubuntu 18.04 operating system. This device has a 128-core370

Nvidia Maxwell GPU and an ARM A57 CPU with four cores at 1.43 GHz. The

cloud server is an Amazon EC2 4dn.xlarge instance running Ubuntu 20.04 LTS

with four vCPUs from an Intel Cascade Lake CPU and an NVIDIA Tesla T4

GPU. We use Python Flask6 to implement the cloud server application. The

edge device is connected to the Internet using a Gigabit Ethernet network in-375

terface. The edge and the cloud server communicate through the Internet using

HTTP. We instantiate the cloud server in two AWS regions (i.e., geographical

locations) to analyze our proposal using different network conditions.

Before running the experiment, we analyze the network conditions between

the edge and the Amazon EC2 instances. We employ ping and iPerf3 to380

measure, respectively, the RTT (Round Trip Time) and the throughput, shown

in Table 2. The latency to the cloud instantiated in São Paulo is significantly

lower than the cloud located in Ohio, USA. It happens because São Paulo is

closer to the edge device located in Rio de Janeiro. We report these values only

for illustration since the network conditions may vary during the experiment.385

Figure 10 illustrates our experimental setup to evaluate the calibration im-

pact. As Section 5.3 explains, we compute the missed deadline probability and

6https://flask.palletsprojects.com/en/2.2.x/

21

Table 2: Network Conditions For Each Cloud Region.

AWS Region Location Throughput RTT

us-east-2 Ohio 73.1Mbit/sec 177.76ms

sa-east-1 São Paulo 93.4Mbit/sec 38.98ms

edge inference outage probability using a batch of images. Therefore, we di-

vide the test set into equally-sized batches with 512 images. Each experimental

round proceeds as follows. For a given image x in a batch, the edge device390

receives a given input from a batch, starts a time counter, and runs the infer-

ence, as described in Section 3. During this inference process, if the i-th side

branch at the edge device provides a confidence estimate fi(x|θ) that exceeds

our confidence threshold ptar (i.e., fi(x|θ) ≥ ptar), the inference and the counter

ends (step (1) in Figure 10). Consequently, the inference time corresponds to395

the processing delay of running inference up to the i-th side branch at the edge

device. Otherwise, fi(x|θ) < ptar, the edge device offloads the inference task

via HTTP POST to the cloud, which processes the remaining layers (step (2) in

Figure 10). Next, The edge device waits for an HTTP response from the cloud

to terminate the time counter (step (3) in Figure 10). In this case, the inference400

time includes the processing delay at the edge device, the communication time

required to offload data from the edge to the cloud, and the processing delay

at the cloud. Therefore, we can compute the edge inference outage probability

and the missed deadline probability according to Equations (11) and (12). To

obtain reliable results, we repeat this procedure for fifty rounds to compute their405

average missed deadline probability and edge inference outage probability with

a confidence interval of 95%.

7.3. Edge Inference Outage Probability

Figures 11 and 12 show the edge inference outage probability versus the

desired reliability level ptar for MobileNetV2 and ResNet18, respectively. As410

the edge inference outage does not depend on inference time, these results are

22

ŷ

input
cloud

fi(x, θ)≥ptar

x
(1)

fi(x, θ)≥ptar

fi(x, θ)<ptar

(2)

ŷ

(3)

edge
device HTTP response

HTTP post

Figure 10: Illustration of the experimental setup for adaptive model partitioning between the

edge device and cloud via early-exit DNNs.

agnostic to the cloud region or edge hardware. The figures show that cali-

bration improves the edge inference outage probability for all values of ptar.

Hence, calibrated side branches are more likely to meet the accuracy target ptar

than non-calibrated ones. Thus, calibration improves the reliability of early-exit415

DNNs to meet application-defined accuracy requirements.

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.10

0.20

0.30

0.40

0.50

0.60

P[
Ed

ge
 In

fe
re

nc
e

Ou
ta

ge
]

No-calibration
Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.05

0.10

0.15

0.20

P[
Ed

ge
 In

fe
re

nc
e

Ou
ta

ge
]

No-calibration
Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 11: Edge Inference outage probability, using an early-exit MobileNetV2 on Caltech-

256.

