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Abstract

Traffic conflict analysis based on Surrogate Safety Measures (SSMs) helps to esti-

mate the risk level of an ego-vehicle interacting with other road users. Nonethe-

less, risk assessment for autonomous vehicles (AVs) is still incipient, given that

most of the AVs are currently prototypes and current SSMs do not directly apply

to autonomous driving styles. Therefore, to assess and quantify the potential

risk arising from AV interactions with other road users, this study introduces

the TTCmo (Time-to-Collision with motion orientation), a metric that considers

the yaw angle of conflicting objects. In fact, the yaw angle represents the orien-

tation of the other road users and objects detected by the AV sensors, enabling

a better identification of potential risk events from changes in the motion ori-

entation and position through the geometric analysis of the boundaries for each

detected object. Using the 3D object detection data annotations available from

the publicly available AV datasets nuScenes and Lyft5 and the TTCmo metric,
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we find that at least 8% of the interactions with objects detected around the

AV present some risk level. This is meaningful, since it is possible to reduce the

proportion of data analyzed by up to 60% when replacing regular TTC by our

improved TTC computation.

Keywords: Surrogate Safety Measures, Autonomous Vehicles, Smart Mobility,

Road Safety.

1. Introduction1

The smart mobility revolution with the introduction of autonomous vehicles2

(AVs) does not only impact car manufacturing industry only, but also linked3

businesses like insurance. In fact, the way the vehicle is driven no longer depends4

on the human driver behavior, but on the Artificial Intelligence (AI) system5

controlling the vehicle and relying on a multitude of sensors. This new approach6

is not infallible and there are already reported accidents with vehicles with some7

level of autonomy (Betz et al., 2019) which raises the liability issue. As the8

traditional risk assessment does not apply anymore, it becomes important to9

investigate new metrics that can model the behavior of the AV to, ultimately,10

help to define the insurance premium.11

Vehicle manufacturers are equipping their vehicles with driver assistance and12

support systems, which already constitute partial automation systems. The13

American SAE (Society of Automotive Engineering) has defined a classification14

of vehicle autonomy levels, SAE J3016 (SAE, 2018). Numbered from 0 to 5,15

higher autonomy levels mean greater AI complexity, as well as intensive use16

of sensors in the vehicle. Different autonomy levels represent different combi-17
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nations between driver involvement and the complexity or maturity of the AI18

system controlling the vehicle. Broadly speaking, AVs have control systems to19

detect and respond to events in the presence of objects around them. Never-20

theless, there are limitations related to the type of situations and how they are21

managed by the AI system. Such limitations are intrinsic to the randomness of22

the road infrastructure and object around, as well as the weather and lighting23

conditions inherent to the environment in which the vehicles operate. Therefore,24

it is necessary to analyze operational factors of the vehicle that allow identifying25

risk events for the vehicle itself, passengers, pedestrians and other road users.26

Traffic risk events are often evaluated through Surrogate Safety Measures27

(SSMs) (Tarko et al., 2009). SSMs are not used to prevent or avoid accidents,28

but to assess and analyze the probability of risk events and their severity based29

on movement parameters of the ego-vehicle and vehicles around. Currently,30

safety analysis for regular vehicles (without autonomous functions) takes place31

through the acquisition of data from off-the-shelf (OTS) devices and vehicle’s32

proprioceptive sensors (Ortiz et al., 2022). On the other hand, AVs contain a set33

of technologies that aim to improve the perception of the environment outside34

the vehicle, allowing a safety analyzes which includes road users interacting with35

the AV, perceived through a variety of exteroceptive sensors, such as cameras36

and LiDARs (Ortiz et al., 2022).37

Currently, risk assessment in AVs is still incipient, given that most of these38

vehicles are still under development. Therefore, to investigate the potential risk39

arising from AV interactions with other road users, this study uses public AV40
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dataset from nuScenes (Caesar et al., 2020) and Lyft5 (Kesten et al., 2019) to41

evaluate the Time-to-Collision (TTC) indicator that considers the yaw angle as42

an additional parameter for the calculation. Our goal is to identify potential43

risk events from changes in the motion orientation and position through the44

geometric analysis of the boundaries for each object detected by the AV. Data45

annotations from the 3D bounding boxes dimensions (weight w, length l, and46

height h) and coordinates x, y, z available in the datasets are used to determine47

the proximity with the AV. The calculation of the yaw orientation is based on48

the camera intrinsics, i.e., parameters that characterize the optical, geometric,49

and digital characteristics of the camera (using it as a coordinate system origin),50

and data from the rotation and translation which corresponds to the motion of51

objects observed by the vehicle’s camera driving video.52

With technological advances in terms of sensing and autonomy, we aim to53

explore the potential of using data from AV prototypes to develop strategies54

for traffic risk events assessment. Thus, it is possible to monitor AVs through55

variables that enable policymakers to customize services for stakeholders. For56

this, data from real AVs in circulation on roads are used. Although AV dataset57

characteristics are limited in time and crash events (Wang et al., 2017), these58

allow to describe diverse patterns related to the vehicle’s abilities to interact59

with different challenge events in a rapidly changing environment like the vehic-60

ular. The analyzed data were filtered and processed according to the proposed61

methodology.62

In a nutshell, the contributions of our work are:63
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• We introduce the yaw angle in the TTC calculation of each object whose64

orientation/position converges to the AV on a collision course. We analyze65

diverse trajectories (following, head-on, and crossing scenarios) of objects66

converging to the AV.67

• We evaluate the vehicle risk based strictly on the sensor variations and68

the evasive actions taken by the AV and, thus, provide the basis for an69

AV driving profile model.70

• We reduce the data volume analyzed in risk assessment by considering71

the geometry of the boundaries used for object detection in the AI system72

controller. The goal is to discard all the detected objects that do not73

represent a real risk for the AV.74

This paper is organized as follows. Section 2 reviews related works. Section 375

describes the data collection, preparation and analysis used to calculate motion76

properties and dynamics of both AV and detected objects. Section 4 shows the77

TTC calculation based on yaw orientation and motion properties of both AV78

and objects in collision course. Section 5 presents and discuss the results, and79

finally, Section 6 concludes the paper and presents future work.80

2. Related work81

Different safety indicators have been designed for risk assessment in traffic82

conflicts (Mahmud et al., 2017). Indeed, these indicators are characterized by83

the fact that they allow to quantify the severity of traffic risk events. Addition-84
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ally, it is possible to estimate the level of risk in scenarios where historical crash85

data is unavailable. This work focuses on SSMs as a technique to assess risk.86

SSM use in this work is briefly discussed in the following.87

2.1. Surrogate safety measures88

SSMs are defined as measurements that are used to describe the relationship89

between road users pairs in a traffic risk event to quantify the crash probability90

or the potential traffic conflict severity in a meaningful way. Traffic conflicts91

analysis can be based on evasive actions or temporal/spatial proximity (Zheng92

et al., 2014). In particular, we aim to describe traffic conflicts based on temporal93

and spatial proximity using the Time-to-Collision (TTC) metric, a safety esti-94

mation indicator based on distance and speed variations. Through the analysis95

of these factors, it is possible to estimate and argue the severity of risk events96

associated with the vehicle. However, traffic conflicts do not depend only on97

the vehicle operation, and therefore, the analysis of risk events is subject also98

to the nature of the decisions by the drivers in the presence of any traffic risk99

event. An example of this is the reaction time, actions to minimize accidents,100

the veracity of evasive actions, as well as the intensity of evasive actions.101

2.2. Time-to-Collision (TTC)102

TTC is defined as the time it would take for the ego-vehicle to collide with103

an object ahead, if the current relative speed was maintained from the previous104

advance along the same path (Hayward, 1972). This is a continuous measure of105

safety that can be calculated at any moment as long as the ego-vehicle and the106
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object are in a conflict area, i.e., an instantaneous situation where two or more107

road users interact in a road segment, with some uncertain, non-zero probability108

of colliding in the near future. Thus, TTC enables the collision course analysis109

for vehicles and predicts how is the vehicle’s motion related to other users of the110

road infrastructure. Moreover, TTC is the simplest and most effective analytical111

metric for collision risk assessment in according to their study (Tak et al., 2018).112

