
TRAFFIC CONFLICT ANALYSIS BY RISK ESTIMATION AND
PRIVACY-PRESERVING COLLABORATION FOR MOBILITY SAFETY

Fernando Molano Ortiz

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia Elétrica,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Doutor em Engenharia
Elétrica.

Orientador: Luís Henrique Maciel Kosmalski
Costa

Rio de Janeiro
Setembro de 2022



TRAFFIC CONFLICT ANALYSIS BY RISK ESTIMATION AND
PRIVACY-PRESERVING COLLABORATION FOR MOBILITY SAFETY

Fernando Molano Ortiz

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Orientador: Luís Henrique Maciel Kosmalski Costa

Aprovada por: Prof. Luís Henrique Maciel Kosmalski Costa
Prof. Divanilson Rodrigo de Sousa Campelo
Prof. Marcelo Gonçalves Rubinstein
Prof. Miguel Elias Mitre Campista
Prof. Rodrigo de Souza Couto

RIO DE JANEIRO, RJ – BRASIL
SETEMBRO DE 2022



Ortiz, Fernando Molano
Traffic Conflict Analysis By Risk Estimation

And Privacy-Preserving Collaboration For Mobility
Safety/Fernando Molano Ortiz. – Rio de Janeiro:
UFRJ/COPPE, 2022.

XIX, 107 p.: il.; 29, 7cm.
Orientador: Luís Henrique Maciel Kosmalski Costa
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2022.
Referências Bibliográficas: p. 97 – 107.
1. Exteroceptive Sensors. 2. Smart Mobility. 3. Self-

Driving Vehicles. 4. Intelligent Vehicles. I. Costa, Luís
Henrique Maciel Kosmalski. II. Universidade Federal do
Rio de Janeiro, COPPE, Programa de Engenharia Elétrica.
III. Título.

iii



To my family.

iv



Acknowledgments

I want to especially thank my advisor Luís for accepting me as student, especially
for his patience, support, respect, trust and his friendship during this period, and
for all the care he took with me during the pandemic. I have certainly learned many
things from him, both professionally and in life. I also thank Professor Miguel, who
together with prof. Luís gave me the opportunity to work on the AXA project, from
which this thesis emerges. This job demanded a lot of effort from me, and everything
I expected to evolve in my learning. I hope I have contributed appropriately to the
challenge.

I also thanks to Matteo Sammarco immensely for your patience, the exchange
of ideas and all the meetings and suggestions throughout these two years. For me,
this has been a learning stage where your participation has been essential for my
professional and personal evolution. Each meeting was a challenge and I was happy
to work under his guidance.

I also thank Professors Rodrigo de Souza, Pedro Cruz and Pedro Velloso for
their patience and help in my training, for their patience in answering my questions.
To prof. Otto (in memoriam) I thank him for all his advices for my adaptation,
because despite his ways, he also had words of praise for me, because he was a great
example of dedication. Thank you!

I thank Professors Divanilson Rodrigo de Sousa Campelo, Marcelo Gonçalves
Rubinstein, Miguel Elias Mitre Campista and Rodrigo de Souza Couto for their
participation in the examination jury.

To my colleagues in GTA lab, you cannot imagine how important it has been to
share this time with you, Hugo Sadok, JB (in memoriam), Lucas Gomes, Gabriel
Rebello, Lucas Airam, Gustavo, Roberto, Luana, who kindly helped me and sup-
ported me in the development of my work; in addition to contributing to my training
and motivation, I am grateful for the good times shared with you in the lab.

To my colleagues in room 23, I was happy in your company. We laughed, sup-
ported and helped each other somehow overcome our challenges. Ana Elisa, much
of my success is attributed to you. Your support and effort were vital for our work
to progress; I never stop thinking about our “company inc”. Thales, “jovem jovem”,
all my admiration for your dedication, your effort and your sacrifice. I just have to

v



thank you for giving me your friendship and trust during this time. We all make it
through this stage. I hope to meet you in new experiences.

To the friends of “Wakanda Pitanga”, thank you for your friendship, for the
meetings, for all the conversations, the diverse opinions and all the occurrences
typical of the group diversity. Without doubt I will continue burning meat and
pineapple, I will continue with the RPGs and mocking and laughing at how many
crazy things you send.

Dianne and Matheus, I especially thank you for giving me your friendship and
sharing pleasant moments with me. Your friendship is unique and I treasure it
dearly. I had never tried so many forms of churrasco, enjoyed a few beers so much,
played so many board games, in short, so many things that I cherish.

I thank my mother Edilsa, my grandma Ace, and my aunt Nuria, who constantly
supported me with their words, advice, and experience, which make me feel very
close to them. Without importing the distance, they always have given me the
impulse not to give up on my projects and ambitions.

Nori, all of this would not have happened without your help. You covered my
back so that I could dedicate myself exclusively to my work, you have accompanied
me through the good times and the less good ones. I want to thank you for all your
unconditional support. I love you!

I thank the staff of the Electrical Engineering Department (PEE) of
COPPE/UFRJ, Daniele, Mauricio, Roberto and Marcos for prompt service in the
department secretariat.

Finally, I thank CAPES - Finance Code 001, CNPq, FAPERJ, FAPESP Grant
15/24494-8, COPPETEC and AXA GO Advanced AI/ML & Research Team, for
the funding of this work and my support in pandemic.

When you experience some change, there is a lot of new stimuli that would come
into your life, and I can only to be graceful for the opportunities received here in
Brazil. It was really great to have what I had for 6 years in GTA laboratory, and
then to see my evolution, my partners’ successes, and that was the part that was
gonna challenge me the most. How could I go into a situation where I had no
familiarity and try to work as hard as I could to put the best of me everyday? I
have grown and learned in ways that I could never have learned if I had not left my
comfort zone. That was the greatest challenge I had in my life. Welcome the next
ones...

vi



Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

ANÁLISE DE CONFLITOS NO TRÂNSITO BASEADA EM ESTIMAÇÕES DE
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A auditoria e o monitoramento veicular são áreas de importância crescente nos
sistemas inteligentes de transportes. Nesse sentido, as seguradoras têm desenvolvido
diferentes estratégias para descrever perfis de condução dos motoristas, através de
sensores embarcados (p. ex., black-boxes, OBD-II dongles, smartfones, entre outros)
que transmitem dados em tempo real. No entanto, com o avanço na implementação
de sistemas inteligentes nos veículos, a tendência é do condutor humano ficar em se-
gundo plano. Portanto, é necessário estabelecer parâmetros que descrevam de forma
eficiente perfis de condução de veículos inteligentes. Esta tese investiga soluções para
propor um modelo de avaliação de risco para veículos inteligentes. Três áreas são
estudadas: sensoriamento, infraestrutura e interações com o veículo de interesse, e
ambientes colaborativos com preservação da privacidade dos dados. Em princípio,
analisam-se sensores exteroceptivos e os dados obtidos destes sensores em veículos
autônomos (AVs) experimentais. Em continuação, são analisadas métricas de segu-
rança substitutas baseadas nas leituras dos sensores, contidas em conjuntos de dados
de AVs. Baseado nos dados de detecção de objetos, esta tese propõe a métrica de
Tempo para Colisão com orientação de movimento, uma medida de estimação de
segurança que permite quantificar o risco baseado na orientação na qual se deslo-
cam os objetos que interagem com o veículo de interesse. Dado que os fluxos de
dados no ambiente veicular mudam dinamicamente, o objetivo final do trabalho é
desenvolver um modelo para avaliar o risco baseado no compartilhamento de dados
entre o fabricante de veículos e a seguradora. Para isso, este trabalho implementa a
técnica de aprendizado federado vertical para garantir a preservação de segurança e
integridade dos dados no ambiente colaborativo.
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Vehicle’s monitoring and audit are areas of growing importance in intelligent
transportation systems. In this sense, insurers have developed different strategies
to describe driving profiles through embedded sensors (e.g., black-boxes, OBD-II
dongles, smartphones, among others) transmitting data in real-time. However, with
the advancement in the implementation of self-driving vehicles, the driver goes to
the background. Therefore, it is necessary to establish parameters that efficiently
describe self-driving vehicle’s driving profiles. Thus, this thesis investigates solutions
to propose a risk assessment model for self-driving vehicles. Three areas are stud-
ied: sensing, infrastructure and interactions with the ego-vehicle, and collaborative
environments with privacy-preserving data. In principle, exteroceptive sensors and
the data obtained from these sensors in experimental Autonomous Vehicles (AVs)
are analyzed. Next, Surrogate Safety Measures (SSMs) based on data from sensor
readings contained in AV datasets are analyzed. Based on object detection data,
this thesis proposes the Time-to-Collision with motion-orientation (TTCmo) met-
ric, a safety estimation measure that allows risk quantification based on the yaw
orientation of detected objects interacting with the ego-vehicle. Given that data
flows in the vehicular environment change dynamically, the last objective of this
thesis is to develop a risk assessment model based on data sharing between the
car manufacturer and the insurer. Thus, this work implements a vertical federated
learning framework to ensure privacy protection and data integrity in a two-party
collaborative environment.
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Chapter 1

Introduction

On-board decisions in the vehicle generally have been associated with the driver.
However, due to high accidents and crashes involving human errors, car manufac-
turers have been implementing several driver support services in order to ensure
the safety of passengers in vehicles. The evolution of these services has allowed the
early adoption of autonomous driving systems. For example, Tesla offers automated
driving system features without any expectation that the user will respond to a
request to intervene [9]. Nonetheless, some fatal crash events involving AVs have
been reported [10]. These incidents make it necessary to establish parameters to
monitor the safety of passengers in self-driving vehicles. Nevertheless, self-driving
vehicles generate divergences in the analysis of traffic risk events and their severity.
This discussion involves numerous questions of technical, ethical, and social nature
since driving will correspond to the artificial intelligence system that manages the
vehicle [11]. In this scenario, since the driver is no longer responsible, it is necessary
to monitor systems in vehicles associated with human perception, which are crucial
in the proper functioning of autonomous driving systems. Thus, this work evaluates
three aspects that we consider fundamental to assess the risk in self-driving vehicles:
sensing, which is directly associated with how the environment around the vehicle is
perceived; the infrastructure and interactions with other road users, associated with
the object detection and the recognition of properties inherent to the road users and
infrastructure; and lastly, data sharing, since the risk assessment will require data
from the autonomous driving system in addition to those generated by the insurer,
and therefore, it is necessary to evaluate specific moments that can be analyzed more
simply in a collaborative environment between manufacturers and insurers, where
they can share data without compromising data integrity and privacy.
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1.1 Motivation

Mobility safety aims to improve the security of the road users – may they be
drivers, passengers, pedestrians – by providing strategies to reduce the negative
societal impacts from traffic risk events. Nonetheless, improving road safety is a
challenging scenario since it requires covering diverse topics that converge in traffic
risk events, for example, driving profiling, vehicle’s mechanical state, interactions
with other road users, among others. As a matter of fact, traffic accidents are one of
the major causes of loss of human lives. In 2018, road traffic crashes represented the
eighth leading cause of death globally, causing up to 1.35 million people died, and
50 million non-fatal injuries that year [12]. The European Road Safety Observatory
(ERSO) states that traffic injuries produce socio-economic consequences estimated
at ¤120 billion annually [13]. The National Highway Traffic Safety Administration
(NHTSA) reports, in 2016, there were 38,824 people killed in motor vehicle crashes
on the U.S. roadways, and that human errors were the leading cause in 94% to 96%
of all motor vehicle crashes [14].

As a logical consequence, governments and researchers around the globe pursue
innovative services to improve road safety policies through autonomous support and
assistance systems, as an immediate response to risk events. The key idea of under
development technologies consists of monitoring several aspects of driving through
the analysis of traffic risk events based on data collected from the driver and the ve-
hicle’s surrounding environment. Application examples are driver detection, driver
distraction, object detection, among others. These applications are relevant since
driving behavior and vehicle interactions depends on multiple sub-areas to describe
properly the context involving road safety. In fact, each application has different
information requirements from vehicle in-cabin and surroundings. In general, safety
monitoring depends on in-cabin and external sensing capabilities available in the ve-
hicle. Therefore, a myriad of sensors come at play. In addition to the sensors needed
for any vehicle operation, other sensors are needed to allow the vehicle to capture
information about the current situation and informing the driver or, ultimately,
taking actions autonomously.

1.2 Sensors in Intelligent Vehicles

Sensing plays a vital role for vehicle monitoring. Sensing can be described as
the process of perception of different variables involved with the vehicle operation.
Through this process, sensor data readings are organized, identified and interpreted,
in order to represent and understand the situation around the vehicle. In-vehicle
perception methods are closely related to sensors. Nowadays, vehicles are equipped

2



with embedded systems that digitally control different vehicle subsystems, resulting
from the stimulation of on-board sensors, providing different functionalities [15], e.g.,
turbo boost, fuel injection, active suspension, vehicle stability, among others. Thus,
vehicle sensors generate massive amounts of data, which are used to analyze behavior
patterns, environmental conditions and to optimize vehicle performance and security.
Therefore, perception systems have to be precise, robust, and frequently processed
in real-time.

In-vehicle sensing enables the integration of different systems to improve, adapt
and automate vehicle safety and the driving experience. These systems assist drivers
by offering precautions to reduce risk exposure or by cooperatively automating driv-
ing tasks (e.g., Anti-lock Braking Systems (ABS), Adaptive Cruise Control (ACC),
Electronic Stability Control (ESC), among others) with the aim of minimizing hu-
man errors, or the effects of human errors at least [16]. In this scenario, it is not only
possible to obtain internal measurements of the vehicle associated with the engine
and its components. Now the vehicle can acquire information from the surrounding
environment, recognizing other factors and objects which coexist with its environ-
ment, which makes each variable a measurement to be considered in any scenario.
Therefore, the vehicle sensor becomes multi-mode, with the capacity to perceive
both internal and external signals. It also means that the vehicle must operate with
heterogeneous data from multiple sources. Moreover, this is relevant if we consider
that self-driving vehicles will reduce the dependency on the human driver since an
intelligent control system will control the vehicle. In this regard, in-vehicle and
external environment sensing take on greater relevance, since the decisions in the
vehicle will be made from the sensor readings.