7.4. Missed Deadline Probability

Figures 13 and 14 show the missed deadline probability as a function of the

latency deadline ttar. We choose ptar = 0.8 because, for calibrated DNNs, it is

closer to the average total accuracy than the other values, as shown in Figure 9.420

Figures 13 and 14 report the results for a cloud server in Ohio, USA. This

23

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.10

0.20

0.30

0.40

0.50

0.60

P[
Ed

ge
 In

fe
re

nc
e

Ou
ta

ge
]

No-calibration
Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.05

0.10

0.15

0.20

P[
Ed

ge
 In

fe
re

nc
e

Ou
ta

ge
]

No-calibration
Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 12: Edge Inference outage probability, using an early-exit ResNet18 on Caltech-256.

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00
No-calibration
Global TS
Per-branch TS

P[
M

is
se

d
 D

e
a
d
lin

e
]

(a) Three side branches (k = 3).

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00

P[
M

is
se

d
 D

e
a
d
lin

e
] No-calibration

Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 13: Missed deadline probability for non-calibrated and calibrated early-exit Mo-

bileNetV2 models using ptar = 0.8. The cloud server is located in Ohio, USA.

location represents a scenario where the cloud server is far away from the edge

device. Hence, this case has the worst network conditions, according to Table 2.

Figure 13 and 14 shows that calibrated early-exit DNNs and the non-calibrated

one have a missed deadline probability close to one for low ttar values. This hap-425

pens because the models cannot meet strict latency deadlines. As ttar increases,

the calibrated early-exit DNNs outperform the non-calibrated ones because, as

ttar increases, it is easier to meet the latency deadline ttar. In this case, all the

models meet the latency deadline, and the missed deadline event only occurs

because of the accuracy requirement ptar, which is more likely to be met by430

calibrated models.

24

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00

P[
M

is
se

d
 D

e
a
d
lin

e
]

No-calibration
Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00

P[
M

is
se

d
 D

e
a
d
lin

e
]

No-calibration
Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 14: Missed deadline probability for non-calibrated and calibrated early-exit ResNet18

models using ptar = 0.8. The cloud server is located in Ohio, USA.

Figures 13(a) and 14(a) depict the results for early-exit DNNs with three side

branches. For a short range of ttar values, non-calibrated models outperform

calibrated ones because, as seen in Figure 5, calibrated side branches offload

more inputs to the cloud server, which introduces more communication delay.435

Thus, on the one hand, calibrating the models restricts meeting tight deadlines.

On the other hand, calibration is required to ensure meeting the accuracy target

for high ptar values, as shown in Figure 9(a). In contrast, when early-exit DNNs

have five side branches, Figures 13(b) and 14(b) show that the calibrated models

outperform the non-calibrated ones.440

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00

P[
M

is
se

d
 D

e
a
d
lin

e
] No-calibration

Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00

P[
M

is
se

d
 D

e
a
d
lin

e
] No-calibration

Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 15: Missed deadline probability for non-calibrated and calibrated early-exit Mo-

bileNetV2 models using ptar = 0.8. The cloud location is in São Paulo, Brazil.

25

Figures 15 and 16 present the missed deadline probability using the same

previous methodology but with the cloud now hosted in São Paulo (i.e., the best

network conditions according to Table 2). The calibrated side branches always

outperform the non-calibrated ones for any ttar, reducing the missed deadline

probability. This happens since the cloud server is closer to the edge device, and445

thus the communication delay is reduced. Hence, the missed deadline probabil-

ity depends more on meeting the accuracy requirement ptar than meeting the

deadline target ttar.

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00

P[
M

is
se

d
 D

e
a
d
lin

e
]

No-calibration
Global TS
Per-branch TS

(a) Three side branches (k = 3).

0.0 0.5 1.0 1.5 2.0
ttar (s)

0.00

0.20

0.40

0.60

0.80

1.00

P[
M

is
se

d
 D

e
a
d
lin

e
]

No-calibration
Global TS
Per-branch TS

(b) Five side branches (k = 5).

Figure 16: Missed deadline probability for non-calibrated and calibrated early-exit ResNet18

models using ptar = 0.8. The cloud location is in São Paulo, Brazil.