Equation 1 defines the TTC as the relation of the distance between the113

ego-vehicle and objects ahead (d(ego,obj)) and speed difference between both114

ego-vehicle (vego) and an object ahead (vobj); for simplicity in this case we115

assume the object is another vehicle. Typically, the TTC value indicates the116

minimum time to collide, calculated continuously through the detection process117

of a potential traffic risk event. In the situation of imminent collision, TTC118

values assume finite decreasing values as the severity of the traffic risk event119

increases. It is worth noting that the TTC value allows inferring the amount120

of reaction time available for evasive maneuvers as a measurement of the risk121

level.122

TTC =


d(obj,ego)
vego−vobj , if vego > vobj

∞, otherwise

(1)

Due to TTC limitations (it ignores evasive actions, speed restrictions of the123

ego-vehicle direction related to the object ahead), several modifications have124

been proposed to improve the accuracy of this metric.125
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2.2.1. Modified Time-to-Collision (MTTC)126

Modified Time-to-Collision (MTTC) (Ozbay et al., 2008) uses acceleration as127

a parameter to analyze the vehicle trajectory and its conflict discrepancies due to128

acceleration/deceleration. However, MTTC depends on both the acceleration of129

the following vehicle and the leading vehicle, the latter being difficult to measure130

or obtain, from the ego-vehicle. Furthermore, MTTC by itself does not allow131

the severity of potential risk events to be quantified, since various combinations132

of distance/velocity/acceleration may produce similar MTTC values. For this,133

the authors propose a Crash Index (CI) that uses kinematic variation factors to134

estimate the severity of risk events (Ozbay et al., 2008).The authors conclude135

that CI can effectively model the temporal distribution of accidents to the same136

extent as MTTC.137

2.2.2. Enhanced Time-to-Collision (ETTC)138

Another TTC variation is the Enhanced Time-to-Collision (ETTC) (Kiefer139

et al., 2005). ETTC assumes that following and leading vehicles do not change140

their courses until a collision occurs. Moreover, deceleration in leading vehicle141

is considered until it stops. On the other hand, following vehicle’s deceleration142

is considered to zero when the brake onset. Thus, ETTC calculation allows to143

define thresholds for “near” and “far” perception in Forward Collision Warning144

systems.145
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2.2.3. Time-to-Collision with Disturbance (TTCD)146

Time-to-Collision with Disturbance (TTCD) analyzes collision risks product147

of disturbances in the leading vehicles (Xie et al., 2019). TTCD also can capture148

rear-end conflict risks in car-following scenarios where the leading vehicle may149

have higher speed. TTCD considers the deceleration product of the disturbance,150

and the critical deceleration rate imposed by the leading vehicle deceleration.151

2.2.4. Time Exposed TTC (TET) and Time Integrated TTC (TIT)152

On the other hand, to determine safety evaluations based on TTC in time153

intervals, other indicators have been proposed to describe micro-levels of safe154

and safety-critical events derived from the TTC value analysis. The Time Ex-155

posed Time to Collision (TET) is an indicator proposed in (Minderhoud and156

Bovy, 2001) which analyzes the time period that a vehicle remains exposed157

to high-risk events based on TTC values. These time periods analyze TTC158

measurements by thresholds defining the risk level. Thus, TET represents the159

duration of the exposition of safety-critical TTC values over a specified time160

duration. Thus, all of the instants in which the driver is following the leading161

vehicle, which 0 < TTC < TTC∗ must be summed. Nonetheless, this indicator162

takes into account a single threshold TTC* (i.e., safety/safety-critical events),163

and therefore, it does not consider the variation between lower TTC values. To164

reduce the impact of low TTC values do not affect the TET indicator, Minder-165

houd et al. (Minderhoud and Bovy, 2001) propose the Time Integrated Time to166

Collision (TIT) metric which integrates the TTC to define the safety level for167

each TET interval analyzed in each driver’s profile. Thus, TTC values below168
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TTC* is also considered in the calculation process.169

In addition to their improvements, TTC’s variation metrics (MTTC, ETTC,170

TTCD, TET and TIT) also have disadvantages. These metrics are limited by171

the absence of motion analysis of the road users interacting with the ego-vehicle172

(e.g., evasive maneuvers, motion orientation, among others) when they are in a173

collision course. Table 1 shows a comparison of the approaches to improve TTC174

calculation.175

Table 1: Summary of previous approaches using TTC.

Approach Methodology Advantages Disadvantages

TTC (Hayward, 1972)
Calculation based on
constant speed.

• Simple calculation based on
distance and speed varia-
tions.

• Ignores motion characteris-
tics of the ego-vehicle and
road users.

MTTC (Ozbay et al., 2008)
Calculation uses
acceleration in TTC general
formulation.

• MTTC considers the accel-
eration of ego-vehicle and
other vehicles during colli-
sion course.

• Ignores motion
characteristics of the
ego-vehicle and road users.

ETTC (Kiefer et al., 2005)
Calculation uses
deceleration behavior of the
objects ahead.

• ETTC considers characteris-
tics of the objects ahead and
their behavior when deceler-
ation events occurs.

• Ignores motion
characteristics of the
ego-vehicle and road users.

TTCD (Xie et al., 2019)

Calculation considers the
effects of disturbing events
in vehicles ahead of the
ego-vehicle.

• TTCD Analyzes reactions
of the objects ahead that
can affect the ego-vehicle.

• Ignores motion characteris-
tics of the ego-vehicle and
road users.

• It is not clear how to apply
the TTCD in diverse scenar-
ios.

TET—TIT
(Minderhoud and Bovy, 2001)

Calculation considers time
duration and extension for
the ego-vehicle drives in
high-risky situations.

• Measures consider time
intervals for safety analysis.

• Ignores variations occurred
in TTC analysis.

TTCmo

Calculation considers
motion orientation of the
objects ahead with respect
to the ego-vehicle.

• This metric considers mo-
tion orientation on the ego-
vehicle’s motion axis.

• TTCmo considers just the
objects ahead in collision
course with the ego-vehicle.

• Depends on accuracy from
semantic segmentation
classification and bounding
boxes processing in the
ego-vehicle.

2.3. SSMs based on motion dynamics176

Some studies analyze unrestricted road users’ motion as part of the dynam-177

ics in vehicular environments. Miller et al. (Miller and Huang, 2002) develop178
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a collision warning system that analyzes traffic risk events and evasive actions,179

sharing the location and kinematic measures from the ego-vehicle and the sur-180

rounding vehicles. The algorithm analyzes the time to collision and the time to181

avoidance in a parametric way. Laureshyn et al. (Laureshyn et al., 2010) pro-182

pose a theoretical analysis of SSMs in collision course to determine the severity183

of traffic risk events. Given that interactions between road users are continuous,184

the authors suggest some strategies to calculate TTC for conflicts of different185

angles at constant speed. The authors stated that in potential collisions, a cor-186

ner of one of the vehicles touches one side of the other vehicle. Thus, a new187

concept for TTC is developed, which calculates TTC between a moving line188

section of the ego-vehicle and a point in the other vehicle, in a time instant189

t. Next, the coordinates of the line section ending after t seconds based on a190

constant speed motion. Some assumptions about parallel motion are defined,191

depending on gradient of the line. Jiménez et al. (Jiménez et al., 2013) make an192

improved calculation of TTC in (Miller and Huang, 2002), assuming the vehicle193

geometry to be rectangular. In addition to the simplified calculation, the system194

analyzes the dimensions of the vehicles involved in the interaction, and the areas195

involved in a potential traffic conflict. In this way, Qu et al. (Qu et al., 2018)196

proposes a TTC method with motion orientation based on GPS coordinates to197

analyze cross-collision events. The authors use GPS data to calculate speed and198

distance, as well as the heading and the orientation angles of the target vehicle.199

The authors use a rectangle model to represent the shape of the target vehicles.200