Driver assistance and support services are constantly evolved, with function-
alities that have some autonomy level, converging towards Autonomous Vehicles
(AVs). Currently, the Society of Automotive Engineers (SAE) classifies the vehi-
cles’ autonomy level [17]. This classification is linked to specific roles involved in
the dynamic driving task: human, vehicle systems, and autonomous systems. A
driver fully responsible for driving represents less complexity related to assistance
systems; in contrast, vehicle sensing is limited. Meanwhile, it is stated that vehicles
with higher complexity in their assistance systems require more advanced sensing
devices. Therefore, full automation has complex computational methods, since ex-
haustive monitoring of the driving environment and full situational awareness are
of paramount importance, once its ultimate goal is being capable of replacing the
human driver [17]. It is worth mentioning that since vehicles with full autonomy
are not yet available, it means the driver must take control and react to situa-
tions in which the autonomous support system does not respond adequately. These
Human-Machine Transitions (HMT) are explored in [11, 18].
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Driving automation requires both “proprioceptive” and “exteroceptive” sensing.
Proprioceptive corresponds to data readings from the internal vehicle sensors. On
the other hand, exteroceptive sensing corresponds to data readings from the exter-
nal vehicle sensors. It is worth noting that proprioceptive sensors are not enough to
provide safety applications that involve the monitoring of other vehicles, since they
do not acquire data from the external environment. Withal, based on readings from
proprioceptive sensors, it is possible to obtain intrinsic variables from the vehicle,
such as speed, fuel consumption, among others. With exteroceptive sensors instead,
vehicles can acquire information on the surrounding environment, recognizing other
factors and objects that coexist in the same space. Vehicle external sensing is gain-
ing importance, especially with the proliferation of cameras which, combined with
improved image processing and analysis, enables a wide range of applications [19].

Data generated by exteroceptive sensors is of primary interest to drivers and
passengers. In fact, environmental sensing is fundamental for Advanced Driving
Assistance System (ADAS). ADAS relies on multiple data sources available in the
vehicle (e.g., external sensing through cameras, radar, LiDAR, in-car networking,
vehicular communications, among others) enabling the implementation of diverse
safety applications in the vehicle, such as ACC, collision avoidance, anti-lock braking
system, among others. Interestingly enough, the same data has value in the context
of smart cities (e.g., sensing the road conditions), and for insurance companies to
establish driving profiles and calculate insurance premiums. Ubiquitous sensing
methods have allowed monitoring vehicles and driving environments. It is inferred
by the proliferation of wireless communications, as well as devices with processing
and sensing abilities. As a result, data volume generated by both proprioceptive
and exteroceptive sensors can be high depending on the type of sensor, reaching up
between 11TB and 152TB per day, just for one vehicle [20]. In this way, vehicle data
volume shows an exponential growth over the recent years. According to an estimate
by IBM, 2.5 quintillion bytes of data are created each day, whilst modern cars have
close to 100 sensors that monitor items related to the vehicle [21], generating data
from terabytes (TB) to petabytes (PB) level. It is relevant since vehicular safety
applications require immediacy in data analysis and real-time operations. Therefore,
strategies are required to optimize data analysis to identify risk events, automatic
incident detection, monitoring traffic behavior, simulation models, among others.
For that, analysis of real vehicular mobility traces is fundamental to extract data
concerns to the driving behavior. Moreover, processing data is crucial to safety
applications in vehicular telematics. Since traffic data change rapidly, it is necessary
to use historical data to identify patterns, and therefore, it must be compared and
processed in a short time [22].
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1.3 Risk Assessment

In addition to sensing and data analysis, another aspect that must be addressed is
the implementation of methods for understanding and predicting safety performance
to make an etiological diagnosis that validates those events that really represent a
risk for vehicle and passengers. This is a complex task if we consider that the
randomness of the vehicular environment requires monitoring in different segments.
For instance, driving requires continuous monitoring since driver and vehicle can
interact with multiple road users and infrastructure that can become risky at any
time. Therefore, it is also necessary to evaluate the interactions with the environ-
ment outside the vehicle. Currently, driving style assessment models are based on
driving profiles inherent to human drivers [23]. For this, different driver monitoring
strategies have been developed to study driving habits in practice. Driver behavior
is classified into macro-areas that consider diverse events in driving practice [24],
e.g., safety, driving behavior, road monitoring, navigation, among others. In the
insurance market, the strategies most used to determine the calculation of insur-
ance policies are based on Usage-Based Insurance (UBI) metrics. Pay As You Drive
(PAYD) and Pay How You Drive (PHYD) [23] are techniques that analyze the vehi-
cle displacements, time of use, and driver behavior respectively. Thus, it is possible
to consider the driver behavior in defining the value of the insurance policy.

Nowadays, with the advancement in the implementation of self-driving vehicles,
the driver goes to the background. Then, a new question arises, which is how to
establish a risk assessment plan to ensure a self-driving vehicle? To formulate these
parameters, it is essential to analyze the data collected from sensors, to describe
different profiles of self-driving vehicles in the presence of risk factors for the vehicle
and its occupants. Nonetheless, the amount of data can introduce noise for the
characterization of these risk factors to establish specific insurance services. One
solution can be to filter this large volume of big data to identify critical charac-
teristics of the self-driving vehicle’s behavior. Indeed, self-driving vehicles generate
divergences in the analysis of traffic risk events and their severity. This discussion
involves numerous questions of technical, ethical, and social nature since driving will
correspond to the artificial intelligence system that manages the vehicle [11]. Besides
that, HMT involves various questions associated with privacy preservation and data
security [25], processes are required to guarantee the data integrity, both in handling
and anonymization. Moreover, HMT has to deal with the complexity of decisions
and how these are approached. It constitutes a challenging scenario since, in addi-
tion to technicalities, it is necessary to establish a trade-off between responsibilities
and ethical standards, to define policies associated with the AVs functionalities and
legislation [18]. It is relevant for insurance companies, given that they must guar-
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antee fairness and explainability to the risk events that may occur with the AV [26]
to the customers. On the other hand, this is also subject to legislative regulations,
which are still lagging when comparing to the AVs’ technological advances.

The interpretation of traffic risk events is correlated with the driver/vehicle and
his/its response to the variability of interactions with various road users. Never-
theless, this depends on observational estimates that allow the risk to be assessed.
Furthermore, these estimates are limited by the absence of crash data or tracking
of sequences of events leading to a high-risk event since crashes are the main focus.
Nonetheless, the use of non-crash traffic risk events allows us to assume a relation-
ship between the severity and the frequency of different events involving the AV. By
understanding these relationships, it is possible to study road safety risks without
relying on accident data and improve the prediction of other risk events.

It is important to note that any potential risk event occurs between at least
two road infrastructure objects which interact on the road and can be explained by
several factors involved in any event. Therefore, any event in traffic is associated with
a severity level that can describe or anticipate risk events and their consequences. A
strategy to quantify traffic risk events with non-crash traffic data are often evaluated
through Surrogate Safety Measures (SSMs). SSMs allow describing the probability
of a crash, as the frequency of interactions with different objects on the road (e.g.,
time difference between vehicles, distance to an object, speed compared with other
road users around, among others). Although SSMs are not designed to carry out
accident prevention actions, these allow observing aspects of the vehicle’s behavior,
containing useful information to follow various processes associated with road safety.

1.4 Federated Learning

In addition to SSMs, risk assessment can be done collaboratively. Thus, a goal is
to take advantage of the data generated by the self-driving vehicle and the monitor-
ing carried out on it by third parties to properly capture the causality of traffic risk
events. Currently, data collection from both car manufacturers and auto insurers is
done individually. These data open a window of opportunity for the use of Machine
Learning (ML) techniques that enable data sharing to create reliable collaborative
ecosystems between manufacturers and policymakers. However, there are privacy
and data security requirements to operate with them [27].

One ML approach that implements data privacy-preservation techniques is Fed-
erated Learning (FL) [28]. This technique allows data to be manipulated in a dis-
tributed way among different users, overlapping datasets with different character-
istics. This overlapping can occur Horizontally (HFL) or Vertically (VFL). HFL is
a sample-based methodology where data from diverse sources (customers) contain
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the same feature space in a distributed manner, but different in samples. On the
other hand, VFL analyzes data and labels with different features, i.e., labels are not
contained in the data, but their significance is relevant in the model analysis.

We aim to use VFL techniques to establish a partner ecosystem to improve
the self-driving model through risk assessment analysis. VFL is applicable in cases
where two organizations share a group of customers, but each organization owns
different data/features. To implement VFL in this ecosystem, we use AV datasets
that contain raw and semantic data from the vehicle while it is in motion. Data
exchange is advantageous for both partners: the car manufacturer benefits because
a third party can help improve its self-driving model; meanwhile, on the insurer’s
side it can help reduce claims, which is beneficial for customers. For instance, ex-
ploring the partner’s ecosystem allows the effective participation of different entities,
from Original Equipment Manufacturer (OEMs), communication providers to gov-
ernment entities. Thus, it is possible to evolve towards new learning models that
allow coexistence and evolution between current driving profile monitoring models,
ensuring data privacy and integrity.

1.5 Objectives

The goal of this thesis manuscript is to present the research work and the ob-
tained results achieved so far. Since self-driving vehicles require special attention
to describe risk assessments is scarcely explored up to now, it is the major issue of
our investigation. Under the umbrella of this issue, we organized our work in four
specific objectives: sensors in intelligent vehicles, datasets and feature selection,
risk assessment based on SSMs, and risk assessment based on data sharing between
trusted organizations using VFL. Next, we briefly describe these research topics.

• Sensors in intelligent vehicles: A state-of-art about sensors in intelligent
vehicles review is carried out. This review aims to identify the devices currently
used in vehicular telematics and the sensors they use. Moreover, this work
emphasizes exteroceptive sensors since these allow to detect variables related
to the external environment around the self-driving vehicle.

• Data analysis: We analyzed two datasets, nuScenes AV dataset [1], and
Lyft5 [2]. nuScenes and Lyft5 are public large-scale datasets for autonomous
driving, based on images from camera, point clouds (PC) from LiDAR, and
radar signals detected by the sensors installed in the vehicle, besides cate-
gorized data. The goal is to analyze the dynamics of road users and the
ego-vehicle to evaluate metrics inherent to the objects’ motion.
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• Risk assessment based on SSMs: This work uses SSM techniques for road
safety analysis. Through these techniques, one goal of this work is to identify
what type of data from the sensors are most appropriate for the calculation
of road safety metrics. We propose and implement the Time-to-Collision with
motion orientation (TTCmo) technique and introduce the analysis of yaw ori-
entation of each object detected, and position of these w.r.t. the ego-vehicle,
in order to analyze only the detected objects that are on a collision course
with the self-driving vehicle. Using the 3D object detection data annotations
available from the publicly available AV datasets nuScenes and Lyft5 and the
TTCmo metric, we find that at least 8% of the interactions with objects de-
tected around the AV present some risk level. This is meaningful, since it is
possible to reduce the proportion of data analyzed by up to 60% when replac-
ing regular TTC by our improved TTC computation.

• Risk assessment based on data sharing between trusted organiza-
tions using ML techniques: The main goal of risk assessment based on
data sharing is to create a distributed environment where car manufacturers
and insurers can improve the self-driving model and reduce claims, respec-
tively. Thus, it is possible that several partners can share samples in similar
time intervals. This messages exchange allows partners to access a part of a
complete model at the same time that they can run a training process for the
segments they want to analyze. For that, we aim to emulate VFL techniques
at the edge using data from self-driving vehicles as data owner, and we define
labels from the insurer as data scientist to learn and detect risk from data
owner with privacy-preserving. Once the VFL environment is established, we
compare its convergence compared to a local model. The results show that the
convergence of the models is close, with the VFL model converging faster than
the local model (fewer epochs to converge to maximum accuracy and minimum
loss), however, with a longer learning time compared to the local model. It
is also possible to observe that the classification of the models identify risk
events.

The subject of this thesis is part of the research collaboration between AXA, a
European insurance company, and Universidade Federal do Rio de Janeiro. Eight
students from UFRJ are engaged in the topic “Safety aspects of transports, connected
and autonomous vehicles”. The project is supported by industrial partner AXA GO
Advanced AI/ML & Research Team.
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1.6 Organization

This thesis manuscript is organized as follows. Chapter 2 reviews the sensors that
can be used in vehicular telematics involved in driving behavior analysis, environ-
mental perception, and object detection in the context of autonomous driving. Also,
various sensors for environment detection will be presented with particular attention
in the exteroceptive sensors. Chapter 3 describes the data collection, preparation
and analysis used to calculate motion properties and dynamics of both AV and
detected objects. Chapter 4 proposes a TTC with motion orientation analysis for
each object detected by the self-driving vehicles described in Chapter 3. Chap-
ter 5 presents a practical implementation emulating a real scenario of collaborative
training of a model. Chapter 6 concludes this work and presents future research
directions.
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Chapter 2

Sensors in Intelligent Vehicles

This chapter provides the required knowledge related to the diverse sensor types
associated with vehicle driving, driving patterns, and safety services, mainly con-
tained in self-driving vehicles. First, basic concepts about exteroceptive and pro-
prioceptive sensors used in telematics are provided. Secondly, Off-the-Shelf (OTS)
devices used for insurance telematics are described. Finally, this section emphasizes
exteroceptive sensors, their advantages and limitations.

2.1 Background

Sensors in vehicle telematics enable monitoring a broad range of functions inher-
ent to the management of diverse driving activities. Electronic sensing systems and
data processing capacity reduce driver’s workload and provide innovative services,
e.g., ABS, ACC, and ESC systems. This section presents a classification of sensors
for vehicle telematics purposes, according to the environment in which they operate
(e.g., in-vehicle, cabin, outdoor). Figure 2.1 illustrates a bipartite graph showing
the relationship between sensors and OTS devices, where sensors are placed in the
right column; exteroceptive sensors are nodes on the top, while proprioceptive on
the bottom. Active sensors are represented as gray-colored nodes, passive sensors
as white-colored nodes. On the left-hand side, each sensor is connected to OTS
telematics devices where it is embedded.

2.2 Proprioceptive vs. Exteroceptive Sensors

A wide variety of sensors is used in regular vehicles, the majority of them to
gather information on internal engine mechanisms. Self-driving vehicles on the other
hand incorporate sensors with the ability to measure extrinsic variables, whose func-
tion is critical to analyze the surrounding environment. Therefore, vehicular telem-
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Figure 2.1: Relationship between the most widely used sensors and the most common
OTS devices used in vehicular telematics. In the middle, exteroceptive sensors are
nodes on the top, while proprioceptive on the bottom. Active sensors are represented
as gray colored boxes, passive sensors as white colored boxes.

atics is no longer merely mechanical, leading to the analysis of internal and external
variables. As such, a basic classification of the sensors is according to the sensed
variables, as proprioceptive or exteroceptive [29].

Proprioceptive sensors measure variations in signals generated by the vehicle’s
internal systems (engine speed, battery level, etc.). Those measurements allow esti-
mating different metrics that are specific to the vehicle, such as speed, fluid levels,
acceleration, among other topics of interest for vehicle telematics. Tachometers, Re-
sistance Temperature Detector (RTD), encoders, and accelerometers are examples
of proprioceptive sensors.