8. Conclusions and Future Work

Adaptive offloading via early-exit DNNs is an effective way to reduce infer-450

ence time on edge computing scenarios. In an early-exit DNN, side branches

estimate the prediction confidence to decide whether to end the inference on the

edge device or offload it to the cloud. For this decision to be effective, the side

branches must provide reliable confidence estimates to make effective offloading

decisions. This article has provided an extensive calibration study on different455

datasets and early-exit DNN models for image classification. We have pro-

vided empirical evidence that miscalibrated early-exit DNNs overestimate their

prediction confidence, providing unreliable offloading decisions. Hence, they

26

classify more inputs earlier than they should. Our experiments, under a real-

istic edge-cloud computing scenario, demonstrate that temperature scaling can460

help to solve the miscalibration problem. Calibrated models can thus provide

reliable confidence estimates, improving the offloading decisions and increasing

their accuracy.

Future work may evaluate the impact of calibration considering user expe-

rience for specific image classification applications, such as augmented reality465

and cognitive assistance. As this study is primarily concerned with image clas-

sification tasks, future work will also investigate the effect of calibration on

other tasks, such as natural language processing (NLP). As tasks become more

complex, the impact of classification at the edge device can imply greater conse-

quences than those evaluated in this study. Therefore, calibration becomes even470

more critical in such scenarios. Another future work is to develop calibration

methods that explore the trade-off between accuracy and latency in adaptive

offloading.

Appendix A. Early-exit DNN Training

Before training the early-exit DNNs, we apply preprocessing procedures on475

dataset inputs. We apply image scaling and cropping, stochastic image flip with

a 0.25 flipping probability, and color channel normalization. We initialize the

fully-connected layers through Xavier initialization [43]. Next, we initialize the

DNN backbone’s layers using weights trained on the ImageNet dataset [44], pro-

vided by the torchvision7 0.8.2 framework. Then, we train the model following480

the methodology described in Section 3. We employ the same hyperparame-

ters (e.g., batch size, learning rate, and weight decay) as in the original paper.

For example, we train an early-exit ResNet18 using the hyperparameters em-

ployed on the original ResNet paper [3]. We train the early-exit DNNs until the

validation loss stops decreasing for ten epochs in a row.485

7https://pytorch.org

27

https://pytorch.org

Appendix B. Reliability Diagram

Figure B.17 and B.18 complements the results of Section 6.2, presenting

additional reliability diagrams for early-exit VGG16 and ResNet152.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=12.34

Ideal
Accuracy

(a) No-calibration - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=4.1

Ideal
Accuracy

(b) Global TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=4.42

Ideal
Accuracy

(c) Per-branch TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=5.7

Ideal
Accuracy

(d) No-calibration - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=1.6

Ideal
Accuracy

(e) Global TS - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=1.5

Ideal
Accuracy

(f) Per-branch TS - 5.

Figure B.17: Reliability diagrams for early-exit VGG16 on Caltech-256 before (leftmost) and

after (middle and rightmost) calibration. Each row shows the reliability diagram for a given

side branch and the corresponding ECE (Expected Calibration Error).

Appendix C. Offloading Probability

Figure C.19 complements Section 6.3, showing the probability of classifying490

at the edge device for early-exit DNNs models using the Caltech-256. Fig-

ure C.20 shows the results obtained on the Cifar-100 dataset. These figures

show that calibrating the side branches reduces the number of inputs classified

at the edge, corroborating the results presented in Section 6.3.

28

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=4.97

Ideal
Accuracy

(a) No-calibration - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=0.91

Ideal
Accuracy

(b) Global TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=4.61

Ideal
Accuracy

(c) Per-branch TS - 3.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=6.1

Ideal
Accuracy

(d) No-calibration - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

A
cc
u
ra
cy

ECE=1.33

Ideal
Accuracy

(e) Global TS - 5.

0.0 0.5 1.0
Confidence

0.00

0.25

0.50

0.75

1.00
A
cc
u
ra
cy

ECE=4.38

Ideal
Accuracy

(f) Per-branch TS - 5.

Figure B.18: Reliability diagrams for early-exit ResNet152 on Caltech-256 before (leftmost)

and after (middle and rightmost) calibration. Each row shows the reliability diagram for a

given side branch and the corresponding ECE (Expected Calibration Error).