The experiments are carried out in a simulated environment with two test vehi-201
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cles. The results show that rectangular model enables the TTC calculation more202

accurately, and can also have superior performance when the angle between two203

vehicles is small, reducing false alarms. Ward et al. (Ward et al., 2015) analyze204

the interactions between vehicles to define a prediction system and avoidance205

of collisions in vehicle-to-vehicle (V2V) communication systems. The method206

analyzes TTC for vehicles without motion restrictions. The authors calculate207

TTC in 2D, based on the relative vehicle motion and a looming method (a tech-208

nique for gating predictions based on the relative motion of the vehicles), which209

considers the relationship of the vehicle roll angle, linear and angular velocity,210

and the yaw rate vector. Wachenfeld et al. (Wachenfeld et al., 2016) propose211

a Worst-Time-To-Collision (WTTC) metric to identify risk events related to212

the mobility dynamics of objects. The authors do a physical analysis of vehicle213

motion using the Kamm’s circle (a theory about the transferable forces from214

the tire to the road surface) and entering the yaw angle.215

Differently from these studies, this paper analyzes the motion orientation of216

diverse road users that surround the ego-vehicle, detected through exterocep-217

tive sensors, which enables the analysis not only with vehicles, but also with218

pedestrians and two-wheelers. Table 2 shows a comparison of the approaches219

involving motion orientation to improve TTC calculation.220

2.4. SSMs based on data analysis221

To analyze multiple interactions through SSMs, several works have developed222

studies based on software simulation. Papadoulis et al. (Papadoulis et al., 2019)223

and Virdi et al. (Virdi et al., 2019) performs a safety assessment for autonomous224
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Table 2: Summary of works considering motion orientation in the TTC calculation.

Approach Methodology Advantages Disadvantages

Miller and Huang (2002)
The authors propose a collision
warning system based on calculation
of intersection points.

• The system includes an algorithm
for intersection collision warning de-
tection and considers communication
strategies.

• Ignores motion characteristics of the
ego-vehicle and road users.

Laureshyn et al. (2010)
Calculation of TTC based on
convergence in different angles at
constant speed.

• The framework enables to calculate
collision probability based on TTC in
sideswipe conflicts.

• Limited by disregarding motion
characteristics of the ego-vehicle and
road users.

Jiménez et al. (2013)

The authors make an improved
calculation of TTC based on
methodology proposed in Miller and
Huang (2002).

• The framework considers vehicle ge-
ometry to be rectangular.

• The tool considers also the dimen-
sions of vehicles involved in the con-
flict.

• The framework is not tested on a
real scenario.

Qu et al. (2018)
The authors propose a methodology
to analyze cross-collision events
based on GPS data.

• The system considers vehicle geome-
try to be rectangular.

• The system uses GPS data to analyze
orientation and heading angles of the
target vehicle.

• The system is limited by the GPS
precision and randomness of target
vehicles.

Ward et al. (2015)

The authors propose an indicator
that generalizes TTC to the planar
case, mapping vehicle trajectories on
the road to predict traffic conflicts.

• Planar analysis relies heavily on the
relative positions of other traffic par-
ticipants at the moment of predict
the risk of a traffic conflict between
vehicles.

• The model considers uncertainties by
communication (V2V).

• The model ignores other road users
in the ego-vehicle vicinity.

Wachenfeld et al. (2016)
The authors propose a method to
reduce the amount of data to
estimate the criticality of a conflict.

• The method considers the motion
orientation through yaw angles.

• WTTC can define uncritical events
as potential risky, e.g., vehicles travel
side by side.

• WTTC does not consider other road
users.

Our proposal (TTCmo)
Calculation considers motion
orientation of the objects ahead
with respect to the ego-vehicle.

• This metric considers motion orien-
tation on the ego-vehicle’s motion
axis.

• TTCmo considers just the objects
ahead in collision course with the
ego-vehicle.

• TTCmo also discards other objects
out the ego-vehicle’s path.

• Depends on accuracy from semantic
segmentation classification and
bounding boxes processing in the
ego-vehicle.

and connected vehicle fleets through the SSAM simulation tool (Surrogate Safety225

Assessment Model). The authors observed that most AV conflicts occur at in-226

tersections, and concluded that depending on the degree of AV penetration, the227

conflict rate may decrease. Zhang et al. (Zhang et al., 2020) evaluate the safety228

of connected autonomous vehicles by analyzing lane switching and exclusivity229

through the simulation tool PTV-VISSIM. On the other hand, Alghodhaifi and230

Lakshmanan (Alghodhaifi and Lakshmanan, 2020) analyze SSMs as a basis for231

a pedestrian protection system, through simulations in Matlab/Simulink.232

Other works described in the literature analyze SSM metrics in data collec-233
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tion from naturalistic conduction studies. These testbeds use diverse extero-234

ceptive sensors such as radars, cameras, GNSS, or V2X communication devices,235

to detect objects around the vehicle. Data sources, such as 100-Car (Dingus236

et al., 2006) and SHRP2 (Campbell and , U.S.) have been extensively studied237

via TTC to formulate safety metrics, analyze risk events, and compare simu-238

lated and real environments (Montgomery et al., 2014; Markkula et al., 2016).239

In the same way, Safety Pilot Model Deployment (SPMD) used around 3,000240

human-driven vehicles, equipped with V2V communication devices and Mobil-241

eye sensing devices (Nodine et al., 2015). He et al. (He et al., 2018) evaluate242

SSMs from SPMD data. The authors implement three metrics: TTC, MTTC,243

and the Deceleration Rate to Avoid Collision (DRAC). The authors observed244

that the MTTC presented the best overall performance. Kusano et al. (Kusano245

et al., 2014) develop a methodology to identify situations where the ego-vehicle246

driver generates an evasive braking action. The authors use radar data and kine-247

matic measures from the ego-vehicle (Dingus et al., 2006) to calculate the TTC248

as metric to activate warning actions. Five car-following scenarios are identi-249

fied to implement the algorithm: scenarios where the leading vehicle or lack of250

leading vehicle lack is correctly identified by the algorithm; scenarios where the251

leading vehicle is detected but it is not in collision course with the following ve-252

hicle; and scenarios where the algorithm failed to identify the leading vehicle or253

detects other objects different of the visual analysis. The authors conclude that254

the algorithm can identify 91.8% of the braking events when verified visually.255

On the other hand, analysis of SSMs in self-driving vehicles is limited. How-256
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ever, multiple AV developers have made available traces of their vehicles in the257

test phase (Ortiz et al., 2022). Beauchamp et al. (Beauchamp et al., 2022) make258

an analysis of safety measures considering collected video data captured by au-259

tomated shuttles in two cities. The authors defined five possible interactions260

with other road users based on the collision angle and the parallelism angle:261

head-on, rear-end, side parallel and leaving. The safety indicators computed in262

this work were speed, acceleration, TTC and PET. The authors conclude that263

all the analyzed interactions were safe, due to the limited speed of the shuttle264

compared to other road users around it. DeCeunynck et al. (De Ceunynck et al.,265

2022) perform behavioral observations of two automated shuttles in Norway at266

intersections with various road users, such as pedestrians, scooters or bicycles.267

The authors conclude that more than 90% of the interactions with pedestrians268

are not dangerous, while there were some inconsistencies in the recognition of cy-269

clists when turning. Alozi et al. (Alozi and Hussein, 2022) propose a framework270

based on Extreme Value Theory (EVT) to assess the safety of AV-pedestrian271

interactions by quantifying potential conflicts between them. The authors use272

data from nuScenes and Lyft5 AVs, and data from manual driven vehicles to273

test the accuracy of the EVT approach in relation to vehicle-pedestrian accident274

data. The goal is to reduce the pedestrian accident rate per million vehicle kilo-275

meters travelled. The analysis uses TTC and PET to evaluate the interactions.276

The authors estimate that the AV-pedestrian accident rate is between 4.041 and277

5.499 per million vehicle kilometers traveled, which is a high value considering278

the safety of pedestrians.279
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Differently from these studies, this paper analyzes real data from AVs involv-280

ing the orientation and position of the detected objects in order to accurately281

describe the motion of road users with the respect to the AV. Table 3 shows a282

comparison of the approaches using diverse data sources.283

Table 3: Summary of works considering diverse data sources for safety analysis.