Exteroceptive sensors allow vehicles to be in contact with stimuli coming from
the environment surrounding the vehicle. Examples of such external variables are
measurements of distance to obstacles, light intensity, sound amplitude, detection of
pedestrians, and surrounding vehicles. Therefore, measurements from exteroceptive
sensors are interpreted by the vehicle to produce meaningful environmental features.
Together, exteroceptive sensors give the AVs a sense of the surrounding environment,
which is imperative for autonomous driving.

Proprioceptive sensors, inseparable from vehicle powertrain and chassis, are
widely present in production vehicles. In contrast, exteroceptive sensors are mostly
available in luxury vehicles, vehicles with some level of autonomy, or experimental ve-
hicles. Conventionally, proprioceptive sensors are designed to measure single-process
systems and are therefore limited in capacity. They are unexposed, protected from
the external environment. On the other hand, exteroceptive sensors are designed
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to analyze and monitor internal (vehicle cabin) and external environments. Thus,
they may be designed for operation in different conditions. As such, in some cases
they may be subject to harsh environmental conditions, like rain, snow, nighttime,
etc. [30].

2.2.1 Active vs. passive sensors

Proprioceptive and exteroceptive sensors are designed to just capture and read
a specific metric, or to interact with the environment by observing and recording
changes in it, or reactions from it. This leads to classifying sensors as active or
passive. Passive sensors are able to perform measurements without interacting
with the environment, in other words, the sensor receives energy stimuli from the
environment. Active sensors emit waves outside the vehicle and measure from the
return of the emitted signal. Wave emitters can be lasers or radars, among others.

2.3 OTS Devices

While smartphones include a large number of sensors (e.g., GNSS, camera, mi-
crophone, accelerometer) which make them particularly convenient for insurance
telematics [31], other sensors require dedicated hardware and installation proce-
dures. Next, we present a background of OTS telematics devices that carry propri-
oceptive and exteroceptive sensors. Figure 2.2 shows a diagram of OTS telematics
devices and their interaction in the vehicle.

2.3.1 OBD-II dongles and CAN bus readers

A modern vehicle can contain more than one hundred sensors, generally related
to the mechanics, engine operation, and vehicle systems [32]. Automotive systems
are mainly concentrated on three areas: powertrain, chassis, and body; each one
contains a set of sensors to measure physical quantities, managed by the ECU of
each system and interpreted in a look-up table [33]. Data is stored in profiles used
to control the vehicle actuators and their performance, e.g., speed control, vehicle
stability, among others. The use of specific sensors may also be associated with
other factors such as legislation and safety [32]. Data profiles from the ECUs are
used to check the vehicle status information through the On-Board Diagnostics
(OBD-II) interface. It provides access to the vehicle sub-systems controlled by the
ECUs via the Controller Area Network (CAN) bus. Besides, OBD-II is widely
used by automotive manufacturers for diagnosis and data analysis. Nevertheless,
the data acquisition through the OBD-II connector is limited to a single port and
data are specific to each manufacturer, which defines proprietary message codes.
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Figure 2.2: Examples of OTS telematics devices, proprioceptive and exteroceptive
sensors, and interaction between them in the vehicle.

Meanwhile, commercial OBD-II dongles and CAN bus readers are connected to the
vehicle’s power source itself, and these can have extra sensors, like a GNSS or an
accelerometer.

2.3.2 Black-box and windshield devices

Usually, black-box and windshield devices are installed within the vehicle. They
are equipped with self-contained sensor systems, or they can acquire information
in a piggyback process via the CAN bus. These devices embed a GNSS and an
accelerometer sensor to define driving profiles about harsh acceleration, braking, or
impact. In addition, a windshield device may contain a SIM card and a microphone
to establish voice communication with remote assistance.

2.3.3 Dashcams

A dashcam is an on-board camera, usually mounted over the dashboard, that
records the vehicle’s front view. Commonly uses include registering collisions, road
hazards, in addition to offering video surveillance services [34]. Since the data volume
generated by the video frames is considerable, images are selected beforehand by
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the processing system. Additional dashcam functionalities include gesture and voice
biometry [35]. Nonetheless, the utilization of dashcams is limited in some countries
due to privacy concerns [34].

2.3.4 Smartphones

Smartphones involve diverse technologies that make them sophisticated comput-
ers, with the ability to process data and graphics, not to mention communication and
sensing capabilities [31]. Smartphones possess a large number of built-in sensors,
enabling continuous data collection. Added to mobility, it results in the empow-
erment of various applications with specific requirements in terms of complexity,
granularity, and response time. Moreover, smartphones can acquire data from CAN
bus through an OBD-II dongle via Wi-Fi or Bluetooth connection.

2.3.5 Wearable devices

Complementary to smartphones, wearable devices are used to monitor human
physiological and biometric signals. In the intelligent vehicles’ context, they are used
for safety and driving behavior applications. Wearable devices include smartwatches,
smart glasses, smart helmets, and electrocardiogram (ECG) sensors [36].

One challenge of built-in sensors in OTS devices is that these have not been
designed for vehicular applications and therefore require algorithms to reduce in-
accuracies due to their characteristics of manufacturing [31]. Hence, the use of
vehicle-fixed sensors is necessary. Exteroceptive sensors used in external and in-
vehicle monitoring tasks are described in the next section.

2.4 Exteroceptive sensors in vehicle applications

This section describes in detail exteroceptive sensors, which are used to comple-
ment in-vehicle sensing with external information. Therefore, exteroceptive sensing
can be used in monitoring systems to audit vehicles during operation, getting ac-
curate information about the vehicle surroundings, relevant in vehicles with some
autonomy level, as described in SAE J3016 [17]. Among the main features, ex-
teroceptive sensors can operate in vehicle cabin, and external environments with
different extreme conditions (e.g., rain, fog, snow, nighttime, etc.). Moreover, in-
formation about the vehicle’s surroundings can help to understand better which
aspects are involved in traffic conflicts, besides improving other parameters related
to the driver/passengers safety.
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2.4.1 Global Navigation Satellite System (GNSS)

Some OTS devices implement Location-Based Services (LBS) using an embedded
GNSS receiver. GNSS systems enable a quite accurate localization on earth (order
of meters), through trilateration signals from dedicated geostationary artificial satel-
lites. GNSS systems are composed of constellations of satellites in the Medium Earth
Orbit (MEO) that provide Positioning, Navigation and Timing (PNT) services. The
size of the constellations may vary depending on the GNSS system. Among the
GNSS systems with global coverage are Global Positioning System (GPS), Global
Navigation Satellite System (GLONASS), BeiDou, and Galileo. GNSS systems op-
erate in frequency bands between 1.1GHz and 1.6GHz, and varies according to the
transmission channels. In fact, different constellations can coexist on the same chan-
nel. Depending on the platform on which OEM devices operate, different LBS are
offered. In smartphones, some location services merge short and long-range wire-
less networks such as Wi-Fi, Bluetooth, and cellular networks, in addition to GNSS
data [37]. Nowadays, Android and iOS-based devices use messages based on the
NMEA 0183 standard [38]. The latest updates to this standard include measure-
ment of the pseudo-range and Doppler shift; this adds simplicity and robustness to
the processing of raw GNSS measurements. Nevertheless, GNSS reception exhibits
outages due to interference, signal propagation, and measurement accuracy in urban
canyons due to multipath effects and Non-Line-of-Sight (NLoS) conditions [37].

2.4.2 Magnetometer

The function of the magnetometer is to read the Earth’s magnetic field strength
to determine its orientation. Microelectromechanical Systems (MEMS) magnetome-
ters are embedded in commodity devices like smartphones, which inform the mag-
netic field on the 3-axis (x, y, z ) with µT sensibility [39]. Moreover, its miniaturized
form factor and low energy consumption favor its availability in multiple devices.
Thus, it results as a valuable component for providing navigation and LBS services.

2.4.3 Microphone

A microphone transforms sound waves into electrical energy. These sensors are
embedded as MEMS devices or condensed mics that are connected to OTS devices.
Microphones are an affordable solution for real-time signal processing. According
to ISO9613-2 standard, their sensing range reaches up to 200m for high-intensity
sounds in an urban scenario [40]. Moreover, microphones consume low energy, have
a smaller size, and omnidirectional sensing capability. Devices with an array of
microphones are used to estimate the Direction of Arrival (DoA) and localize the
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sound source, calculating the time difference of arrival between each microphone
pair. On the other hand, their efficiency largely depends on their sensitivity, sound
waves amplitude, and environmental noise.

2.4.4 Biometric sensors

Biometric sensors are used to collect measurable biological characteristics (bio-
metric signals) from a human being, which can be used in conjunction with biomet-
ric recognition algorithms to perform automated person identification. ECG devices
are installed in the steering wheel and in the driver’s seat to measure heart activity
through touch or photoelectric sensors. To increase driving safety, biometric sensors
monitor the driver’s stress condition, drowsiness, and fatigue [41].

2.4.5 Ultrasonic sensor

Ultrasonic refers to acoustic waves, where a transmitter sends sound waves, and
a receiver captures the bounce off waves from nearby objects. The distance of such
object is determined through the Time-of-Flight (ToF). These waves are propa-
gated in a conical shape at the speed of sound (that depends on the density of the
propagation medium), and use frequencies higher than those audible by the human
ear, between 20 and 180 kHz [29]. The ultrasonic sensor is suitable for low speed,
short-range applications (tens or hundreds of cm) like parking assistance, blind spot
detection and lateral moving. With a low power consumption (up to 6W), it is a
relatively affordable object detection sensor.

2.4.6 Radar

Radar (Radio Detection and Ranging) detectors use reflected Electromagnetic
(EM) waves. The device transmits radio wave pulses that bounce off the objects
outside the vehicle. The reflected pulses which arrive some time later at the sensor
allow inferring different information. Radar data is collected in a point cloud and
provides abstract information about the surrounding objects, such as direction, dis-
tance, and estimate the object size [32]. The relative speed of moving targets can
be calculated through frequency changes caused by the Doppler shift. Radar im-
plements various techniques to modulate EM waves. Pulse Continuous Wave (CW)
uses periodic pulse transmissions and silent periods for object detection [42]. How-
ever, pulse CW depends on wave energy and ambient noise, as well as lacks in timing
marks, therefore it is unreliable for estimating range to target. To improve detection
issues due to noise, Frequency-Modulated Continuous Wave (FMCW) emits a con-
tinuous signal, allowing its operating frequency to be changed during measurement.
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Thus, instead of relying on time synchronization, the frequency differences between
the transmitted and received signals are measured. FMCW considers both range
and Doppler information to estimate the target’s range and speed [42].

Automotive radars also use antenna diversity techniques such as Multiple Input
Multiple Output (MIMO). In MIMO radars, each transmitting antenna can radiate
an arbitrary waveform independently of other antennas, and any receiving antenna
can receive this signal. Thus, a radar with MRx and MTx elements generates a
virtual antenna array MRx×MTx. Thus, the Field of View (FoV) is improved
through their angular resolution (higher azimuth and sensor elevation), in addition
to their target detection capabilities [42].

Digital Code Modulation (DCM) radars are also being developed. DCM allows
each transmitter to be identified by unique codes. Digital radars aim to improve
angular resolution, as well as minimize interference through coding, improving the
identification of located targets, detecting their proximity from others through High-
Contrast Resolution (HCR) [43].

Radar sensors are used for short and long-range detection at both vehicle front-
facing and corners. Short-Range Radar (SRR) systems are employed to monitor
environments close to the vehicle that require dealing with complex passive and ac-
tive safety concerning single or multiple targets. SRR works in the 24GHz mmWave
frequency band. Meanwhile, Long-Range Radars (LRR) are widely used in Adaptive
Cruise Control (ACC) systems to monitor the distance to vehicles ahead and control
the ego-vehicle speed. LRR operates in the 70, 77 and 79GHz mmWave frequency
band. Unlike SSRs, FoV in LRR reaches longer distances, but azimuth and eleva-
tion angles are narrower [42]. Generally, with a fixed number of antennas, a radar
with a broad FoV can be obtained at the expense of less angular resolution; on the
other hand, a narrow FoV can provide better angular resolution, with opening an-
gles between 9° and 150°, and elevation up to 30° respectively. Radar can operate in
distance ranges up to 250m, with power consumption from 12W. Typically, radar
is used for short, mid, and long-range object detection and adaptive cruise control
at high speeds. Figure 2.3 shows the coverage range of an automotive radar sensor
and its typical vehicle location. Radars are robust in adverse climatic conditions
(e.g., fog or rain) and with scarce or no lighting. Nevertheless, signal processing is
harder for classification issues if not combined with other sensor readings.

2.4.7 LiDAR

LiDAR (Light Detection And Ranging) uses laser reflection instead of radio
waves. The LiDAR sensor transmits light pulses to identify objects around the
vehicle [32]. Typically, LiDARs operating at wavelengths from 850 nm to 940 nm

17



α
θ

α=Elevation angle
θ =Azimuth angle

Figure 2.3: Schematic of a typical radar system based on FoV and scanning.

use ToF techniques based on pulsed and Amplitude-Modulated Continuous Wave
(AMCW). Pulsed ToF calculates the target distance based on the round-trip time
between the transmitted and received photons which bounce off the objects. Differ-
ent from pulsed ToF, AMCW encodes an intensity pattern in the transmitted light
beam, forming a linear radio frequency chirp; the target distance is calculated based
on the amplitude of the bounced signal and the phase shift of the chirp sent. Both
Pulsed ToF and AMCW are limited by daylight interference and their closeness to
the visible light spectrum [44, 45].

On the other hand, LiDARs emitting at 1550 nm wavelength use FMCW. Differ-
ent from AMCW-based LiDARs, FMCW LiDARs split the laser beam transmitted
into a reference signal in a Local Oscillator (LO), and a phase modulated and chirped
to the exterior. The light reflected from the target is mixed with the emitted light
and compared with the reference signal in the LO. The frequency difference between
the emitted and reflected light enables the target distance calculation, besides its
speed and distance when it is in motion. FMCW LiDARs reach higher range and
resolution in object detection, as well as range of operation in bright environments,
with greater depth in dark scenarios [44].

The LiDAR sweeps in a circular and vertical fashion; the direction and distance
of the reflected pulses are recorded as a vector of points, where each data point
contains a reflectance value and the corresponding 3D coordinate related to the
local coordinate system. Moreover, a set of vectors then constitutes a point cloud
with spatial representation, enabling 3D model processing with high accuracy.