29

0.5 0.6 0.7 0.8 0.9
ptar

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(a) Three side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(b) Five side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.4

0.5

0.6

0.7

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(c) Three side branches - ResNet152.

0.5 0.6 0.7 0.8 0.9
ptar

0.5

0.6

0.7

0.8

0.9

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibrationS
Global TS
Per-branch TS

(d) Five side branches - ResNet152.

Figure C.19: Probability of classifying input at the edge on Caltech-256 for early-exit VGG16

and ResNet152.

30

0.5 0.6 0.7 0.8 0.9
ptar

0.1

0.2

0.3

0.4

P[
In

fe
re

n
ce

o
n
 E

d
g
e
] No-calibration

Global TS
Per-branch TS

(a) Three side branches - MobileNetV2.

0.5 0.6 0.7 0.8 0.9
ptar

0.2

0.4

0.6

0.8

P[
In

fe
re

n
ce

o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(b) Five side branches - MobileNetV2.

0.5 0.6 0.7 0.8 0.9
ptar

0.30

0.50

0.70

0.90

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(c) Three side branches - ResNet18.

0.5 0.6 0.7 0.8 0.9
ptar

0.30

0.50

0.70

0.90

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(d) Five side branches - ResNet18.

0.5 0.6 0.7 0.8 0.9
ptar

0.30

0.50

0.70

0.90

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(e) Three side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.2

0.4

0.6

No-calibration
Global TS
Per-branch TS

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

(f) Five side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.0

0.2

0.4

0.6

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(g) Three side branches - ResNet152.

0.5 0.6 0.7 0.8 0.9
ptar

0.0

0.2

0.4

0.6

P[
In

fe
re

n
ce

 o
n
 E

d
g
e
]

No-calibration
Global TS
Per-branch TS

(h) Five side branches - ResNet152.

Figure C.20: Probability of classifying input at the edge for early-exit DNNs on Cifar-100 for

different early-exit DNNs. 31

Appendix D. Average Accuracy Before and After Calibration495

Figure D.21 presents additional plots for comparing accuracy before and af-

ter calibration using early-exit VGG16 and early-exit ResNet152 using Caltech-

256. Figure D.22 shows these same results for several early-exit DNNs using

Cifar-100. These figures show that calibrated early-exit DNNs achieve higher

accuracy on edge than non-calibrated models. We notice that applying a simple500

calibration method on the side branches improves their accuracy. Therefore, the

conclusions presented in Section 7.1 are also valid for other image classification

datasets.

0.5 0.6 0.7 0.8 0.9
ptar

0.60

0.70

0.80

0.90

1.00

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

No-calibration
Global TS
Per-branch TS

(a) Three side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.60

0.63

0.65

0.68

0.70

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(b) Five side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.80

0.85

0.90

0.95

1.00

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(c) Three side branches - ResNet152.

0.5 0.6 0.7 0.8 0.9
ptar

0.76

0.78

0.80

0.82

0.84

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(d) Five side branches - ResNet152.

Figure D.21: Accuracy on the edge for early-exit DNNs on Caltech-256 for an early-exit

VGG16 and ResNet152.

32

0.5 0.6 0.7 0.8 0.9
ptar

0.90

0.92

0.94

0.96

0.98

1.00

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(a) Three side branches - MobileNetV2.

0.5 0.6 0.7 0.8 0.9
ptar

0.85

0.90

0.95

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(b) Five side branches - MobileNetV2.

0.5 0.6 0.7 0.8 0.9
ptar

0.75

0.80

0.85

0.90

0.95

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(c) Three side branches - ResNet18.

0.5 0.6 0.7 0.8 0.9
ptar

0.75

0.80

0.85

0.90

0.95

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(d) Five side branches - ResNet18.

0.5 0.6 0.7 0.8 0.9
ptar

0.75

0.80

0.85

0.90

0.95

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(e) Three side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.63

0.64

0.65

0.66

0.67

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(f) Five side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.7

0.8

0.9

1.0

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(g) Three side branches - ResNet152.

0.5 0.6 0.7 0.8 0.9
ptar

0.7

0.8

0.9

1.0

No-calibration
Global TS
Per-branch TS

A
ve

ra
g
e

E
d
g
e

A
cc

u
ra

cy

(h) Five side branches - ResNet152.