Approach Methodology Advantages Disadvantages

Software simulation-based
Analysis of multiple scenarios
with penetration rate capacity.

• It allows to implement flexible
scenarios both in scalability and in
time execution.

• It is not possible to simulate all the
factors that are involved in driving,
from human factors to unpredictable
events such as fog.

Naturalistic data
Analysis of real-world data
from the drivers (profiling)
and the external environment.

• Naturalistic driving provides sensor
setups to analyze both driving be-
havior and external environment re-
lated with the events that may occur.

• A limitation in self-driving vehicles
is inferred by the AVs’ penetration
degree in the road infrastructure.

Beauchamp et al. (2022)

The authors make an analysis
of safety measures considering
video frames captured camera
sensor in automated shuttles.

• The methodology considers collision
and parallelism angles that enable
the analysis considering how is the
interaction with other road users.

• The authors do not consider the
heading orientation in the calcula-
tion of safety metrics used to analyze
the interactions between the shuttle
and the road users.

• Analysis depends on semantic data
and categorization.

De Ceunynck et al. (2022)

The authors make an analysis
of the impact of conflicts
between AVs and pedestrians
considering data collected by
automated shuttles.

• The authors make a behavioral
analysis of the automated shuttle
interacting with other road users as
pedestrians, bicycles or scooters.

• The authors do not consider the
heading orientation in the calcula-
tion of safety metrics used to analyze
the interactions between the shuttle
and the road users.

• Analysis depends on semantic data
and categorization.

Alozi and Hussein (2022)
The authors propose a method
to assess safety in the
AV-pedestrian interactions.

• The method considers all the
interactions with pedestrians.

• The authors do not consider the
heading orientation in the analysis of
AV-pedestrian interactions.

• Analysis depends on semantic data
and categorization.

Our proposal (TTCmo)
Calculation considers motion
orientation of the objects ahead
with respect to the ego-vehicle.

• This metric considers motion orien-
tation on the ego-vehicle’s motion
axis.

• TTCmo considers just the objects
ahead in collision course with the
ego-vehicle.

• TTCmo also discards other objects
out the ego-vehicle’s path.

• Analysis depends on semantic data
and categorization.

2.5. SSMs based on exteroceptive sensors284

Studies on the evaluation of TTC through exteroceptive sensors have been285

developed to recognize the various entities with which a vehicle can interact.286

Aycard et al. (Aycard et al., 2011) propose a risk assessment system at intersec-287

tions. The authors use data fusion from camera and LiDAR sensors to detect288

and establish the dynamics of detected objects. For risk quantification, the289
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TTC is used as a collision risk indicator. The authors conclude that risk assess-290

ment through environmental perception can enhance safety applications in the291

automotive industry. Kilicarslan and Zheng (Kilicarslan and Zheng, 2019) ana-292

lyze vehicle collisions through TTC using video cameras. The authors analyze293

the divergence of horizontal and vertical movement in video frames without294

relying on bounding boxes. To this aim, TTC analysis is based on the size295

variations of the detected object in the video, divided by the size changes in296

time intervals. The analysis of the algorithm proposed by the authors is used297

in videos of naturalistic driving without accidents. Results show 94% accuracy298

and 93% precision in the relationship between the computed system and the299

actual video. Meanwhile, compared to the detection of the LiDAR sensor in300

the KITTI dataset (Geiger et al., 2012), the authors observe that LiDAR-based301

measurements depend on the depth of detection, discontinued detection, in ad-302

dition to requiring 3D analysis. In this sense, video frame analysis is robust and303

can have a higher degree of accuracy.304

The analysis of road safety metrics is closely related to the collection of im-305

age data from specific areas (mostly intersections), or video analysis in vehicles306

with embedded devices. Unlike these works, this study explores the potential307

of using data generated by AVs to develop road safety analysis solutions based308

on the vehicles’ own sensing. Specifically, we focus on the TTC analysis with309

emphasis on the road users’ motion orientation. Depending on the road users’310

orientation, TTC must be evaluated differently to accurately validate traffic311

conflicts involving the AV. This paper analyzes TTC based on the road users’312
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orientation and position related to the AV. For that, nuScenes AV dataset (Cae-313

sar et al., 2020) and Lyft5 dataset (Kesten et al., 2019) are used in this study to314

analyze the motion orientation and position of the detected objects by the AV315

while it is moving. The goal is to analyze the TTC based on the yaw angle of the316

detected object and its position with respect to the AV through data analysis317

from exteroceptive sensors’ data readings in AVs. To the best of our knowledge,318

this is the first analysis considering orientation for the TTC calculation based319

on data from AVs.320

3. Methodology321

Some experimental AV dataset are publicly available. In this work, we322

use two datasets including semantic data, nuScenes (Caesar et al., 2020) and323

Lyft5 (Kesten et al., 2019). As described in (Ortiz et al., 2022), these datasets324

have various characteristics that can be analyzed for braking and sudden accel-325

eration analysis. In the following, we first describe how we extract data from326

the dataset and how TTC metrics are computed.327

3.1. Dataset overview328

nuScenes: nuScenes (Caesar et al., 2020) is a public large-scale dataset of329

autonomous driving traces which includes images from camera, point clouds330

(PC) from LiDAR, and radar signals detected by the sensors installed on the331

vehicle. This dataset also provides data from the vehicle internal sensors (e.g.,332

acceleration or speed). In total, the dataset includes almost 6 hours of data333
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gathered by two AVs, one in Boston (US), the other one in Singapore (SG).334

The internal sensing data is acquired from the CAN bus.335

Lyft5 : Lyft5 (Kesten et al., 2019) is another public large-scale dataset of336

AV traces, which contains images from cameras and LiDAR PCs. The percep-337

tion dataset consists of 2.5 hours of data gathered by twelve vehicles in Palo338

Alto (PA) divided into 180 scenes of 25 seconds each. Unlike the nuScenes AV339

dataset, Lyft5 does not provide CAN bus data from the vehicle.340

(a) nuScenes AV sensors. (b) Lyft5 AV sensors.

Figure 1: Sensor setup for nuScenes (Caesar et al., 2020) and Lyft5 (Kesten et al., 2019).

Table 4 summarizes characteristics of nuScenes and Lyft5 datasets. We an-341

alyze the training data available for both datasets. As perception datasets, the342

raw data is processed by a perception system that uses sensory systems and343

software to perform multiple behavioral observations and interactions from dif-344

ferent objects around the ego-vehicle, i.e., infrastructure and road users (Hous-345

ton et al., 2020). Each detected object is described as an instance and it can346

have multiple interactions with the AV. Each instance is marked with a 3D347

bounding box, and categorization and attribute labels; each interaction of that348

instance with the AV is recorded in a log. Examples of categorization are ve-349

hicle type, two-wheelers, pedestrians, road infrastructure, among others, and350
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attributes are vehicles or pedestrians stopped, in motion, among others. The351

nuScenes AV dataset contains day/night scenes with different weather condi-352

tions, 23 categories and 9 attributes for in-motion objects. On the other hand,353

Lyft5 contains less scenes, but the proportion of 3D bounding boxes annotations354

is similar to that of nuScenes AV dataset. Similarly to nuScenes, Lyft5 defines355

9 categories and 18 attributes.356

Table 4: Statistics of the two AV datasets.