There are three types of LiDAR in terms of dimensionality (D). 1D LiDARs
measure distance to a certain target or direction [29]. Meanwhile, 2D and 3D LiDAR
sensors employ electromechanical or MEMS-type scanning methods to go further.
2D LiDAR sensors rotate the light beam in one plane, x or y, and detection occurs
sequentially with equal time intervals between samples. Meanwhile, 3D LiDAR
sensors operate the planes x, y, z, using axes as pivots to extend the dimensionality
of the detected objects [44], i.e., to provide information on the position and distance
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along axes, with a Field of View (FoV) extended for both Vertical (VFoV) and
Horizontal (HFoV). For instance, LiDAR sensors can cover at 360° the HFoV around
the vehicle, and up to 42° in the VFoV. Figure 2.4 shows the coverage range of an
automotive LiDAR sensor and its typical vehicle location.

Scene

α

θ

α=VFoV
θ =HFoV

Figure 2.4: Schematic of a typical LiDAR imaging system based on FoV and scan-
ning.

Currently, manufacturers are moving to solid-state LiDARs. Unlike electrome-
chanical LiDARs, these devices use MEMS technology, which uses moving micro-
mirrors to control the laser light beam and focus in a targeted manner. Thus, it
is possible to reduce the physical infrastructure and price, but at the expense of
reduced detection distance. Meanwhile, Optical Phased Array (OPA) is a MEMS-
based LiDAR technique that adjusts the light beam in different directions without
requiring mirror movement. Since OPA-based LiDAR does not use moving parts, it
becomes more durable and cheaper. Finally, Flash LiDARs emit laser light pulses to
detect the entire area around the sensor, similar to the capture imaging process in
cameras. These sensors are much faster by not using moving parts or adjustments
in the light beam; however, Flash LiDARs are sensitive to brightness by reflection,
in addition to demanding a more powerful light beam to reach greater depth when
covering an entire scene [44, 45].

2.4.8 Camera

Camera is a vision sensor used to record a visual representation of the surround-
ing environment. Thus, the camera can be used to detect objects on the road as
well as to analyze the driver behavior and his environment inside the vehicle [32]. A
frame from the camera is represented in a 2D array, containing the intensity of each
pixel encoded in different forms, like HSV (Hue, Saturation, Value), RGB (Red,
Green, Blue), or gray levels. Cameras can operate in the Visible (VIS) and Near-
Infrared (NIR) spectral region [46]. VIS cameras are largely used because these
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reproduce instantaneous images like those perceived by the human eye. Differently,
NIR cameras detect objects based on heat radiation. Additionally, the image quality
depends on the resolution, the Diagonal FoV (DFoV), HFoV and VFoV. Further-
more, vehicular applications use monocular cameras, stereo cameras, in addition to
using so-called fish-eye lenses, which generate optical effects. Besides, Figure 2.5
shows the coverage range of an automotive camera sensor and its typical vehicle
location.
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Figure 2.5: Schematic of a typical camera imaging system based on FoV and reso-
lution.

Some active vision sensors operate synchronously while others, asynchronously.
ToF cameras use infrared light to give depth to the 2D image, as well as allowing
object scanning and measuring the distance to the target. Gated imaging systems
use a laser light source synchronized with the camera shutter, and it is activated
when the transmitted light beam reaches the object of interest. Meanwhile, event
cameras respond to brightness changes in the scene asynchronously and indepen-
dently for each pixel. Thus, event cameras define a sequence of events from the
brightness intensity changes or motion in a scene at random time intervals.

Vehicular applications use CMOS-based cameras, also use monocular cameras,
stereo cameras, in addition to using so-called fish-eye lenses [47, 48], which generate
optical effects to reach sharpness and large depth of field. Additionally, the quality
of the images depends on the resolution and FoV. Some drawbacks exist though:
image quality depends on lighting and weather conditions, and scene representation
is limited to the pointing direction and Line-of-Sight (LoS).

Given the limitations and advantages inherent to each sensor, single sensory data
can be insufficient to make some decisions depending on the task to be executed.
Therefore, it is necessary to implement strategies to fuse sensor data in order to pro-
cess the volume and variety of data generated, in addition to allowing aggregation.

Table 2.1 summarizes the main features of each exteroceptive sensor. It is possi-
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ble to observe that all sensors have limitations that can be minimized as the vehicle
combines different types of sensors. It is worth noting that GNSS, magnetometer,
microphone, and biometric sensors are currently used widely in vehicular telematics
since they are present in widespread OTS devices, such as smartphones.

Table 2.1: Multidimensional comparative among exteroceptive sensors used in vehi-
cle telematics.

Sensor Main usage Precision Range Advantage Limitation

GNSS Navigation,
positioning

Medium/
High n/a High coverage, small

form factor
Signal blocking in

urban canyons

Magnetometer
Navigation,
positioning,
orientation

Medium n/a Small form factor, low
energy consumption Magnetic interference

Microphone

Surveillance,
assistant,

environmental
sensing

n/a 150m,
omnidirectional

Small form factor, low
energy consumption,
direction of arrival

Environmental noise

Biometric Health
monitoring High n/a Simple data processing Uncomfortable

Ultrasonic Environmental
sensing Low (cm) 150 cm Small form factor Low resolution

Radar Environmental
sensing High 250m

Robust in adverse
climatic conditions
and with scarce or
absent illumination

Energy consumption,
data processing for

classification

LiDAR Environmental
sensing High 200m,

omnidirectional

Low sensitive to light
and to weather
conditions, 3D
representation

Data processing
latency

Camera Environmental
sensing

Medium/
High Line-of-Sight Multiple techniques

for data processing
Sensitive to light and
weather conditions

Some exteroceptive sensors have similar characteristics to each other, generating
data redundancy. For example, both radar and LiDAR have similar features for
object detection, distance estimation, and do not depend on lighting conditions.
Nonetheless, LiDAR data volume is higher than radar. These functionalities ensure
the sufficiency of security-related data. On the other hand, sensor fusion data can
provide solutions in a combined way to reduce computational and operating costs,
besides complementing its functionalities to reduce deficiencies between sensors.

2.5 Remarks

It was observed that exteroceptive sensors are used both in-cabin and outdoor
environments. Furthermore, these can be used in various safety services and appli-
cations that require immediate response times for both perception and reaction to
some risk events on the road. An example of this is the driver/controller AI analysis
before a vehicle interaction with another road user. It is important to note that mul-
tiple sensor readings measuring a specific variable (sensor fusion) can be combined
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to improve the precision and accuracy of vehicle perception tasks [49]. Furthermore,
sensor fusion reduces the limitations of sensors by complementing each other. Fig-
ure 2.6 shows how various exteroceptive sensors built into the vehicle and built into
OTS devices can coexist in order to monitor various areas involved in intelligent ve-
hicles safety. Multiple sensor perception systems can be merged to extract features
or information from objects detected by exteroceptive sensors. Depending on the
application, data from a single sensor may be sufficient to provide both external and
in-vehicle monitoring systems.

Vehicular safety applications can be monitored in different ways. For example,
as described in Section 1.1, driving behavior is one of the areas of greatest interest
since one of the main risk factors on the roads is the human driving. For example,
driving profiling can be described through GNSS traces, camera and LiDAR sensors
can recognize driver’s facial gestures, in addition to the maneuvers he performs with
his hands. Moreover, facial analysis allows you to determine fatigue, distractions or
drowsiness, and it is also possible to monitor the driver’s health with sensors and
devices that may be in contact with parts of the body [24]. Another factor that can
affect vehicle maneuverability is the road state, so pothole detection is indispensable
to understand vehicular safety from the point of view of infrastructure and the reli-
ability of vehicle mechanics [24]. Collision detection applications can be performed
through audio recognition by microphones. On the other hand, collision avoidance
warnings can include environment sensing for object detection, trajectory analysis,
lane departure and impact time estimation [46]. Furthermore, object detection can
use data from multiple sensors to identify diverse objects physically, in addition to
detect kinematic measurements (e.g., speed, acceleration, distance, among others)
related to each specific object [49]. Sensor fusion enables, in addition to observing,
perceiving and predicting future interactions [50]. In addition to object detection,
vehicle trajectories traceability is important to determine decisions regarding the de-
tection of objects in the vehicle’s course, besides to behavior with traffic regulations
and other road users [24].

2.6 Challenges

In principle, the analysis of risk events in traffic may benefit from the sensor
readings embedded in OTS devices. Nevertheless, there are factors enabling the
road safety metrics analysis related to vehicular telematics, in addition to collecting
data for services and applications based on navigation, road monitoring, and vehicle
safety. On the other hand, the data collection of exteroceptive sensors can improve
the risk assessment analysis since it incorporates more characteristics of the objects
detected around the self-driving vehicle, for example, speed, distance and location
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Figure 2.6: Illustration of an intelligent vehicle showing exteroceptive sensors and
their applications.

measures from objects detected with respect to itself. Thus, it is possible to define
policies to make precise and accurate safety estimations through risk assessment in
self-driving vehicles. Some research challenges are open for exteroceptive sensing
systems analysis in the context of risk assessment applications:

• Exteroceptive sensor readings analysis can provide detailed descriptions of
objects in-motion around the vehicle (e.g., ground truth coordinates obtained
from other objects, speed and time intervals related to other objects) with
greater data granularity for risk indicators calculation, which determines the
severity of traffic events.

• Large-area complex urban environment analysis where the vehicle is traveling
can be extensive since the sensing in the vehicle is constant. It is relevant tak-
ing into account that each pedestrian, static or moving object, vehicle, road
section, among others, can be analyzed as a logical unit of the road infrastruc-
ture. Based on this logic, it is possible to analyze the influence of evasive ac-
tions (e.g., braking actions of lane departure, harsh acceleration/deceleration,
among others) on the AV, considering the actions and reactions related to the
road infrastructure and road users.

• The mapping of risky objects, rare traffic events, or accident patterns in specific
periods can be analyzed and standardized from the collection of sensing data.
It depends on factors associated with the immediateness of the processing,
storage, and transfer of data.

• Data volume generated by exteroceptive sensors can be high depending on
the type of sensor. For example, the authors of [51] point out that a camera
generates up to 40MB/s, LiDAR up to 70MB/s, while radar generates up
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to 100 kB/s. In this context, it is worth mentioning that the estimated total
sensor bandwidth can reach up from 1.4TB/h to around 19TB/h just for
one AV, reaching up between 11TB and 152TB per day [20]. In the same
way, the amount of data generated and processed by all types of exteroceptive
sensors in the vehicle can be estimated. These data are relevant for the safety
analysis in AVs, even more, when the data volume to be analyzed demands
a high computational cost. Besides the fact that data redundancy can be
noisy in the road safety analysis, sensor fusion data can optimize processes
associated with perception and cognition, obtaining results according to the
safety services priority. Therefore, it is necessary to assess the feasibility of
using sensors with low data rates or to optimize the data analysis process to
achieve instantaneous results with an appropriate volume of data for real-time
safety services.

The characteristics of the various sensors available for vehicular telematics can
facilitate risk assessment for policymakers. It is worth recognizing the functionality
and sensor limitations since there are bottlenecks related to the sensor characteris-
tics. As could be seen, there is no ideal sensor, and all are sensitive to environmental
variations. Next, we describe datasets containing multi-modal sensors, i.e., propri-
oceptive and exteroceptive sensor readings. Moreover, these datasets contain infor-
mation on different climatic conditions and day periods, tracking, location, mapping
and semantic data related to the detected objects.
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Chapter 3

Self-Driving Vehicle Datasets

In this chapter, we describe AV datasets available on the Internet. These datasets
contain information from multi-modal sensor data readings. Moreover, datasets
provide information about diversity of locations, weather and day period testing,
tracking, localization, mapping and semantic data related to the detected objects.
Some of these datasets include data processing to identify objects through bounding
boxes, annotations, categories and attributes associated to the objects detected. As
described in [24], these datasets contain information that can be analyzed for road
safety analysis, e.g., speed, distance, acceleration, among others, besides of semantic
data related to perception in the self-driving vehicles.

3.1 Datasets overview

Currently, vehicles are equipped with a wide variety of sensors, which integrate
different systems to improve, adapt, and automate vehicle safety and the driving ex-
perience. Technological advances for driver assistance have paved the way for vehicle
autonomy. These vehicles are equipped with exteroceptive sensors, as described in
Chapter 2. The AV has the ability to interpret and identify objects, obstacles, traf-
fic signs, among others. To process this data, it is possible to observe that vehicles
with full automation have complex computational methods, which result in an ex-
haustive monitoring of the driving environment. Nowadays, there are a number of
public datasets available from experimental autonomous vehicles [24], and these are
used to analyze road safety metrics described in Chapter 4. In particular, datasets
with semantic data are selected for analysis.

nuScenes : nuScenes [1] is a project by nuTonomy, a MIT start-up focused on
developing software for self-driving cars and autonomous robots. Acquired by Delphi
Automotive in 2017, the nuScenes project is now part of Motional1, a company

1https://motional.com/
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dedicated to the development of driverless technology. nuScenes is a public large-
scale dataset of autonomous driving traces which includes images from camera, Point
Clouds (PC) from LiDAR, and radar signals detected by the sensors installed on
the vehicle. This dataset also provides data from the vehicle internal sensors (e.g.,
acceleration or speed). As for external sensing, 6 cameras, 1 LiDAR, 5 radars, and a
GPS/IMU are deployed on the vehicle. The LiDAR covers 360◦ around the vehicle.
Figures 3.1(a) and 3.1(b) illustrate the vehicle and the sensor setup for nuScenes.
In total, the dataset includes almost 6 hours of data gathered by two Renault Zoe
supermini electric cars with an identical sensor layout to drive, one in Boston (US),
the other one in Singapore (SG). The internal sensing data is acquired from the CAN
bus. Data from CAN bus contain navigation data, steering turn, changes in speed,
acceleration, braking, rotation and travel records, associated with the location, as
well as other vehicle-specific metrics, such as battery level, among others.

(a) nuScenes AV. (b) nuScenes AV sensors.

Figure 3.1: AVs and sensor setup for nuScenes AV [1].

Lyft5 : Lyft is a carpool company founded in 2012. It started its journey with
AVs in 2019, and is currently part of Toyota’s Woven Planet2, a mobility automation
development company. Lyft5 [2] is another public large-scale dataset with AV traces,
which contains images from cameras and LiDAR PCs. In particular, the Lyft5
vehicle is equipped with 7 cameras, 3 LiDARs, and a GPS/IMU sensor. The LiDAR
covers 360◦ around the vehicle. Figures 3.2(a) and 3.2(b) illustrate the vehicle and
the sensor distribution for Lyft5. The perception dataset consists of 2.5 hours of
data gathered by twelve vehicles Ford Fusion equipped with autonomous controls in
Palo Alto (US) divided into 180 scenes of 25 seconds each. Unlike the nuScenes AV
dataset, Lyft5 does not provide CAN bus data from the vehicle.

The raw data from sensors is stored in point cloud data for LiDAR and Radar
sensors, and image pixels from the camera. Figure 3.3(a) shows the format of the
exteroceptive sensor data available in the dataset. The resolution of the images
captured by the image sensors is 1600 × 900 in nuScenes, and 1224 × 1024 in Lyft5,

2https://level-5.global/
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(a) Lyft5 AV. (b) Lyft5 AV sensors.