Figure D.22: Accuracy on the edge for several early-exit DNNs using Cifar-100 for several

early-exit DNNs.

33

Appendix E. Edge Inference Outage Probability

Figure E.23 complements the results of edge inference outage probability for505

Caltech-256 presented in Section 7.3. Figure E.24 presents these same results

for multiple early-exit DNNs using Cifar-100. These figures show that calibrated

models are more likely to meet accuracy requirements than non-calibrated ones.

Thus, these figures corroborate the conclusions of Section 7.3.

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.20

0.40

0.60

0.80

1.00

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

No-calibration
Global TS
Per-branch TS

(a) Three side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.20

0.40

0.60

0.80 No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(b) Five side branches - VGG16.

0.90 0.92 0.94 0.96 0.98
ptar

0.00

0.10

0.20

0.30
No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(c) Three side branches - ResNet152.

0.90 0.92 0.94 0.96 0.98
ptar

0.00

0.05

0.10

0.15

0.20
No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(d) Five side branches - ResNet152.

Figure E.23: Edge Inference outage probability on Caltech-256 for an early-exit VGG16 and

ResNet152.

34

0.90 0.92 0.94 0.96
ptar

0.00

0.01

0.02

0.03

0.04 No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(a) Three side branches - MobileNetV2.

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.10

0.20

0.30
No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(b) Five side branches - MobileNetV2.

0.80 0.83 0.85 0.88 0.90 0.93
ptar

0.00

0.05

0.10

0.15

0.20 No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(c) Three side branches - ResNet18.

0.80 0.83 0.85 0.88 0.90 0.93
ptar

0.00

0.03

0.05

0.08

0.10

0.13 No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(d) Five side branches - ResNet18.

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.05

0.10

0.15

0.20
No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(e) Three side branches - VGG16.

0.5 0.6 0.7 0.8 0.9
ptar

0.00

0.03

0.05

0.08

0.10
No-calibration
Per-branch TS
Global TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(f) Five side branches - VGG16.

0.90 0.92 0.94 0.96
ptar

0.00

0.10

0.20

0.30

0.40 No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(g) Three side branches - ResNet152.

0.90 0.92 0.94 0.96
ptar

0.00

0.20

0.40

0.60
No-calibration
Global TS
Per-branch TS

P[
E
d
g
e

In
fe

re
n
ce

 O
u
ta

g
e]

(h) Five side branches - ResNet152.

Figure E.24: Edge Inference outage probability for several early-exit DNNs on Cifar-100 for

several early-exit DNNs.

35

Data Availability510

The research data developed for this article is available in the following open

repository: https://github.com/pachecobeto95/early_exit_calibration.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento

de Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance Code 001. It was515

also supported by CNPq, PR2/UFRJ, FAPERJ Grants E-26/203.211/2017, E-

26/010.002174/2019, and E-26/201.300/2021, and FAPESP Grant 15/24494-8.

The work of O. Simeone was supported by the European Research Council

(ERC) through European Union’s Horizon 2020 Research and Innovation Pro-

gramme under Grant 725731, by an Open Fellowship of the EPSRC with refer-520

ence EP/W024101/1, by the European Union’s Horizon Europe project CEN-

TRIC (101096379), and by Project REASON, a UK Government funded project

under the Future Open Networks Research Challenge (FONRC) sponsored by

the Department of Science Innovation and Technology (DSIT).

References525

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep

convolutional neural networks, in: Neural Information Processing Systems

(NIPS), 2012, pp. 1097–1105.

[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2:

Inverted residuals and linear bottlenecks, in: IEEE Conference on Com-530

puter Vision and Pattern Recognition, 2018, pp. 4510–4520.

[3] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-

tion, in: IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 770–778.

36

https://github.com/pachecobeto95/early_exit_calibration

[4] K. Bochie, M. S. Gilbert, L. Gantert, M. S. Barbosa, D. S. Medeiros,535

M. E. M. Campista, A survey on deep learning for challenged networks:

Applications and trends, Journal of Network and Computer Applications

194 (2021) 103213.