Scenes Vehicles Images
LiDAR
PCs

Radar
PCs

Bounding
Boxes

Day/
Night

Weather
Categories/
Attributes

nuScenes 850 2 1.4M 400 k 1.3M 1.4M Yes Yes 23/9

Lyft5 180 12 323 k 46 k 0 1.3M No No 9/18

Both nuScenes and Lyft5 datasets include data from keyframes (i.e., syn-357

chronized samples among LiDAR, Radar and camera data, at 2Hz and 5Hz,358

respectively (Caesar et al., 2020; Kesten et al., 2019)), and data from each sensor359

sweeps, based on the sampling frequency of each one. Metadata of all samples360

are available in JSON files format. Moreover, the datasets provide training data,361

that is, data with sample annotations used to describe diverse characteristics of362

the object itself around the ego-vehicle, based on LiDAR PCs and JPEG images363

from the cameras.364

3.2. Data preparation365

Analysis on safety assessment requires to use data resulting from functional366

areas of AVs (IEEE Electronics Packaging Society, 2019). Thus, acquisition data367

(e.g., raw data from sensors like camera, GPS/IMU, among others), perception368

data (e.g., object detection, location, environment), cognition data (e.g., mo-369
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tion planning, maneuvers, among others) and action data (e.g., speed, brakes,370

steering, among others). Figure 2(a) shows the data used for both AV and371

detected objects through the exteroceptive sensors, with respect to functional372

areas for the AV performance analysis. Thus, AV and detected objects meta-373

data are used to assess the safety of AV interactions with various road users and374

infrastructure. It is worth noting that it is possible to assess safety with respect375

to users other than vehicles, such as pedestrians and two-wheelers. Therefore,376

data from all AV autonomy phases are used to assess risk events for the cat-377

egories of detected objects in the dataset, in order to establish a standard of378

AV driving with respect to the road users’ motion. Although traffic accidents379

are unexpected and rare events that can be associated with multiple causing380

factors, this analysis can help to explain more clearly potential traffic accidents381

since any collision describes a convergence approach between the users involved382

in the collision, as described in Figure 2(b).383

3.2.1. Motion orientation and position angle384

Our goal is to identify the allocentric and egocentric spatial relations between385

detected objects and the ego-vehicle, defined by relative directions, distances and386

bearings (Meilinger and Vosgerau, 2010). Allocentric data is based on relations387

object-to-object. On the other hand, egocentric data is based on relations self-388

to-object (Meilinger and Vosgerau, 2010). Thus, our analysis uses the heading389

orientation (yaw angle) as an allocentric representation of the motion orientation390

(direction) of each detected object with respect to the ego-vehicle. Motion391

orientation enables to describe when an object is converging to or diverging392
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(a) Key variables used in the data analysis. (b) Data analysis procedure.

Figure 2: Summary of data used to analyze traffic risk events based on motion orientation.

of the ego-vehicle’s course. In the meantime, the position angle is used as393

egocentric representation to describe the location of the objects with respect394

to the ego-vehicle. Position angle enables to infer the severity of a risk event395

conditioned by the position and the orientation of each detected object while396

interacting with the ego-vehicle. From the analysis of the dynamics of road users397

and the ego-vehicle, it is possible to evaluate metrics inherent to the objects’398

motion. For that, we use the nuScenes and Lyft5 devkits (nuTonomy, 2018; Lyft399

SDK, 2019), which provides a set of libraries to manipulate their datasets. We400

compute the bounding box orientation, swapping the sensor coordinate frame401

[x, y, z ] of the LiDAR ([1, 0, 0 ]) for the camera ([0, -1, 0 ]), according to the402

coordinate frames defined for each sensor. In this way, we set the yaw angles403

for each object detected based on the sensor coordinate frame of the frontal404

camera, as observed in Figure 1.405
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Furthermore, to describe the spatial orientation of the vehicle and the de-406

tected objects the yaw angle is used, as shown in Figure 3(a). Yaw angles (ψ)407

also indicate the orientation of each detected object. North is 0 o (ψ0), east is408

90 o (ψ1), west is −90 o (ψ2) and south is ±180 o (ψ3). Objects have positive409

heading in clockwise direction and negative value in counterclockwise direction.410

About the ego-vehicle, we assume that yaw angle is ψego = 0 o. Thus, detected411

objects with yaw angle between ψ2 < ψ0 < ψ1 indicate that the direction on412

z-axis is forward the ego-vehicle; meanwhile, yaw angles between ψ1 < ψ3 < ψ2413

indicate that the direction is opposite to the ego-vehicle, as shown in Figure 3(b).414

On the other hand, position angles (θ) indicate the location of an object with415

respect to the ego-vehicle. Position angles 0 o < θ < 90 o indicate object loca-416

tions at right-side with respect to the driving direction, while −90 o < θ < 0 o
417

at left-side, as shown in Figure 3(c). Bounding box centroid coordinates (x, z )418

are used to determine θ. Thus, it is possible to establish when the ego-vehicle419

path is converging with detected objects.420

3.2.2. Geometric analysis of objects and ego-vehicle421

As shown in Figure 4, we use the ego-vehicle size specification to obtain a ge-422

ometric representation and to analyze the interaction with surrounding objects.423

The width and length of the detected objects, available from the bounding424

boxes, are considered in the geometric analysis. In this sense, each vertex is425

labeled to determine its location and orientation when the object moves and426

rotates. The ego-vehicle is also represented as a bounding box. It is impor-427

tant to note that since ψego = 0, the position of its vertices will always be the428
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(a) Roll, pitch and yaw rotations. (b) Illustration of the yaw orientation in road users.

(c) Object position with respect to the ego-
vehicle.

Figure 3: Relationship between AV and detected objects via motion orientation and position
angle.

same for the analysis. In addition, the remaining space between the lane width429

and the ego-vehicle width is used as a safety area (san, where n is an object430

identifier), to identify objects adjacent to the AV that may represent potential431

traffic conflicts. The lane width is based on the respective road city regulations.432

Vehicle size specifications are reported in Table 5.433

To determine which objects are in collision course with the ego-vehicle, we434

aim to identify adjacent or overlapping trajectories between the ego-vehicle and435

other objects through motion orientation analysis. In this way, we identify be-436
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Table 5: nuScenes and Lyft5 vehicle overall dimensions. The width (w) includes external
mirrors. The length between camera and vehicle front-side (lcf ) and the length between
camera and vehicle rear-side (lcr) are based on the camera location on the vehicle’s rooftop.

Dimensions
Vehicle

nuScenes
(Renault Zoe)

Lyft5
(Ford Fusion)

w [m] 1.945 2.121
l [m] 4.087 4.871
h [m] 1.562 1.478

lcf [m] 1.810 2.302
lcr [m] 2.277 2.569

(a) Bounding box geometry. (b) Ego-vehicle geometry.

Figure 4: Geometric representation for an object (a) and the ego-vehicle (b).

havior indicators according to the AV reaction in several possible interactions437

with the objects around. Thus, we process AVs data to identify these interac-438

tions. In this analysis, we consider data annotations of the camera’s coordinate439

system as reference. Information of the bounding box like the yaw rate (ψ),440

centroid position data in the image (x, y, z ), and the size (w, l, h) are ex-441

tracted from each annotation. Each vertex of a bounding box and the AVs are442

calculated by the relationship between sizes and the centroid coordinates, as443

described in Equation 2:444
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ax, dx = x− w

2
,

bx, cx = x+
w

2
,

az, bz = z +
l

2
,

cz, dz = z − l

2
.

(2)

Table 6 shows the vertices calculation for both the ego-vehicle and bounding445

boxes. We also model the ego-vehicle as a bounding box to analyze the inter-446

action of each corner of it with the detected objects. Thus, we consider the447

position of the camera on the vehicle’s rooftop as the origin x, z. It is important448

to note that the camera position does not correspond to the vehicle’s centroid,449

and therefore, it is necessary to calculate lcf and lcr, as shown in Figure 4(b).450

Furthermore, we assume that ψ = 0 since we analyze the interactions with451

objects detected from images captured by the AV front camera.452

Table 6: Relation between the centroid position in the bounding box and the ψobj rotation.