Figure 3.2: AVs and sensor setup for Lyft5 AV [2].

both compressed in JPEG. Figure 3.3(b) shows an example of the images available
in the dataset. On the other hand, the distance and speed calculations from the
detected objects are performed through the LiDAR sensor. It is worth mentioning
that data generated by the radar sensor does not deliver accurate information about
the object shapes, and it has no suitable information regarding the 3D location.
However, radar PCs data are available for analysis in the dataset. Figures 3.3(c)
and 3.3(d) show the point data cloud distributions for the radar sensor and LiDAR,
respectively. As expected, the volume of points generated by LiDAR is higher than
on radar, as discussed in Section 2.4.

LiDAR

Radar

Camera

Point Cloud
Data (.pcd files)

Images (.jpg files)

(a) Format data available from exteroceptive
sensors readings.

(b) CAM image example.

(c) Point cloud data from radar sensor. (d) Point cloud data from LiDAR sensor.

Figure 3.3: Representation of images and point cloud data from exteroceptive sen-
sors available in the nuScenes AV Dataset. Lyft5 dataset does not include data from
radar sensor.
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Both nuScenes and Lyft5 datasets include sweep data from each sensor, based
on the sampling frequency of each one. Metadata of all samples are available in
JSON nested dictionaries. Moreover, the datasets provide semantic data, that is,
data with sample annotations used to describe diverse characteristics of the object
itself around the ego-vehicle, based on LiDAR PCs and JPEG images from the
cameras. Figure 3.4 shows the data collection features available in nuScenes and
Lyft5 datasets3. Data is based on images from camera, LiDAR PCs, and radar
signals detected by the sensors installed in the vehicles. Table 3.1 describes the
meaning of each subset available in the datasets nuScenes and Lyft5.
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Figure 3.4: Schema for nuScenes and Lyft5 datasets.

Table 3.2 summarizes the main characteristics of nuScenes and Lyft5 datasets.
Another advantage of the nuScenes and Lyft5 AV datasets is semantic segmentation,
a process used for perception systems to associate LiDAR PCs and pixels from the
camera images with predefined classes. Since autonomous systems do not discern
the meaning of any detected object by exteroceptive sensors, semantic data anal-
ysis enables the recognition of detected objects as they are perceived by human.
Semantic data facilitates the explainability processes required for policymakers and
stakeholders. Moreover, semantic data is defined by raw data processing percep-
tion systems that use sensory systems, expert annotators and software on-board

3https://nuscenes.org/nuscenes#data-format
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Table 3.1: Characteristics of the nuScenes and Lyft5 AV subsets.
Subset Description

sensor A specific sensor type.

calibrated_sensor Definition of specific sensor and calibration data (extrinsic and intrinsic
parameters).

map Data of binary semantic layers.

log Information about the log from which the data was extracted.

scene Description of the scenes (e.g., identifier, number of samples, first and
last sample in the scene).

sample An annotated keyframe at 2Hz (nuScenes) and 5Hz (Lyft5).

sample_data A sensor data registration and its characteristics.

ego_pose Description of vehicle’s pose used for localization analysis.

instance An object and all its interactions across scenes.

sample_annotation Description of an instance seen in a sample through bounding boxes
specifications (e.g., localization, size, orientation, among others).

category Taxonomy of object categories and subcategories.

attribute A property of an instance that can change while the category remains
the same.

visibility The visibility of an instance.

to perform multiple behavioral observations and interactions from different objects
around the ego-vehicle, i.e., infrastructure and road users [52]. Each detected object
is described as an instance, and each object can have multiple interactions with the
AV in a sample. Each instance is marked with a 3D bounding box, category and
attribute labels; each interaction of that instance with the AV is recorded as an an-
notation. Examples of categories are vehicle types, two-wheelers, pedestrians, road
infrastructure, among others, and examples of attributes are vehicles or pedestrians
stopped, in motion, among others. Figure 3.5 shows the categories available in the
dataset. 23 categories and 8 attributes are defined in the nuScenes dataset, as shown
in Figure 3.5(a). On the other hand, Lyft5 contains fewer scenes, but the proportion
of 3D bounding boxes annotations is similar to that of nuScenes AV dataset. Thus,
Lyft5 defines 9 categories and 18 attributes, as shown in Figure 3.5(b).

Table 3.2: Characteristics of the nuScenes and Lyft5 AV datasets.

Scenes Vehicles Images LiDAR
PCs

Radar
PCs

Bounding
Boxes

Day/
Night Weather Categories/

Attributes

nuScenes 850 2 1.4M 400 k 1.3M 1.4M Yes Yes 23/8

Lyft5 180 12 323 k 46 k 0 1.3M No No 9/18

For both object detection and tracking tasks, nuScenes and Lyft5 datasets pro-
vide LiDAR point cloud (PC) data as global reference coordinate system. PC data
related to all detected objects was collected using the LiDAR sensor as reference
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Categories
(Foreground)

animal

human_pedestrian

movable_object

static_object

vehicle

− adult
− child

− construction_worker
− personal_mobility

− police_officer
− stroller

− wheelchair

− barrier
− debris

− pushable_pullable
− trafficcone

− bicycle_rack

− bicycle
− motorcycle

− bus_bendy
− bus_rigid

− car
− construction

− emergency_ambulance
− emergency_police

− trailer
− truck

− moving
− sitting

− standing

− with_rider
− without_rider

− moving
− parked
− stopped

(a) nuScenes AV dataset.

Categories

animal

pedestrian

vehicle

− bicycle
− motorcycle

− bus
− car

− emergency_vehicle
− other_vehicle

− truck

− standing
− walking

− gliding_on_wheels
− other_motion

− running
− sitting

− parked
− stopped

− lane_change_left
− lane_change_right

− driving_straight_forward
− left_turn
− right_turn

− abnormal_or_traffic_violation
− loss_of_control

− reversing
− u_turn

− is_stationary

(b) Lyft5 AV dataset.

Figure 3.5: Categories and attributes available in nuScenes and Lyft5 datasets.
Categories are represented as yellow boxes, attributes as gray boxes.

system, and therefore, the vehicle’s reference coordinate. It is worth noting that
individual sensors, calibration and how the orientation and position of the sensors
is defined, can greatly affect the motion analysis results. Nonetheless, data labeling
depends on sensor fusion of camera images and LiDAR PC data. It provides visual
context for labeling, enabling to identify road users and infrastructure, and adjust-
ing 3D point cloud data detection and 2D images projections. Therefore, sensor
fusion allows the motion analysis for each detected object, enabling the calculation
of vehicle dynamics as distance and speed variables from each sample annotation,
among others.

Figure 3.6 illustrates the process of object annotation in the datasets: data an-
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notations occur through keyframes based on the sample of image sensor, as shown
in Figure 3.6(a), all the annotated objects in the dataset are visible, and they are
covered by at least one point cloud returning from LiDAR or Radar sensors, as
shown in Figures 3.6(b) and 3.6(c). Thus, image annotation boundaries are defined
through 3D bounding boxes annotations technique, and semantic data by expert an-
notators [1]. Figure 3.6(d) shows how infrastructure and road users are distinguished
through bounding boxes with specific colors for each category. AV developers use
bounding boxes as a boundary to describe the spatial location of an object, specif-
ically a cuboid. Thus, it is possible to recognize all the objects of interest in the
image, but also to estimate their positions, sizes, and kinematic measures.

(a) CAM sensor. (b) Radar PCs.

(c) LiDAR PCs. (d) Bounding boxes for each annotation.

Figure 3.6: Exteroceptive sensor detection and bounding boxes.

Besides exteroceptive sensor data readings, the nuScenes AV dataset includes
data from proprioceptive sensors acquired through the CAN bus for each scene. CAN
bus data includes pedal actions, steering motion, vehicle speed, throttle, braking, ac-
celeration (longitudinal, transversal, linear), IMU coordinates, rotation, translation,
and other vehicle-specific metrics like wheels speed, battery level, among others.
Figure 3.7 shows in detail the metadata available from CAN bus messages. The
proprioceptive sensing data are synchronized with the exteroceptive sensing data,
making it possible to analyze the data jointly. Table 3.3 shows the main character-
istics for each subset available in nuScenes CAN bus dataset.
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CAN bus messages

MS_IMU

Pose

Steer_Angle
_Feedback

Vehicle_Monitor

Zoe_Vehicle_info

Zoe_Sensors

− linear_acceleration
− q [w, x, y, z]

− rotation_rate [x, y, z]

− acceleration_vector
− orientation

− position [x, y, z]
− rotation_rate

− velocity

− value

− available_distance
− battery_level

− brake
− brake_switch
− gear_position
− left_signal
− right_signal

− steering
− steering_speed

− throttle
− vehicle_speed

− yaw_rate

− left_solar
− longitudinal_acceleration

− meanEffTorque
− odom

− odom_speed
− pedal_cc
− regen

− requestTorqueAfterProc
− right_solar

− steer_connected
− steer_offset_can

− steer_raw
− transversal acceleration

− brake_sensor
− steering_sensor
− throttle_sensor

Figure 3.7: CAN bus messages schema in the nuScenes AV dataset.

Table 3.3: Characteristics of the nuScenes CAN bus subset.
Subset Description

IMU
Data from MEMS sensors with linear acceleration and rotation based
on IMU coordinate frame, and a quaternion matrix for transformation
to fixed reference frame.

pose Information about acceleration, orientation, rotation and velocity based
on ego vehicle frame, position based on global frame.

steer_angle_feedback Steering turn direction.

vehicle_monitor Information about diverse sensor into the vehicle.

zoe_sensors Data from brake, steering and throttle sensors defined by thresholds.

zoe_vehicle_sensors Data from motion and electric sensors.

3.2 Preliminary Analysis

A preliminary analysis of the data was carried out to understand the scenario
in which the vehicle travels, its conditions, and the vehicle’s interactions with other
road users and infrastructure. For data analysis, Python programming platform is
used. The nuScenes Devkit [53] tool is used to semantic data analysis, location,
and data filters. The Pandas and Multiprocessing libraries are used for data decom-
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pression, parallel data analysis, and data filtering. The NumPy library is used for
diverse calculations, and the Matplotlib library is used to plot the results.

Data analysis requires data from functional areas of the AV related to the au-
tonomous driving system to analyze potential traffic risk events, as shown in Fig-
ure 4.7. Based on [3], four functional areas are related to: data Acquisition through
sensors available in the AV; Perception and Cognition to processing the data col-
lection into an understanding of the environment around the vehicle, describing
vehicle surroundings and tasks scheduled to be executed based on regulations; and
finally, the Action block defines the decisions to be taken and the devices available
to the execution of AV tasks. Figure 3.8 shows the functional blocks for the AV
performance analysis.

Acquisition Perception Decision Action

User
Customer

Sensors
Exteroceptive

LiDAR RADAR

Camera Ultrasonic

GNSS Others

Proprioceptive

Object Detection
Vehicles Pedestrian

Lanes Signs

Cycles Others

Road segments

Environment
Weather

Day period

Location
Digital maps

Map matching

Scene Analysis

Scene Prediction

Planning

Navigation, ma-
neuvers, motion,

emergencies

Compliance
with: Traffic

rules, Legislation

Actuators
Throttle, brakes,

steering, gear
position, lights,
signals, others

Decisions
Acceleration,
Deceleration,

Braking, Vehicle
Speed, Turns, Lane
departure, others

Less complexity
Sensing

More complexity
Situational Awareness

Figure 3.8: Architecture adapted from [3] for the nuScenes and Lyft5 data analysis.

Data analysis uses batch process in offline mode, i.e., analyzed data will be
stored in a database to enable historical data analysis. The idea is to improve
the classification of mathematical models. The data analysis is divided into three
modules: data collection, data extraction and data analysis. The data collection
includes data from all four functional areas of the AV. The data extraction module
deals with the data collection provided in the datasets. This module handles the raw
data contained in JSON files to format, discard outliers, and abnormal samples. The
data extraction is heterogeneous, coming from different experimental AV datasets.
Therefore, this module uses a json-to-csv converter using Python, suitable for the
datasets to be analyzed.

Once the data is converted into a format for faster processing, such as CSV, the
data analysis module deals with the data coming from the data extraction module.
The data analysis module manages and analyzes the data to identify and classify
characteristics of the ego-vehicle and the objects detected by the exteroceptive sen-
sors. Furthermore, the data analysis module provides organized and “translated”
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data (i.e., data organized according to the data type, its magnitude, when quantita-
tive, or its category and attributes, when qualitative, among other characteristics).
On the other hand, the data analysis module implements map matching to show the
vehicle location on the map, adding information such as speed limits, road types,
layers, addresses, among others, through an external location service server. For
data filtering and variable classification, the analysis module uses the Pandas and
Multiprocessing libraries, respectively. Figure 3.9 shows the architecture proposed
for the data analysis process.

Data collection

Acquisition Perception Cognition Action

Data Analysis

OpenStreetMap
Server

Location, Address,
Road Type,
Speed Limit

Data
extraction

Data
analysis

jsonlog/CSV

from “Location”
block (see Fig. 3.8)

Figure 3.9: Architecture proposed for the data analysis.

An important feature of the data analysis module is the semantic data inter-
pretation. Data interpretation is relevant to understand which objects the AV has
interaction with, as well as relate the various events linked to the annotations avail-
able in the dataset. For both datasets, the annotations, categories and attributes
associated with each instance are identified with syntax tokens. Figure 3.10 shows
the logic of semantic data analysis. These data contain information related to the
type of objects, attributes, and other classifiers available in the nuScenes and Lyft5
datasets. As can be seen, the perceived objects by the sensors are identified through
a syntax token, with color markings related to the bounding box defined for each
category defined in the dataset. Therefore, it is not always clear where the matching
piece of information can be found, once a triggering token has been located. There-
fore, the data analysis module deals with data treatment to execute the syntax
token translation process. In the end, the output from the data analysis module will
have readable data to provide the reports module and safety estimation analyzed in
Chapter 4.

From data extraction and subsequent analysis, conditions that may interfere
with the driving profile of AVs are analyzed quantitatively. Table 3.4 shows the
observation statistics for the objects detected by the frontal camera. The highest
amount of interactions happens with vehicles and traffic objects, while the least
amount of interactions happens with animals.

Another factor that can interfere with the correct functioning of the AV is the
weather conditions and luminosity. As reported in Section 2.4, sensors may have
inherent limitations to climatic factors such as rain, fog, among others, and lu-
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Figure 3.10: Data analysis for semantic data.

Table 3.4: Categories of observations in AV datasets.