[5] M. Satyanarayanan, The emergence of edge computing, Computer 50 (1)

(2017) 30–39.540

[6] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, L. Tang,

Neurosurgeon: Collaborative intelligence between the cloud and mobile

edge, in: ACM Computer Architecture News, Vol. 45, 2017, pp. 615–629.

[7] P. Cruz, N. Achir, A. C. Viana, On the edge of the deployment: A survey

on multi-access edge computing, ACM Computing Surveys.545

[8] C. Hu, W. Bao, D. Wang, F. Liu, Dynamic adaptive DNN surgery for in-

ference acceleration on the edge, in: IEEE Conference on Computer Com-

munications, 2019, pp. 1423–1431.

[9] R. G. Pacheco, R. S. Couto, Inference time optimization using branchynet

partitioning, in: IEEE Symposium on Computers and Communications,550

2020, pp. 1–7.

[10] M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, X. Liu, Deepwear: Adaptive

local offloading for on-wearable deep learning, IEEE Transactions on Mobile

Computing 19 (2) (2019) 314–330.

[11] S. Teerapittayanon, B. McDanel, H.-T. Kung, Branchynet: Fast inference555

via early exiting from deep neural networks, in: IEEE International Con-

ference on Pattern Recognition, 2016, pp. 2464–2469.

[12] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, N. D. Lane, SPINN:

synergistic progressive inference of neural networks over device and cloud,

in: Conference on Mobile Computing and Networking, 2020, pp. 1–15.560

37

[13] R. G. Pacheco, K. Bochie, M. S. Gilbert, R. S. Couto, M. E. M. Campista,

Towards edge computing using early-exit convolutional neural networks,

Information 12 (10).

[14] R. G. Pacheco, R. S. Couto, O. Simeone, Calibration-aided edge infer-

ence offloading via adaptive model partitioning of deep neural networks,565

in: IEEE International Conference on Communications, 2021, pp. 1–6.

[15] R. G. Pacheco, F. D. Oliveira, R. S. Couto, Early-exit deep neural networks

for distorted images: providing an efficient edge offloading, in: IEEE Global

Communications Conference, 2021, pp. 1–6.

[16] A. Kendall, Y. Gal, What uncertainties do we need in bayesian deep learn-570

ing for computer vision?, in: Advances in neural information processing

systems, 2017, pp. 5574–5584.

[17] C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger, On calibration of modern

neural networks, in: International Conference on Machine Learning, 2017,

pp. 1321–1330.575

[18] X. Li, Z. Liu, P. Luo, C. Change Loy, X. Tang, Not all pixels are equal:

Difficulty-aware semantic segmentation via deep layer cascade, in: IEEE

conference on computer vision and pattern recognition, 2017, pp. 3193–

3202.

[19] A. Kouris, S. I. Venieris, S. Laskaridis, N. D. Lane, Multi-exit semantic580

segmentation networks, arXiv preprint arXiv:2106.03527.

[20] J. Xin, R. Tang, J. Lee, Y. Yu, J. Lin, Deebert: Dynamic early exiting for

accelerating bert inference, arXiv preprint arXiv:2004.12993.

[21] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, F. Wei, Bert loses patience:

Fast and robust inference with early exit, Neural Information Processing585

Systems 33 (2020) 18330–18341.

38

[22] S. Laskaridis, S. I. Venieris, H. Kim, N. D. Lane, Hapi: Hardware-aware

progressive inference, in: IEEE/ACM International Conference On Com-

puter Aided Design, 2020, pp. 1–9.

[23] B. Fang, X. Zeng, F. Zhang, H. Xu, M. Zhang, Flexdnn: Input-adaptive on-590

device deep learning for efficient mobile vision, in: IEEE/ACM Symposium

on Edge Computing, 2020, pp. 84–95.

[24] E. Li, L. Zeng, Z. Zhou, X. Chen, Edge ai: On-demand accelerating deep

neural network inference via edge computing, IEEE Transactions on Wire-

less Communications 19 (1) (2019) 447–457.595

[25] M. Farhadi, M. Ghasemi, Y. Yang, A novel design of adaptive and hierar-

chical convolutional neural networks using partial reconfiguration on fpga,

in: IEEE High Performance Extreme Computing Conference, 2019, pp.