Vertices
Bounding Box nuScenes/Lyft5

xobj zobj xego zego

a axobj
cos(ψobj) + azobjsin(ψobj) + xobj −axobj

sin(ψobj) + azobjcos(ψobj) + zobj axego zego + lcf

b bxobj
cos(ψobj) + bzobjsin(ψobj) + xobj −bxobj

sin(ψobj) + bzobjcos(ψobj) + zobj bxego
zego + lcf

c cxobj
cos(ψobj) + czobjsin(ψobj) + xobj −cxobj

sin(ψobj) + czobjcos(ψobj) + zobj cxego
zego − lcr

d dxobj
cos(ψobj) + dzobjsin(ψobj) + xobj −dxobj

sin(ψobj) + dzobjcos(ψobj) + zobj dxego
zego − lcr

Next, we analyze when an intersection exists between ego-vehicle vertices453

and bounding boxes converging to the AV path. For this, data from the de-454

tected object vertices and ego-vehicle vertices are analyzed to determine the455

interactions between them. For this analysis, a line segment is defined as the456
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line connecting the adjacent vertices of the bounding box. We define line’s457

equation for each selected bounding box segment of both the object and the458

ego-vehicle and potential intersections are calculated, as shown in Equation 3:459

Aegox+Begoz = Cego,

Aobjx+Bobjz = Cobj ,

(3)

where A, B, and C correspond to the line’s equation values for each segment460

of the bounding box (object) interacting with the ego-vehicle. These values are461

given by a set of conditions that depend on the detected object’s orientation.462

Once the line equations have been calculated, the resulting values are used463

to compute the intersection coordinates at x, z :464

xego∩obj =
(BegoCobj)− (BobjCego)

(AegoBobj)− (AobjBego)
,

zego∩obj =
(AobjCego)− (AegoCobj)

(AegoBobj)− (AobjBego)
.

(4)

Then, the distance d is calculated between the potential conflict vertices and465

segments between the detected object and the ego-vehicle:466

d =
√
(xsegego − xego∩obj)2 + (zsegego − zego∩obj)2. (5)

The geometric analysis of the ego-vehicle in relation to any detected ob-467

ject, using the motion orientation of the latter, allows us to evaluate diverses468
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eventualities:469

• Identification of the first impact point: This methodology enables470

to evaluate the first point of impact of the ego-vehicle with any detected471

object that is on the collision course at a given instant of time.472

• Approach type: The geometric analysis also enables evaluating points473

of potential impact on the detected object. Furthermore, how the ap-474

proximations occur can help to understand how the AV decision-making475

occurs. On the other hand, it is also possible to analyze other sensors,476

such as the side cameras; In this work we only analyze the interactions477

detected in the front camera. Side cameras analysis is not part of this478

work.479

• Interaction with other road users: In addition to analyzing other480

vehicles interacting with the AV, it is also possible to evaluate how in-481

teractions with other road users occur, e.g., pedestrians, two-wheelers,482

objects, animals, among others. However, this analysis depends on the483

semantic data and categorization of objects detected by the AV.484

Finally, it is possible to identify the location of objects around the AV. As485

shown in Figure 5, this methodology allows observing the potential impact point486

on the ego-vehicle (xsegego , zsegego), on the detected object (xego∩obj , zego∩obj),487

as well as the distance (d) between those potential impact points. This analysis488

also enables evaluating potential impact points with other bounding box seg-489

ments from detected objects, e.g., segments ab, bc, cd, da. In the ego-vehicle,490
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just the segment ab is analyzed. Moreover, in order to determine not only491

moving objects, as reported in (Kusano et al., 2014), the goal is to define also492

when movable/static objects (e.g., vehicles parked, traffic signals, among oth-493

ers) can provoke AV evasive actions that may represent potential risk events494

immediately. Thus, this work aims to evaluate the interactions between ver-495

tices of both AV and movable/static objects. This is important considering496

that although the proximity of the AV to other objects is inherent in the vehic-497

ular environment (e.g., adjacent vehicles, crosswalks, crossing vehicles, among498

others), and therefore some risk events can result in false positives.499

Figure 5: Geometric analysis of line segments, intersections and distance between the ego-
vehicle and the detected objects. The segment analyzed in the detected object is bc, and
segment ab in the ego-vehicle.

This analysis allows describing various interactions with surrounding objects500

detected by the AV. Nevertheless, it is necessary to quantify the risk when the501

AV is on a collision course. For that, this work uses the TTC considering the502
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detected objects’ orientation as a metric to improve the analysis of traffic risk503

events involving the AV. The goal is to propose an improved TTC and test it504

with real data from AVs.505

4. Time-to-Collision with Motion Orientation506

From the analysis of camera images, it is possible to determine the position507

of objects. We can derive both the absolute location of the object and the508

position in the image through projections from 2D camera frames. As shown509

in Figure 6, it is possible to analyze the mapping between the world coordinate510

system and camera coordinate system that corresponds to the coordinate system511

used for vehicle navigation. Also, the object’s speed related to the ego-vehicle is512

calculated by measuring the time difference between the sending and rebounding513

laser pulses from the LiDAR sensor.514

Figure 6: Mapping between a real frame and the camera frame.

To reduce the shortcomings of SSMs proposed in the literature, we include515

the motion orientation and position of objects detected by the AV as a parameter516
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for the TTC calculation. The goal is to improve the accuracy of TTC to assess517

risk events for AV. Equation 6 summarizes the computation of TTCmo:518

TTCmo =



d(obj,ego)
vego−vobj cos(ψobj)

, if (vego − vobj cos(ψobj)) > 0,

∞ :



if (bego + sa2) < (a, b, c, d)obj < (aego − sa1),

or (vego − vobj cos(ψobj)) < 0,

or vego = 0,

(6)

where d is the distance between the segment/vertex on the ego-vehicle’s course519

and the front-side of the ego-vehicle, vego is the speed of the ego-vehicle, vobj520

is the speed of the detected object, and ψobj is the yaw angle of the detected521

object. The product of vobj and ψobj captures the influence of the speed com-522

ponent on the same axis of the ego-vehicle shift (z-axis), since the geometric523

analysis uses the camera’s reference system. On the other hand, TTCmo tends524

to infinity when none of the bounding box vertices of detected objects are in the525

path of the AV or invading the safety area (sa). Likewise, it is assumed that526

when detected objects with speed higher than the AV. Finally, when the AV is527

stopped, it is inferred that there will be no risk event. The speed values of the528

detected objects and the ego-vehicle in the AV nuScenes are obtained directly529

from the dataset. On the other hand, the speed data of the ego-vehicle in the530

Lyft5 dataset is obtained from the analysis of translation data by means of the531

haversine formula (Ivis, F., 2006).532

As a result, it is possible to differentiate traffic risk events in both car follow-533
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ing and head-on scenarios. Therefore, TTCmo is conditioned to the yaw orien-534

tation of each road user detected by the ego-vehicle. Thus, for detected objects535

whose position indicates that they are on a collision course with the ego-vehicle,536

as defined in Section 3.2.1, orientation angles between −90 o < 0 o < 90 o indi-537

cate that road users heading diverges from the ego-vehicle heading, describing538

car-following or crossing scenarios. Thus, the speed component vobj cos(ψobj) ≥539

0, and TTCmo value can only be calculated when a positive speed difference540

between the vehicles exists (Minderhoud and Bovy, 2001), which corresponds541

to the general definition of TTC. On the other hand, orientation angles between542

90 o < 180 o < −90 o describe head-on or crossing scenarios, where the speed543

component is vobj cos(ψobj) < 0, and indicate that the road users heading con-544

verges with the motion direction of the ego-vehicle. Therefore, different from545

the general definition of TTC, TTCmo value is calculated by adding the speeds546

of the ego-vehicle and the road user, following the definition in (Laureshyn et al.,547

2010).548

As shown in Figure 7, scenarios 7(b), 7(c), 7(d), and 7(e) show the detec-549

tion of objects which move in the same direction as the AV, in a car following550

event; scenarios 7(f), 7(g), 7(h), and 7(i) show the detected objects traveling in551

opposite direction to the ego-vehicle, configuring a head-on event; finally, sce-552

narios 7(j), 7(k), and 7(l) show AV interactions with objects converging to the553

AV or a next point in a perpendicular trajectory, configuring a crossing event.554

Thus, it is possible to determine if the AV may be on a collision course with555

other road users with which the AV interacts continuously.556
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Scenarios Characteristics

(a)

Ego-vehicle has not detected objects.