Dataset nuScenes Lyft5

Singapore Boston Palo Alto

Images analyzed 14,106 18,617 21,640
Instance annotations 11,308 21,251 10,525
Sample annotations 107,615 225,957 227,043

Vehicles 46,262 137,927 211,287
Two-wheelers 4,373 2,835 7,039

Pedestrians 25,915 36,221 8,672
Animals 36 121 45

Traffic objects 31,029 49,853 –

minosity such as clear, night, among others. Sequences with different climatic and
lighting conditions are described. Table 3.5 shows the environment and the variables
on which nuScenes and Lyft5 sensor readings were taken. Descriptions of weather
conditions and time of day are provided in nuScenes AV dataset. Meanwhile, data
from weather conditions and time of day in Lyft5 dataset was determined by video
sequences.

Table 3.5: Weather and day period environment variables in AV datasets.

Environment Variable Nr. Scenes

Boston Singapore Palo Alto

day_period Day 467 284 180
Night – 99 –

weather_conditions Clear 318 367 180
Rain 149 16 –

To analyze the environment variations, data from climatic conditions and day
period is crossed to determine the different variations in which the AV coexist while
operating. Table 3.6 shows the number of scenes for each possible crossover.

Another relevant factor in the AV safety analysis is the behavior adjusted to
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Table 3.6: Crossed environment variables around the AV datasets.

day_period weather_conditions Nr. Scenes

Boston Singapore Palo Alto

day clear 318 284 180
day rain 149 – –

night clear – 83 –
night rain – 16 –

traffic regulations. For that, to determine the road type, the OpenStreetMap Nomi-
natim tool was used to determine the addresses where the vehicle traveled. Table 3.7
shows the interactions of the AVs on different types of roads.

Table 3.7: Vehicle interactions in the traces by road type.

Road type Nr. Scenes

Boston Singapore Palo Alto

Motorway 194 – –
Primary 2,792 1,037 15,445

Secondary 8,697 1,008 –
Tertiary 6,295 13,163 6,195

3.3 Remarks

The analysis of road safety metrics from data collected by experimental AVs
can bring long-term benefits, since the data allows establishing the traceability of
different events involved in the road infrastructure. Safety applications are inter-
esting for car manufacturers, insurance companies, smart cities, as well as owners
and passengers. Nonetheless, there are uncertainties about which parameters are to
be used by the AVs to make complex decisions [11, 18]. Despite the fact that the
autonomous system analyzes data through various machine learning techniques to
make decisions, explaining the parameters that the AV adopts to decide an evasive
action can be complex. Therefore, it is necessary to study the AV driving behavior
through the analysis of data available in AV datasets. Nevertheless, there are some
pros and cons derived from the needs of road safety analysis to establish AV driving
behavior patterns in the presence of traffic conflicts. Open challenges which are
crucial for the road safety analysis from AV datasets are:

• Privacy: Public datasets from experimental AVs must protect the third-
parties privacy.

• Data fusion: Experimental AVs diverge on the type of sensing devices used
in their vehicles. An example of this is the vehicle manufacturer Tesla, who
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renounce to use LiDAR sensors, claiming that they are not reliable [54]. Other
AVs do not include the radar in their configurations, and there is not a standard
in the quantity of sensors to be used. Therefore, sensor data fusion approach is
relevant to achieve better precision and reliability for road safety monitoring.

• Categorization: Experimental AV datasets provide detailed information on
the objects detected around the vehicle. The availability of this data for safety
analysis is relevant for monitoring risk events, in addition to defining which
data is important. On the other hand, other strategies are useful to reduce
the amount of data to be analyzed, from reducing the number of exteroceptive
sensors, to degrading their precision or sampling frequency.

• Sampling time: Although experimental AV data is available, the currently
available traces include only a few seconds of the vehicle experience, limiting
monitoring for other eventualities that may arise while the AV is traveling.

• Heterogeneity: Data heterogeneity can lead to divergences in the analysis
of diverse experimental AVs. Therefore, road safety analysis through SSMs
becomes important to estimate how the vehicle performs while in-motion.

• Driving limitations: The trend towards data uniformity limits the analysis
of traffic risk events, influenced by the limitations inherent to the AV, such
as the top speed below the limit regulations, schedules, or paths available for
testing.

In this chapter, experimental AV datasets were studied with the idea of extending
their availability to road safety analysis. In particular, exteroceptive sensing enables
kinematic measurements’ analysis of objects around the vehicle. Furthermore, the
vehicle data processing generates semantic data through geometric shapes to gener-
ate all the annotations related to each instance throughout the vehicle interaction.
Together with this diagram, the specific object categorization and their attributes
allow the risk assessment of traffic events and their severity related to road users.
On the other hand, through the data processing of the sensor readings, it is possible
to assess the SSMs described in Section 4, to determine some AV driving patterns
in the presence of any traffic conflict. In the next chapter, nuScenes AV dataset is
analyzed through SSM metrics to quantify the severity of all the events to which
the AV is exposed while it is traveling.
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Chapter 4

Risk Assessment Based on Surrogate
Safety Measures

This chapter describes road safety metrics based on direct (i.e., ego-vehicle-
specific measurements, e.g., speed variations, acceleration/deceleration rate, among
others) and context-aware measures (i.e., estimated ego-vehicle measures relative
to other road users or infrastructure, e.g., distance to other objects, time intervals,
speed difference with others road users) to define the severity of any traffic risk
event or traffic conflict. Table 4.1 lists key terms which are useful to understand
road safety metrics analysis in this chapter.

Table 4.1: Glossary of terms related to road safety metrics.
Term Definition

Ego-vehicle Vehicle of interest in road safety analysis.

Object ahead Any road user or infrastructure detected at front of the ego-vehicle.

Road users Anyone who uses a road, such as a vehicle, pedestrian, cyclist or motorist.

Road
infrastructure

Infrastructure related to the road transport, such as movable traffic objects, traffic
signals, lanes, among others.

Collision course A situation where the ego-vehicle and road users/infrastructure can collide in a pro-
jected area on the road plane.

Traffic risk event A potential interactive event that represents a risk to the ego-vehicle and road users,
and requires evasive action.

Conflict area Common spatial area of projected trajectories given momentary measures of speed
and distance for the ego-vehicle and one or more road users.

Traffic conflict A traffic risk event in which the ego-vehicle and one or more road users can be
involved, and a crash situation can be imminent if no evasive action is taken [55, 56].

Evasive action Action taken by the ego-vehicle to avoid a traffic risk event, generally associated with
braking, acceleration, deceleration, or swerving.

Severity A parameter that defines the closeness of a potential traffic risk event in a quantitative
way.

Serious event Severity of an event involving the ego-vehicle, according to the traffic conflict tech-
nique threshold that quantifies a traffic risk event as “serious”.

Non-serious event Severity of an event involving the ego-vehicle, according to the traffic conflict tech-
nique threshold that quantifies a traffic risk event as “non-serious”.

Validity
Data validity is a process that analyzes whether a measurement is appropriate to
assess a traffic risk event. Validity process shows the precision degree to which an
indicator describes a traffic risk event.
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The scenario to be analyzed is illustrated in Figure 4.1. An ego-vehicle in motion
monitored by an insurer can detect different road users along the way. When the
ego-vehicle detects an object with a potential convergence point, estimation of safety
based on risk level will be calculated only with those objects that are on a potential
collision course. In the illustration, the red vehicle is defined as the ego-vehicle. We
use the nuScenes and Lyft5 datasets as data source for the traffic risk analysis. It is
important to note that we do not evaluate communication performance in the sce-
nario shown. The illustration shows communication as the medium for transmitting
data to the insurer.

Figure 4.1: Traffic risk events analysis in self-driving vehicles.

4.1 Road Safety Metrics

Road safety metrics can be multifaceted. For example, the traceability of driv-
ing patterns, road monitoring, collision detection, among others, can be described
through vehicle direct or context-aware measurements. Figure 4.2 illustrates the
relationship between direct and context-aware metrics for road safety analysis in
this work. The direct metrics are located in the left column; the central column
contains the context-aware metrics, and the right column contains object ahead
metrics, measured through exteroceptive sensors. Metrics related to the ego-vehicle
and objects ahead are represented as gray-colored nodes and context-aware metrics
as white-colored nodes. On the left-hand side, each direct metric is connected to
context-aware metrics, since context-aware analysis depends on direct metrics; on
the right-hand side, metrics acquired via exteroceptive sensors are connected to the
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context-aware metrics. Sensor readings in telematics enable monitoring ego-vehicle
specific measures, and secondary measures from OTS devices to examine driving pat-
terns, e.g., vehicle tracking, location, driving behavior, as well as other monitoring
services involved in the insurance area. However, the complexity of Human-Machine
Transition (HMT) requires the characterization of profiles related to the autonomous
system managing the self-driving vehicle.

Direct metrics

Speed

Acceleration/
Deceleration rate

Jerk

maxD

maxS

Context-aware metrics

DeltaS

Time-to-
Collision (TTC)

Deceleration Rate to
Avoid a Crash (DRAC)

Post Encroach-
ment Time (PET)

Proportion of Stopping
Distance (PSD)

Objects ahead

Distance

Speed

Figure 4.2: Relationship between the most widely used context-aware and direct
metrics in SSMs.

Traffic risk events (e.g., jams, accidents, crashes) may take place anywhere at
any time, including situations where collisions may or may not occur. These events
can be represented as stochastic events, where diverse factors can be analyzed to
explain the severity of traffic risk events. Therefore, ego-vehicle requires continuous
safety analysis involving all interactions with other road users and infrastructure.
From the traffic risk event analysis, it is possible to determine the situation threat-
ening the vehicle safety, establishing a relationship with the severity of the event;
subsequently, implement a risk assessment based on safety, guaranteeing a trade-off
with the efficiency of driving, comfort, among others.

The severity of a traffic risk event is related to the probability that a vehicle
is involved in a traffic conflict, an accident, the potential damages, and the conse-
quences that it entails. The problem is how to determine which indicators reflect
that severity, objectively. The relationship between the severity and frequency of
conflict events, proposed by Hydén, is shown in Figure 4.3, adapted from [4]. It is
important to note that any potential risk event occurs between at least two road
infrastructure objects which interact on the road and can be explained by several
factors involved in any event. Aiming to determine these indicators, traffic conflict
techniques have been developed to show how to estimate a potential traffic risk event
through the perception of situations involving road users and their risk probabilities.
It is meaningful to note that the risk perception does not reflect the objective risky
events, because the behavior is affected by variations corresponding to the individual
perception of each vehicle. These behavior variations are more susceptible to occur
when the responsibilities are from human drivers and pedestrians.
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Figure 4.3: Pyramidal representation of traffic events (adapted from [4]).

The definition of a traffic conflict is based on temporal and spatial proximity
factors [56]. Through the analysis of these factors, it is possible to estimate and
argue the severity of risk events associated with the vehicle. However, traffic conflicts
bring a series of limitations that derive from the nature of decisions in the presence
of risk events. An example of this is the action/reaction time to minimize accidents,
as well as evasive actions and their effectiveness. As a result, it is not possible to
estimate the severity of a risk event. On the other hand, since there is no consensus
on the reaction pattern in the presence of risk events, then an independent analysis
is required for each vehicle to establish the corresponding responsibilities. Therefore,
it is necessary to define the conflict measurement according to the nature of traffic
risk events investigated. Figure 4.4 shows a distribution of conflict events to define
critical events based on [5]. It is crucial to define appropriate risk thresholds to rank
traffic conflict events in any scenario.
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Figure 4.4: Distribution of traffic conflicts defining serious and non-serious con-
flicts [5].

In addition to direct and context-aware measurements related to the vehicle and
the surrounding objects, there are other variables that can be used to model a traffic
conflict. For example, we may have to consider geometric attributes (surfaces, align-
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ment, lane dimensions), traffic conditions (traffic volume, speed limit, road types),
environment (weather conditions, luminosity), and vehicle capacities (maneuverabil-
ity, braking ability, stability) [57, 58]. In particular, vehicle capacities are improved
by exteroceptive sensors enabling recognition of surroundings around the vehicle.
Vehicle sensor readings can clarify traffic risk events, providing detailed descrip-
tions of detected objects around. These sensing systems can incorporate features to
improve the vehicle safety, besides to make it easier the road safety analysis (consid-
ering that sensor readings are more detailed). It should be noted that there are cases
in which the vehicle’s autonomy level still requires the driver’s expertise and atten-
tion, and therefore, driver’s engagement with the vehicle’s situational awareness is
crucial.

In the context of self-driving (autonomous) vehicles, through sensor readings, it
is possible to determine both internal and external safety metrics. In addition to the
analysis of good practices from the car manufacturer and AI developer, new safety
requirements may emerge from the analysis and assessment of the driverless vehicle
behavior, for example, sensor’s liability, on-the-road distance training and experi-
ence time of the autonomous system controller, among others. A first instance to
evaluate safety metrics in self-driving vehicles is the vehicle’s performance related to
traffic regulations. Traffic regulation violations can be registered both in data from
the sensors and by external agents associated with the vehicular environment. In
this sense, historical records can be managed to examine the vehicle’s performance
related to the surrounding interactions, besides allowing the analysis of the vehi-
cle reliability in terms of autonomous system development. For example, Waymo
simulate driving behavior in reconstructed fatal crashes based on real-world fatal
collision scenarios that occurred in a specific operational design domain [59].

Another dimension of the safety metrics analysis for self-driving vehicles is related
to the ability to interact with the different challenges that arise in a rapidly changing
environment such as the urban traffic. In this sense, it is expected that the vehicle
will respond appropriately to traffic risk events and that they are minimized. In
this aspect, multiple sensing strategies are often used simultaneously so that the AV
can be aware of any eventuality. Different traffic risk events revolve around this AV
situational awareness:

• Imminent or near crash situation: Take precautionary or emergency ac-
tions in collision situations.

• Speeding: Eventually, a driverless vehicle could exceed the speed limit in
unmarked or secondary zones.

• Harsh acceleration and harsh braking: These are associated with even-
tual conditions that require immediate reaction.
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• Lane departure: It requires the analysis of blind spots, as well as the teleme-
tries’ analysis of other vehicles close to it.

• Time to Collision: Multiple vehicle sensors can detect a potential object that
could cause a crash; however, the driverless vehicle may not make a decision
until confirmation from other sensors.

4.2 Surrogate Safety Measures

Surrogate Safety Measures (SSM) are measurements which describe the relation-
ship between two road users in a traffic risk event to quantify the crash probability
and/or the potential traffic conflict severity in a meaningful way [60]. Traffic conflicts
may differ in the severity level, motivating the analysis of a relationship between
severity and risk events frequency; the severity of an event depends on multiple fac-
tors. SSMs are useful in vehicular applications, since they satisfy conditions based
on crash prediction through analysis of observable non-crash events. Therefore, it is
possible to model the frequency of traffic conflict events through practical analysis
methods [61]. Traffic conflicts and the severity in which they result can be ana-
lyzed as measures of road safety. Furthermore, this area becomes more important
considering that the trend of vehicles is increasing levels of autonomy. Thus, the
analysis of decision-making and actions/reactions arising from them contributes to
the AV audit. In fact, road safety analysis adheres to the explainability and fairness
processes concern to policymakers and stakeholders.