1–7.

[26] R. Dong, Y. Mao, J. Zhang, Resource-constrained edge ai with early exit600

prediction, Journal of Communications and Information Networks 7 (2)

(2022) 122–134.

[27] E. Samikwa, A. Di Maio, T. Braun, Adaptive early exit of computation

for energy-efficient and low-latency machine learning over iot networks, in:

2022 IEEE 19th Annual Consumer Communications & Networking Con-605

ference (CCNC), IEEE, 2022, pp. 200–206.

[28] M. Wang, J. Mo, J. Lin, Z. Wang, L. Du, Dynexit: A dynamic early-exit

strategy for deep residual networks, in: IEEE International Workshop on

Signal Processing Systems, 2019, pp. 178–183.

[29] G. Kim, J. Park, Low cost early exit decision unit design for cnn accelerator,610

in: IEEE International SoC Design Conference, 2020, pp. 127–128.

[30] L. Zhang, L. Chen, J. Xu, Autodidactic neurosurgeon: Collaborative deep

inference for mobile edge intelligence via online learning, in: Proceedings

of the Web Conference 2021, 2021, pp. 3111–3123.

39

[31] M. Minderer, J. Djolonga, R. Romijnders, F. Hubis, X. Zhai, N. Houlsby,615

D. Tran, M. Lucic, Revisiting the calibration of modern neural networks,

Advances in Neural Information Processing Systems 34.

[32] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable pre-

dictive uncertainty estimation using deep ensembles, Advances in neural

information processing systems 30.620

[33] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-

terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, et al., Mlp-mixer:

An all-mlp architecture for vision, Neural Information Processing Systems

34.

[34] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-625

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image

is worth 16x16 words: Transformers for image recognition at scale, arXiv

preprint arXiv:2010.11929.

[35] O. Simeone, Machine Learning for Engineers, Cambridge University Press,

2022.630

[36] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556.

[37] Z. Liu, G. Lan, J. Stojkovic, Y. Zhang, C. Joe-Wong, M. Gorlatova, Col-

labar: Edge-assisted collaborative image recognition for mobile augmented

reality, in: ACM/IEEE International Conference on Information Process-635

ing in Sensor Networks, 2020, pp. 301–312.

[38] S. Dodge, L. Karam, Quality resilient deep neural networks, arXiv preprint

arXiv:1703.08119.

[39] I. Leontiadis, S. Laskaridis, S. I. Venieris, N. D. Lane, It’s always personal:

Using early exits for efficient on-device cnn personalisation, in: Proceedings640

of the 22nd International Workshop on Mobile Computing Systems and

Applications, 2021, pp. 15–21.

40

[40] G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset.

[41] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from

tiny images.645

[42] Z. Liu, G. Lan, J. Stojkovic, Y. Zhang, C. Joe-Wong, M. Gorlatova, Col-

labar: Edge-assisted collaborative image recognition for mobile augmented

reality, in: ACM/IEEE International Conference on Information Process-

ing in Sensor Networks (IPSN), 2020, pp. 301–312.

[43] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedfor-650

ward neural networks, in: International Conference on Artificial Intelligence

and Statistics, 2010, pp. 249–256.

[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A

large-scale hierarchical image database, in: IEEE Conference on Computer

Vision and Pattern recognition, 2009, pp. 248–255.655

41

	Introduction
	Related Work
	Early-Exit DNNs
	DNN Model Partitioning
	DNN Model Calibration

	Adaptive Offloading Via Early-exit DNNs
	Early-Exit DNN Calibration
	Temperature Scaling
	Optimizing the Temperature
	Calibration Metrics

	Application-Level Metrics
	Average Accuracy Metrics
	Edge Inference Outage Probability
	Missed Deadline Probability

	Numerical Results on Calibration
	DNN Models and Datasets
	Reliability Diagrams
	Offloading Probability

	Experimental Results on Application-Level Performance
	Average Accuracy Before and After Calibration
	Experimental Setup
	Edge Inference Outage Probability
	Missed Deadline Probability

	Conclusions and Future Work
	Early-exit DNN Training
	Reliability Diagram
	Offloading Probability
	Average Accuracy Before and After Calibration
	Edge Inference Outage Probability