(b) (c) (d) (e)

Car-following scenarios

• Ego-vehicle detects objects moving in
same direction, but they are not on a
collision course with it (Fig. 7(b)).

• Ego-vehicle detects objects ahead
(Fig. 7(c)).

• Ego-vehicle detects objects converging
(Fig. 7(d)), or diverging (Fig. 7(e)),
still remaining in the vehicle’s path.

(f) (g) (h) (i)

Head-on scenarios

• Ego-vehicle detects objects moving in
opposite direction, but they are not
on a collision course with it
(Fig. 7(f)).

• Ego-vehicle detects objects
converging directly to it (Fig. 7(g)).

• Ego-vehicle detects objects converging
(Fig. 7(h)), or diverging (Fig. 7(i)),
still remaining in the vehicle’s path.

(j) (k) (l)

Crossing scenarios

• Ego-vehicle detects objects in
perpendicular direction, but they are
not on a collision course with it
(Fig. 7(j)).

• Ego-vehicle detects objects crossing
towards the lane where it is moving.
(Fig. 7(k)), still remaining in the
vehicle’s path.

• Ego-vehicle detects objects crossing
out the lane where it is moving.
(Fig. 7(l)), still remaining in the
vehicle’s path.

Figure 7: Possible scenarios for detected objects ahead identified by the position and motion
orientation.

To quantify the risk level from the TTCmo analysis, we employ the risk557

coefficients proposed in (Li et al., 2017). This criterion gathers values which558

correspond to the reaction time requirements in AVs, based on the parameters559

described in (Rydzewski and Czarnul, 2021). Table 7 shows the risk coefficient560

defined according to the TTCmo values.561
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Table 7: Risk coefficient as a function of TTC.

Severity grade TTCmo [s] Description Risk coefficient

0 > 4.0 No safety risk 0.0
1 2.5 to 4.0 Accident-to-conflict ratio stable 0.2
2 1.5 to 2.5 Low risk level 0.3
3 1.0 to 1.5 Moderate risk level 0.6
4 ≤ 1.0 High risk level 0.8

Motion orientation has a direct impact on the safety analysis. The road562

users’ is random by nature, therefore it is inferred that traffic risk events require563

a mapping analysis of the detected objects around the ego-vehicle. Next, TTCmo564

analysis is used on the AV datasets presented in Section 3.1.565

5. Performance Evaluation566

We analyze factors that can compromise vehicle and passengers safety. For567

this, we focused on vehicle tracking, speed limit based on traffic regulations and568

TTCmo to estimate the risk of ego-vehicle interactions with other road users.569

5.1. Vehicle tracking570

The frequency of each event is influenced by the topology of the cities where571

the AVs circulate, as shown in Figure 8. To analyze the vehicle tracking, we572

enriched the datasets with data related to road type and speed limit. The ego573

pose data encoded in translation data are transformed into geodetic coordinates574

to track the vehicle. Then, we use geodetic coordinates are used to make queries575

in Nominatim1 and Overpass API2.576

1https://nominatim.org/
2https://overpass-turbo.eu/
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(a) Singapore. (b) Boston. (c) Palo Alto.

Figure 8: Trajectories of the AVs in the datasets.

5.2. Speed limit analysis577

From the vehicle tracking analysis in Section 5.1, the ego vehicle speed profile578

is verified to ensure compliance with traffic regulations. Figure 9 shows that579

the ego vehicle maintains an average speed between 15 km/h and 30 km/h in580

Boston, 20 km/h and 40 km/h in Singapore, and between 30 km/h and 50 km/h581

in Palo Alto. Likewise, the speed of vehicles moving in front of the ego vehicle582

is analyzed. It is possible to observe that some samples exceed the threshold583

speed limit established by the traffic regulations; obviously relevant information584

given that speeding increases the probability of risky events.585

5.3. TTCmo evaluation586

Kinematic measures like speed and distance from the detected objects are587

used for the TTCmo calculation. Speed and distance are estimated through Li-588

DAR measurements, while the images are used for the recognition of the various589

objects around the AV. Data is available in the datasets in form of annotations590

and metadata for each instance (object) detected by the AV. Moreover, annota-591

tions are identified by categories, each one associated with each object detected.592
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(a) Ego-vehicle speed vs. road speed limit in Singapore.

(b) Ego-vehicle speed vs. road speed limit in Boston.

(c) Ego-vehicle speed vs. road speed limit in Palo Alto.

Figure 9: Relationship between the ego-vehicle speed and the road speed limit. Green marks
describe the maximum speed allowed for each road type. Some road types have different speed
limits; these are identified with thick and thin marks

Table 8 shows the observation statistics for the objects detected by the frontal593

camera.594
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Table 8: Categories instances in the AV datasets.

Dataset
nuScenes Lyft5

Singapore Boston Palo Alto

Images analyzed 14,106 18,617 21,640
Instance annotations 11,308 21,251 10,525
Sample annotations 107,615 225,957 227,043

Vehicles 46,262 137,927 211,287
Two-wheelers 4,373 2,835 7,039
Pedestrians 25,915 36,221 8,672

Animals 36 121 45
Traffic objects 31,029 49,853 –

To analyze potential risk events, AV datasets are examined to assess the595

driving behavior. For that, annotations made to images captured by the front596

camera are analyzed. Annotations with no speed data are discarded: 5% from597

the Lyft5 dataset, 4.3% from the Boston subset, and 1.1% from the Singapore598

subset. Next, we evaluate the regular TTC defined in Equation 1 for all the valid599

annotations, in order to observe the proportion of objects interacting with the600

ego-vehicle. In proportion, approximately 70% of the samples represent some601

risk level w.r.t. valid ones, as shown in Figure 10. Different from the analysis602

with the regular TTC, which only discards events when vobj > vego, the TTCmo603

methodology proposed in Section 3 allows to determine which objects may be604

in the ego-vehicle’s course. Therefore, objects that are not in the course of605

the ego-vehicle, or those whose exceeds the position angle threshold defined606

in Section 3.2.1 are discarded, since they do not represent a potential traffic607

conflict. Therefore, Annotations of objects converging to the ego-vehicle’s course608

or the safety zone defined in Section 3.2.2 are analyzed. The proportion of609

samples representing some risk w.r.t. valid ones corresponds approximately 4%610

to 5% for Palo Alto and Singapore subsets, and approx. 8% for the Boston611
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subset, as observed in Figure 10.612

Figure 10: Number of annotations (× 103) assessed for the analysis of potential risk events in
the AV datasets studied. Hatch pattern bars in Analyzed label on x-axis correspond to the
TTC general formulation analysis; solid color bars correspond to the TTCmo proposed in this
work.

Figure 11 shows the TTCmo and conventional TTC frequency distributions613

for each analyzed dataset. It is possible to observe that the distribution in all614

cities is very similar, with distributions skewed to the right. Therefore, the 5th615

and the 85th percentiles are evaluated, which represent the most pronounced616

inflection points in the cumulative distribution. Values below the 5th percentile617

represent TTC values < 2.4 s in all datasets. We also note that the bulk of618

representative TTC samples are concentrated in up to 33 s, with an average of619

maximum 18 s. On the other hand, comparing the distribution of TTC and620

TTCmo, it is possible to observe that the TTCmo distribution in Singapore and621

Boston subsets is smaller than TTC distribution, which allows us to observe a622

trend towards a decrease in the frequency of high-risk events. Therefore, TTCmo623

appears to have a more precise collision course compared to TTC, which leads624

to a stricter definition of conflicts and less data to be analyzed. Meanwhile, the625

distribution of TTCmo in Palo Alto is contrary to the data trend in Singapore626
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or Boston. It is possible to observe an increment in the frequency of events with627

time < 10 s, however, the frequency in time > 10 s decreases compared with628

TTC distribution. This trend can be influenced by interactions with parked629

vehicles along the AV route.630

From the annotations analyzed in Figure 10, it is possible to observe the631

frequency and the type of events concerning potential risk events, when both632

the objects and the ego-vehicle are in collision course. Table 9 shows the total633

frequency of event types based on the course of detected objects, as described634

in Section 3.2.1, classified as following, head-on, and crossing events. Course635

analysis can help to analyze the way in which these objects converge with the636

AVs. These data are important to consider the severity of the event. For637

example, a car-following event can have a different effect than a head-on event.638

Table 9: Conflict types defined by position and orientation concerning to the ego-vehicle.