A good practice in SSM analysis is to verify the data validity and reliability [62].
SSMs are used for traffic risk event analysis. As such, once SSMs are estimations of
road safety measures, they can be questioned with regards to ambiguity, unbiased-
ness, among others. Data validity is a process that analyzes whether a measurement
is appropriate to assess a traffic risk event. It shows the precision degree to which
an indicator describes a traffic risk event. It means that some metrics may not ad-
equately estimate traffic risk events. Therefore, through data validity, it is possible
to understand the chain of events preceding a traffic high-risk event on the road.
For example, two vehicles at low speed indicate a high-risk coefficient related to the
time-to-collision metric; however, the deceleration coefficient indicates that there is
no conflict between the vehicles. In this case, the traffic risk event can be a false
positive, since there is no concordance between the metrics used. Data reliability
refers to the accuracy and consistency of the measurements. These characteristics
are relevant in this work to evaluate the quality of the data collection provided by
the AVs related in Chapter 3: they provide objective data through the sensor reading
that may decrease their performance by the conditions in which they are operated.
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Analysis of traffic conflicts can be studied through direct metrics analysis, per-
formed by exteroceptive sensors, based on images or point cloud data from sensors
available in the vehicle. On the other hand, context-aware analysis is conducted
through traffic conflict observations, manually. SSMs can be categorized by their
objectivity and subjectivity in a traffic conflict. Direct metrics show instantaneous
values related to the vehicle motion, such as speed, acceleration, and distance. On
the other hand, context-aware metrics depend on direct measures, critical threshold
values, and measurements from the objects detected around the ego-vehicle.

4.2.1 Direct metrics

Direct metrics use instantaneous values associated with vehicle motion, such as
speed, acceleration, and distance. Therefore, direct metrics are defined as vehicle-
specific measures (e.g., speed variations, acceleration/deceleration rate, among oth-
ers). These measurements are perceived by proprioceptive sensors or OTS devices
when available in the ego-vehicle itself, and through exteroceptive sensors, when
dealing with other road users.

4.2.2 Context-aware metrics

To identify potential traffic conflicts, there are diverse SSMs as DeltaS [63], De-
celeration Rate to Avoid a Crash (DRAC) [64], Post Encroachment Time (PET) [65],
and Proportion of Stopping Distance (PSD) [66]. Table 4.2 summarizes the advan-
tages and disadvantages of the SSMs described in this section. We emphasize on
Time-to-Collision (TTC) [67]. TTC is one of the most common methods to analyze
and describe the severity of traffic risk events.

4.3 Time-to-Collision (TTC)

TTC is defined as the time it would take for the ego-vehicle to collide with
an object ahead, if the current relative speed was maintained from the previous
advance along the same path [67]. This is a continuous measure of safety that
can be calculated at any moment as long as the ego-vehicle and the object are in
a conflict area. Thus, TTC enables the collision course analysis for vehicles and
predicts how is the vehicle’s motion related to other users of the road infrastructure.

Equation 4.1 defines the TTC as the relation of the distance between the ego-
vehicle and objects ahead (d(ego,obj)) and the speed difference between both ego-
vehicle (vego) and an object ahead (vobj); for simplicity, we assume the object is
another vehicle. Typically, the TTC value indicates the minimum time to collide,
calculated continuously through the detection process of a potential traffic risk event.
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Table 4.2: Advantages and disadvantages of SSM indicators (Adapted from [8]).
SSM Advantages Disadvantages

Direct metrics
Easy to apply: Applicable to objective
measures. Variables independent from
other values.

Limited metrics for predicting conflicts
with other road users.

DeltaS

Reflect the relationship between both
ego-vehicle/objects ahead through
speed variations. Continuous moni-
toring of event risks. Applicable to
determinate the severity of a crash.

Limited to objects around the vehicle.
It is limited to analyze road
infrastructure signaling.

TTC

Widely used as road safety metric.
Continuous monitoring of event risks.
More valid in context-aware measures.
Available for dynamic object
interactions. Applicable to define
safety zones.

Ignores potential conflicts due to accel-
eration and deceleration actions. Anal-
ysis depends on higher speed from the
ego-vehicle. It is analyzed just in a
course collision. Measures a potential
severity conflict, but not the nearness
of a crash.

PET

Widely used in intersection conflicts.
It is easily estimated. More valid in
context-aware measures. Available for
dynamic object interactions.

It is not enabled to define a severity
conflict. It is not relevant to define the
impact of a conflict.

DRAC

Continuous monitoring of accelera-
tion/deceleration events in both ego-
vehicle/objects ahead. More valid in
context-aware measures. Available for
dynamic object interactions.

Limited identification of a traffic
conflict situation.

PSD

Available for vehicles interaction and
time exposure conflict. It does not con-
sider a response delay from the ego-
vehicle.

Focus on specific traffic conflicts
limited.

In the situation of imminent collision, TTC values assume finite decreasing values
as the severity of the traffic risk event increases. It is worth noting that the TTC
value allows inferring the amount of reaction time available for evasive maneuvers
as a measurement of the risk level.

TTC =


d(ego, obj)
vego−vobj

, if vego > vobj

∞, otherwise
(4.1)

Figure 4.5 shows an example of two vehicles in a conflict area. As soon as the
ego-vehicle reaches a higher speed than the vehicle ahead, it is assumed that the
pair of users are in a potential traffic event risk, with a higher risk probability.
Figure 4.5(a) shows in the first stage that, despite detecting the blue vehicle ahead
in-motion at a lower speed, the TTC value does not represent a risk event for the
ego-vehicle. In the second stage, the TTC value represents a high-risk event for
the ego-vehicle since the blue vehicle reduces its speed almost to stop, as shown in
Figure 4.5(b). As a result, an increase in acceleration from the vehicle ahead reduces
the risk probability, and the collision course stops existing. Indeed, if the vehicle
ahead reaches a speed higher than the ego-vehicle, the TTC value tends to infinity.

The severity of any ego-vehicle risk event through the TTC calculation depends
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Time-to-Collision
Potential traffic risk event exist
Conflict area

Red car = Ego-vehicle
Blue car = Object ahead

vego vobjD

Distance to the object ahead: D = 20m

Ego-vehicle speed: vego = 40 km/h

Vehicle ahead speed: vobj = 30 km/h

Time-to-Collision:TTC = 7.2 s

(a) TTC event in a first stage.

Time-to-Collision
Potential traffic risk event exist
Conflict area

Red car = Ego-vehicle
Blue car = Object ahead

vego vobjD

Distance to the object ahead: D = 6m

Ego-vehicle speed: vego = 30 km/h

Vehicle ahead speed: vobj = 7 km/h

Time-to-Collision:TTC = 0.94 s

(b) TTC event in a second stage.

Figure 4.5: Example of a TTC event analysis.

on speed and distance measurements. Therefore, at high and low speeds, it is
possible to establish the severity of any event. A high TTC value represents a low
traffic risk event level, while low TTC values indicate a high-risk event probability.
Meanwhile, to quantify the severity of traffic risk events, a risk coefficient must be
determined to distinguish the severity of the event.

4.3.1 Related work

Different safety indicators have been designed for risk assessment in traffic con-
flicts [8]. Indeed, these indicators are characterized by the fact that they allow to
quantify the severity of traffic risk events. Additionally, it is possible to estimate
the level of risk in scenarios where historical crash data is unavailable. This work
focuses on the use of TTC as a technique to assess risk. Related works are briefly
discussed in the following.
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Approaches of TTC

TTC is a proximal temporal indicator widely used in techniques to analyze traffic
conflicts. Due to TTC limitations (it ignores evasive actions, speed restrictions of
the ego-vehicle direction related to the object ahead), several modifications have
been proposed to improve the accuracy of this metric.

Modified Time-to-Collision (MTTC)

Modified Time-to-Collision (MTTC) [68] uses acceleration as a parameter
to analyze the vehicle trajectory and its conflict discrepancies due to accelera-
tion/deceleration. However, MTTC depends on both the acceleration of the fol-
lowing vehicle and the leading vehicle, the latter being difficult to measure or
obtain, from the ego-vehicle. Furthermore, MTTC by itself does not allow the
severity of potential risk events to be quantified, since various combinations of dis-
tance/velocity/acceleration may produce similar MTTC values. For this, the au-
thors propose a Crash Index (CI) that uses kinematic variation factors to estimate
the severity of risk events [68].The authors conclude that CI can effectively model
the temporal distribution of accidents to the same extent as MTTC.

Enhanced Time-to-Collision (ETTC)

Another TTC variation is Enhanced Time-to-Collision (ETTC) [69]. ETTC
assumes that following and leading vehicles do not change their courses until a
collision occurs. Moreover, deceleration in the leading vehicle is considered until it
stops. On the other hand, following vehicle’s deceleration is considered to zero when
the brake onset. Thus, ETTC calculation allows defining thresholds for “near” and
“far” perception in Forward Collision Warning systems.

Time-to-Collision with Disturbance (TTCD)

Time-to-Collision with Disturbance (TTCD) analyzes collision risks caused by
disturbances in the leading vehicles [70]. TTCD also can capture rear-end conflicts
in car-following scenarios where the leading vehicle may have higher speed. TTCD
considers the deceleration product of the disturbance, and the critical deceleration
rate imposed by the leading vehicle deceleration.

Time Exposed TTC (TET) and Time Integrated TTC (TIT)

On the other hand, to determine safety evaluations based on TTC in time inter-
vals, other indicators have been proposed to describe micro-levels of safe and safety-
critical events derived from the TTC value analysis. The Time Exposed Time to
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Collision (TET) is an indicator proposed in [71] which analyzes the time period that
a vehicle remains exposed to high-risk events based on TTC values. These time pe-
riods analyze TTC measurements by thresholds defining the risk level. Thus, TET
represents the duration of the exposition of safety-critical TTC values over a speci-
fied time duration. Thus, all the instants in which the driver is following the leading
vehicle, which 0 < TTC < TTC∗ must be summed. Nonetheless, this indicator
takes into account a single threshold TTC* (i.e., safety/safety-critical events), and
therefore, it does not consider the variation between lower TTC values. To reduce
the impact of low TTC values do not affect the TET indicator, Minderhoud et al. [71]
propose the Time Integrated Time to Collision (TIT) metric which integrates the
TTC to define the safety level for each TET interval analyzed in each driver’s profile.
Thus, TTC values below TTC* are also considered in the calculation process.

In addition to their improvements, TTC’s variation metrics (MTTC, ETTC,
TTCD, TET and TIT) also have disadvantages. These metrics are limited by the
absence of motion analysis of the road users interacting with the ego-vehicle (e.g.,
evasive maneuvers, motion orientation, among others) when they are in a collision
course. Table 4.3 shows a comparison of the approaches to improve TTC calculation.

Table 4.3: Summary of previous approaches using TTC.
Approach Methodology Advantages Disadvantages

TTC [67] Calculation based on constant
speed.

Simple calculation based on
distance and speed variations.

Ignores motion characteristics of
the ego-vehicle and road users.

MTTC [68] Calculation uses acceleration
in TTC general formulation.

MTTC considers the accelera-
tion of ego-vehicle and other ve-
hicles during collision course.

Ignores motion characteristics
of the ego-vehicle and road
users.

ETTC [69] Calculation uses deceleration
behavior of the objects ahead.

ETTC considers characteristics
of the objects ahead and their
behavior when deceleration
events occurs.

Ignores motion characteristics
of the ego-vehicle and road
users.

TTCD [70]

Calculation considers the
effects of disturbing events in
vehicles ahead of the
ego-vehicle.

TTCD Analyzes reactions of
the objects ahead that can
affect the ego-vehicle.

Ignores motion characteristics of
the ego-vehicle and road users.
It is not clear how to apply the
TTCD in diverse scenarios.

TET|TIT [71]

Calculation considers time dura-
tion and extension for the ego-
vehicle drives in high-risky situ-
ations.

Measures consider time
intervals for safety analysis.

Ignores variations occurred in
TTC analysis.

TTCmo

Calculation considers motion
orientation of the objects
ahead with respect to the
ego-vehicle.

This metric considers motion
orientation on the ego-vehicle’s
motion axis. Moreover, it con-
siders just the objects ahead in
collision course with the ego-
vehicle.

Depends on accuracy from
semantic segmentation
classification and bounding
boxes processing in the
ego-vehicle.

SSMs based on motion dynamics

Some studies analyze unrestricted road users’ motion as part of the dynamics
in vehicular environments. Miller et al. [72] develop a collision warning system that
analyzes traffic risk events and evasive actions, sharing the location and kinematic
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measures from both ego-vehicle and vehicles around between peers. The algorithm
analyzes the time to collision and the time to avoidance in a parametric way. Lau-
reshyn et al. [6] propose a theoretical analysis of SSMs in collision course to determine
the severity of traffic risk events. Given that interactions between road users are
continuous, the authors suggest some strategies to calculate TTC for conflicts of
different angles at constant speed. The authors stated that in potential collisions,
a corner of one of the vehicles touches one side of the other vehicle. Thus, a new
concept for TTC is developed, which calculates TTC between a moving line section
of the ego-vehicle and a point in the other vehicle, in a time instant t. Next, the
coordinates of the line section ending after t seconds based on a constant speed mo-
tion. Some assumptions about parallel motion are defined, depending on gradient of
the line. Jiménez et al. [73] make an improved calculation of TTC in [72], assuming
the vehicle geometry to be rectangular. In addition to the simplified calculation, the
system analyzes the dimensions of the vehicles involved in the interaction, and the
areas involved in a potential traffic conflict. Ward et al. [74] analyze the interactions
between vehicles to define a prediction system and collision avoidance in vehicle-
to-vehicle (V2V) communication systems. The method analyzes TTC for vehicles
without motion restrictions. The authors calculate TTC in 2D, based on the relative
vehicle motion and a looming method (a technique for gating predictions based on
the relative motion of the vehicles), which considers the relationship of the vehicle
roll angle, linear and angular velocity, and the yaw rate vector. Wachenfeld et al. [75]
propose a Worst-Time-To-Collision (WTTC) metric to identify risk events related
to the mobility dynamics of objects. The authors do a physical analysis of vehicle
motion using the Kamm’s circle (a theory about the transferable forces from the tire
to the road surface) and entering the yaw angle.