Event/City Singapore Boston Palo Alto

Following 3,094 4,452 7,022

Head-on 595 824 147

Lane-change 267 349 104
Crossing 4,947 6,456 1,463

Total events 8,903 12,081 8,736

To analyze the risk level of the ego-vehicle interactions with other objects,639

we use the severity hierarchy based on the level and severity zones proposed640

by Hydén (Hydén, 1987). Severity level defines a threshold for serious and641

non-serious conflicts. On the other hand, severity zones quantitatively define642

severity levels. Both severity level and zones are based on a relationship between643

time and speed. A fixed threshold to define a high-risk event is based on the644
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(a) Singapore.

(b) Boston.

(c) Palo Alto.

Figure 11: Cumulative and Probability Density Functions for TTCmo and TTC < 100 s for
each dataset.

Time-to-Accident (TA) under a traffic conflict. This value was established at645

1.5 s (Hydén, 1987), which is consistent with the studies reported in (Rydzewski646

and Czarnul, 2021), and that corresponds to the response time of the sensors647
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readings, processing, recognition and planning tasks of the AV between the648

detection of an obstacle and the evasive action.649

All interactions that represent some risk level for the ego-vehicle are pre-650

sented in Figure 12. All interactions within the 5th percentile are plotted, as651

observed in the cumulative distributions of Figure 11. We note that most of the652

observed interactions in SG and Boston occur with vehicles and objects. Fig-653

ure 12(a) shows that interactions with TTCmo < 1.5 s occur with other moving654

vehicles, with a deceleration pattern as the TTCmo decreases. On the other655

hand, in PA we observe more interactions with parked vehicles. This charac-656

teristic is due to Lyft5 vehicles move along the roadside parking areas, next to657

the first lane at right, where some parked vehicles are invading the safety area658

(sa) defined for the AV. On the other hand, it is interesting to note that inter-659

actions with pedestrians show some events that represent lower risk of collision,660

as shown in Figure 12(b). The same behavior is observed for the two-wheelers661

in Figure 12(c). Finally, Figure 12(d) shows the interactions with objects of the662

vehicular infrastructure like barriers, traffic cones, among others.663

To summarize, the proportion of interactions for all the annotations ana-664

lyzed represents less than 1% for high-risk events, whereas events with some665

risk represent approximately 10%. Events that do not represent any risk repre-666

sent more than 70%, as shown in Figure 13. Compared to valid annotations, the667

proportion of interactions that represent some risk level is less than 2%. This668

is consistent with the results observed in (Beauchamp et al., 2022) and (De Ce-669

unynck et al., 2022), where it is observed that most traffic events are not risky670
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(a) Vehicles.

(b) Pedestrians.

(c) Two-wheelers.

(d) Objects.

Figure 12: TTCmo 5th percentile indicators for each scenario in relation to ego-vehicle speed
and acceleration. Acceleration changes are shown in heatmap color variations. The columns
describe the city where the interactions take place: to the left Singapore (SG), to the center
Boston, and to the right Palo Alto (PA). Meanwhile, the rows describe the general category
of objects interacting with the AV. Conflicts above the black line on the graphs are ranked as
serious; below the black line, non-serious.
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for the ego-vehicle. Furthermore, compared to (Li et al., 2017), it is observed671

that moderate and high risk events have a lower proportion. Nonetheless, the672

experimentation environment is different, and the results are expressive due to673

our analysis takes advantage of the sensors mobility and the variability of the674

scenarios where the vehicles transit.675

Figure 13: Annotation volume based on severity grade ratio.

The present TTCmo analysis allows to assess risk events through the geo-676

metric analysis of the boundaries associated with each object detected by the677

AVs. Thus, it is possible to limit the analysis to objects in a possible collision678

course. This is relevant for TTCmo analysis since it is possible to identify how679

interactions occur with various road users and objects. Nevertheless, further680

investigation is needed to establish a pattern of AV behavior with a longer time681

sequence in the scenes, mainly to obtain more parameters to describe driving682

behavior patterns related the AI system that controls the vehicle.683

An advantage of data analysis through exteroceptive sensors is that risk as-684

sessment is not limited to claims related to vehicles only. This is observed in685

Figure 12, where the TTCmo is assessed for various categories and attributes686
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available in the datasets. Moreover, the distribution of risk events was similar687

among the three datasets, with 85% of the sampling concentrated in less than688

33 s, and the highest risk events below 2.4 s, as shown in Figure 11. It is also689

important to note that the analysis of safety metrics for various road users will690

depend on the data labeling available. This can be observed for example in691

Table 8, where the Lyft5 dataset does not have data related to traffic infras-692

tructure objects. It is important to explainability requirements to understand693

traffic conflicts between detected objects and the ego-vehicle, based on the road694

users motion.695

It should be noted that there are some limitations in the used AV datasets.696

The sampling time of each scene is limited to a maximum of 25 s (Lyft5), and697

20 s (nuScenes), in most cases without sequence, which prevents observing a698

greater number of events with potential risk. Another limitation is related with699

the speed of the AVs analyzed, which is much lower than the limit speeds of the700

road infrastructure. The speed uniformity of the AVs reduces the possibility701

of observing the effect of the evasive actions by the AV. Finally, the number of702

vehicles limits the risk assessment analysis since the age and learning experience703

of the autonomous system may still be limited.704

On the other hand, sensor-associated errors can influence the risk analysis of705

the ego-vehicle. Despite the existence of errors in both translation and speed in706

both datasets, object detection based on LiDAR and the camera perform well707

in image-only methods to infer the dimensions of the detected objects and their708

kinematic measurements (Caesar et al., 2020). In fact, object detection is a709
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challenging area since objects around are not symmetric, contain different foot-710

prints, and therefore, the computation of bounding boxes generation is a hard711

problem. It is important noting that TTCmo is a metric that depends on the712

object detection and kinematic variables related to the object, and therefore,713

requires high precision of the sensors. Otherwise, TTCmo calculation may re-714

sult in erroneous measurements influenced by errors of the autonomous system715

driving the vehicle.716

Finally, the calculation of TTCmo considering the motion orientation of the717

detected objects reduces the overload generated by the volume of data in the718

safety analysis. Thus, our improved TTCmo reduces by up to 60% the proportion719

of data to be analyzed when compared to the regular TTC. Motion orientation720

and geometry analysis enable to discard all objects that, despite interacting721

with the AV, they do not converge on a collision course, and therefore, they do722

not represent a risk for AV. It is relevant if we consider that safety monitoring723

requires immediate analysis when exists potential traffic conflicts.724

6. Conclusion and Future Work725

This study aims to explore the potential of using AV data to identify high-726

risk events in traffic by analyzing TTC and motion orientation. Real data col-727

lected from AVs in different cities was used to identify risk events. A detailed728

data analysis and processing are presented in this study, in addition to serving729

as a guide for other researchers who want to use public AV datasets. In par-730

ticular, we study traditional SSM like TTC considering the motion orientation731
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of the road users detected by the AV. This is a scenario few explored since the732

information of the road users is limited when there are no direct measurements733

of them. By the motion orientation, it is possible to analyze diverse scenarios734

like following, head-on and crossing events. This allows a more intuitive safety735

analysis related to all detected objects moving in different directions.736

As future work, our goal is to describe traffic risk events accurately to im-737

prove the risk assessment process in AVs. For this, it is necessary to manage the738

data to optimize the analysis of the data collection available in each ego vehicle,739

so that it is scalable, and responds to the immediateness of risk assessments.740
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