Differently from these studies, this thesis analyzes the motion orientation of
diverse road users that surround the ego-vehicle, detected through exteroceptive
sensors, which enables the analysis not only with vehicles, but also with pedestrians
and two-wheelers. Table 4.4 shows a comparison of the approaches involving motion
orientation to improve TTC calculation.

SSMs based on naturalistic driving studies

Other works described in the literature analyze SSM metrics in data collection
from naturalistic conduction studies, a method that is characterized by the contin-
uous recording of driving information through the sensing of real traffic conditions.
These testbeds use diverse exteroceptive sensors such as radars, cameras, GNSS, or
V2X communication devices, to detect objects around the vehicle. Data sources,
such as 100-Car [76] and SHRP2 [77] have been extensively studied via TTC to
formulate safety metrics, analyze risk events, and compare simulated and real envi-
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Table 4.4: Summary of works considering motion orientation in the TTC calculation.
Approach Methodology Advantages Disadvantages

Miller et al. [72]

The authors propose a
collision warning system based
on calculation of intersection
points.

The system includes an algo-
rithm for intersection collision
warning detection and consid-
ers communication strategies.

Ignores motion characteristics
of the ego-vehicle and road
users.

Laureshyn et al. [6]
Calculation of TTC based on
convergence in different angles
at constant speed.

The framework enables to
calculate collision probability
based on TTC in sideswipe
conflicts.

Limited by disregarding
motion characteristics of the
ego-vehicle and road users.

Jimenez et al. [73]

The authors make an
improved calculation of TTC
based on methodology
proposed in [72].

The framework considers vehi-
cle geometry to be rectangu-
lar. The tool considers also the
dimensions of vehicles involved
in the conflict.

The framework is not tested
on a real scenario.

Ward et al. [74]

The authors propose an
indicator that generalizes
TTC to the planar case,
mapping vehicle trajectories
on the road to predict traffic
conflicts.

Planar analysis relies heavily
on the relative positions of
other traffic participants at the
moment of predict the risk of
a traffic conflict between vehi-
cles. The model considers un-
certainties by communication
(V2V).

The model ignores other road
users in the ego-vehicle
vicinity.

Wachenfeld et al. [75]

The authors propose a
method to reduce the amount
of data to estimate the
criticality of a conflict.

The method considers the
motion orientation through
yaw angles.

WTTC can define uncritical
events as potential risky, e.g.,
vehicles travel side by side.
WTTC does not consider other
road users.

Our proposal (TTCmo)

Calculation considers motion
orientation of the objects
ahead with respect to the
ego-vehicle.

This metric considers motion
orientation on the ego-vehicle’s
motion axis. Moreover, it con-
siders just the objects ahead
in collision course with the
ego-vehicle. TTCmo also dis-
cards other objects out the ego-
vehicle’s path.

Depends on accuracy from
semantic segmentation
classification and bounding
boxes processing in the
ego-vehicle.

ronments [78, 79]. In the same way, Safety Pilot Model Deployment (SPMD) used
around 3,000 human-driven vehicles, equipped with V2V communication devices and
Mobileye sensing devices [80]. He et al. [81] evaluate SSMs from SPMD data. The
authors implement three metrics: TTC, MTTC, and the Deceleration Rate to Avoid
a Crash (DRAC). The authors observed that the MTTC presented the best overall
performance. Xie et al. [70] propose an analysis of high-risk location identification
based on TTC, using hypothetical disturbances in the leading vehicles, which can
generate high-risk events in ego-vehicle. The work takes 75 highway segments where
the SPMD vehicles circulated, and the information is cross-referenced with crash
databases from Michigan City. The authors observed a high correlation coefficient
between TTC, DRAC, and TTCD. Meanwhile, TTCD captures risks that were not
observed in TTC and DRAC analyzes. Kusano et al. [82] develop a methodology to
identify situations where the ego-vehicle driver generates an evasive braking action.
The authors use radar data and kinematic measures from the ego-vehicle [76] to cal-
culate the TTC as a metric to activate warning actions. Five car-following scenarios
are identified to implement the algorithm: scenarios where the leading vehicle or
lack of leading vehicle lack is correctly identified by the algorithm; scenarios where
the leading vehicle is detected, but it is not in collision course with the following
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vehicle; and scenarios where the algorithm failed to identify the leading vehicle or
detects other objects different of the visual analysis. The authors conclude that the
algorithm can identify 91.8% of the braking events when verified visually.

SSMs based on exteroceptive sensing

Studies on the evaluation of TTC through exteroceptive sensors have been de-
veloped to recognize the various entities with which a vehicle can interact. Ay-
card et al. [83] propose a risk assessment system at intersections. The authors use
data fusion from camera and LiDAR sensors to detect and establish the dynam-
ics of detected objects. For risk quantification, the TTC is used as a collision risk
indicator. The authors conclude that risk assessment through environmental per-
ception can enhance safety applications in the automotive industry. Kilicarslan and
Zheng [84] analyze vehicle collisions through TTC using video cameras. The authors
analyze the divergence of horizontal and vertical movement in video frames without
relying on bounding boxes. To this aim, TTC analysis is based on the size variations
of the detected object in the video, divided by the size changes in time intervals.
The analysis of the algorithm proposed by the authors is used in videos of natural-
istic driving without accidents. Results show 94% accuracy and 93% precision in
the relationship between the computed system and the actual video. Meanwhile,
compared to the detection of the LiDAR sensor in the KITTI dataset [85], the au-
thors observe that LiDAR-based measurements depend on the depth of detection,
discontinued detection, in addition to requiring 3D analysis. In this sense, video
frame analysis is robust and can have a higher degree of accuracy.

The analysis of road safety metrics is closely related to the collection of image
data from specific areas (mostly intersections), or video analysis in vehicles with
embedded devices. Unlike these works, this study explores the potential of using
data generated by AVs to develop road safety analysis solutions based on the vehicles’
own sensing. Specifically, we focus on the TTC analysis with emphasis on the road
users’ motion orientation. Depending on the road users’ orientation, TTC must be
evaluated differently to accurately validate high-risk events involving the AV. This
thesis analyzes TTC based on the road users’ orientation and position related to
the AV. For that, nuScenes AV dataset [1] and Lyft5 dataset [2] are used in this
study to analyze the motion orientation and position of the detected objects by the
AV while it is moving. The goal is to analyze the TTC based on the yaw angle of
the detected object and its position with respect to the AV through data analysis
from exteroceptive sensors’ data readings in AVs. To the best of our knowledge, this
is the first analysis considering orientation for the TTC calculation based on data
from AVs.
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4.4 Time-to-Collision with Motion Orientation

Traffic conflict analysis based on Surrogate Safety Measures (SSMs) helps to es-
timate the risk level of an ego-vehicle interacting with other road users. Nonetheless,
risk assessment for driverless vehicles is still incipient, given that most of the AVs
are currently prototypes and current SSMs do not directly apply to autonomous
driving styles. Therefore, to assess and quantify the potential risk arising from
self-driving vehicles interactions with other road users, this study introduces the
Time-to-Collision with motion orientation (TTCmo), a metric that considers the
yaw angle of conflicting objects. In fact, the yaw angle represents the orientation
of the other road users and objects detected by the AV sensors, enabling a better
identification of potential risk events from changes in the motion orientation and
position through the geometric analysis of the boundaries for each detected object.

An important factor for TTCmo analysis is determining which road users and
infrastructure are detected in the ego-vehicle path. For this, we use data from
bounding boxes generated data processing into the AVs for objects detected by
LiDAR and camera sensors. The goal is to evaluate when the ego-vehicle detects an
object with a potential convergence point, an estimation of safety based on risk level
will be calculated only with those objects that are on a potential collision course.

The probability of a risk event depends on the way an AV drives as well as
on the other objects around interacting with the AV. Both have to be accounted
for when considering the dynamics of the urban environment in terms of time and
space. Therefore, it is necessary to analyze interactions with other road users. This
is important whether we take into account that the AV may be on collision course
with another user within an immediate time span. Figure 4.6 shows the logical
relationship for determining whether an object detected in front of the AV represents
a traffic risk event or not. In principle, any detected object by the vehicle sensors
is continuously analyzed by the AV to check its motion orientation and position
with respect to it. This is important considering that the mobility scenario changes
quickly, and as such the possible interactions may change. Thus, we can detect
whether a detected object is on a collision course with the AV. A detected object
is not on a collision course when the object’s direction course does not converge
with the AV, i.e., the detected object moves on an adjacent track, or the trajectory
of both the object and the AV diverge. Otherwise, an object in a driving course
converging with the AV course can represent a potential risk.

4.4.1 Data Preparation

Analysis of safety assessment requires data from functional areas of the AV de-
scribed in Section 3.2 to analyze potential traffic risk events, as shown in Figure 4.7.
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Figure 4.6: Relationship between object detection and motion orientation/position
based on [6].

Figure 4.7(a) shows the data used for both AV and detected objects through the ex-
teroceptive sensors, with respect to functional areas for the AV performance analysis
related in Section 3.2. Thus, we aim to assess potential traffic risk events based on
raw and semantic data from the AVs and their interactions with various road users
and infrastructure. Categorized data make possible to assess safety with respect
to road users different from vehicles, such as pedestrians and two-wheelers, among
others when available. Moreover, data from all functional stages in AVs are used to
assess risk events for the categories of detected objects in the dataset, in order to
establish a standard of AV driving with respect to the road users’ motion. Although
traffic accidents are unexpected and rare events that can be associated with multi-
ple causing factors, this analysis can help to explain more clearly potential traffic
accidents since any collision describes a convergence approach between the users
involved in the collision, as described in Figure 4.7(b).

Motion orientation and position angle

From the analysis of the dynamics of road users and the ego-vehicle, it is possible
to evaluate metrics inherent to the objects’ motion. For that, we use the nuScenes
and Lyft5 devkits [53, 86], which provide a set of libraries to manipulate their
datasets. We compute the bounding box orientation, swapping the global coordinate
vector [x, y, z ] of the LiDAR ([1, 0, 0 ]) for the camera ([0, -1, 0 ]), according to
the coordinate frames defined for each sensor. In this way, we set the yaw angles
for each object detected based on the global coordinates of the frontal camera, as
observed in Figures 3.1 and 3.2.

Furthermore, the yaw rate describes the spatial orientation of the vehicle through
the angle variation on the z -axis, as shown in Figure 4.8(a). Yaw angles (ψ) indicate
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(b) Data analysis procedure.

Figure 4.7: Summary of data used to analyze traffic risk events based on motion
orientation.

the orientation of each detected object. North is 0 o (ψ0), east is 90 o (ψ1), west is
−90 o (ψ2) and south is 180 o (ψ3). Objects have positive heading in clockwise
direction and negative value in counterclockwise direction. About the ego-vehicle,
we assume that yaw angle is ψego = 0 o. Thus, detected objects with yaw angle
between ψ2 < ψ0 < ψ1 indicate that the direction on z-axis is forward to the ego-
vehicle; meanwhile, yaw angles between ψ1 < ψ3 < ψ2 indicate that the direction is
opposite to the ego-vehicle, as shown in Figure 4.8(b). On the other hand, position
angles (θ) indicate the location of an object with respect to the ego-vehicle. Position
angles 0 o < θ < 90 o indicate object locations at right-side with respect to the driving
direction, while −90 o < θ < 0 o at left-side, as shown in Figure 4.8(c). Bounding box
centroid coordinates (x, z ) are used to determine θ. Thus, it is possible to establish
when the ego-vehicle path is converging with detected objects. It is important to
explainability requirements to assess traffic conflicts based on the road users’ motion.

Geometric analysis of objects and ego-vehicle

As shown in Figure 4.9, we use the ego-vehicle size specification to obtain a
geometric representation and to analyze the interaction with surrounding objects.
The width and length of the detected objects, available from the bounding boxes,
are considered in the geometric analysis. In this sense, each vertex is labeled to
determine its location and orientation when the object moves and rotates. The ego-
vehicle is also represented as a bounding box. It is important to note that since
ψego = 0, the position of its vertices will always be the same for the analysis. In
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Figure 4.8: Relationship between AV and detected objects via motion orientation
and position angle.

addition, the remaining space between the lane width and the ego-vehicle width
is used as a safety area (san), to identify objects adjacent to the AV that may
represent potential traffic conflicts. The lane width is based on the respective road
city regulations. Vehicle size specifications are reported in Table 4.5.

Table 4.5: nuScenes and Lyft5 vehicle overall dimensions. The width (w) includes
external mirrors. The length between camera and vehicle front-side (lcf ) and the
length between camera and vehicle rear-side (lcr) are based on the camera location
on the vehicle’s rooftop.

Dimensions
Vehicle

nuScenes
(Renault Zoe)

Lyft5
(Ford Fusion)

w [m] 1.945 2.121
l [m] 4.087 4.871
h [m] 1.562 1.478
lcf [m] 1.81 2.302
lcr [m] 2.277 2.569

To determine which objects are in collision course with the ego-vehicle, it is
important to identify adjacent or overlapping trajectories between the ego-vehicle
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Figure 4.9: Geometric representation for an object (a) and the ego-vehicle (b).

and other objects. It is possible to determine objects trajectories via the motion
analysis. In this way, we identify behavior indicators according to the AV reaction
in several possible interactions with the objects around. Thus, we process AVs data
to identify these interactions. In this analysis, we consider data annotations of the
camera’s coordinate system as reference. Information of the bounding box like the
yaw rate (ψ), centroid position data in the image (x, y, z ), and the size (w, l, h)
are extracted from each annotation. Each vertex of a bounding box and the AVs
are calculated by the relationship between sizes and the centroid coordinates, as
described in Equation 4.2:

ax, dx = x− w

2
,

bx, cx = x+
w

2
,

az, bz = z +
l

2
,

cz, dz = z − l

2
.

(4.2)

Table 4.6 shows the vertices’ calculation for both the ego-vehicle and bounding
boxes. We also model the ego-vehicle as a bounding box to analyze the interaction
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of each corner of it with the detected objects. Thus, we consider the position of
the camera on the vehicle’s rooftop as the origin x, z. It is important to note that
the camera position does not correspond to the vehicle’s centroid, and therefore, it
is necessary to calculate lcf and lcr, as shown in Figure 4.9(b). Furthermore, we
assume that ψ = 0 since we analyze the interactions with objects detected from
images captured by the AV front camera.

Table 4.6: Relation between the centroid position in the bounding box and the ψobj
rotation.

Vertices
Bounding Box nuScenes/Lyft5

xobj zobj xego zego

a axobjcos(ψobj) + azobjsin(ψobj) + xobj −axobjsin(ψobj) + azobjcos(ψobj) + zobj axego zego + lcf

b bxobjcos(ψobj) + bzobjsin(ψobj) + xobj −bxobjsin(ψobj) + bzobjcos(ψobj) + zobj bxego zego + lcf

c cxobjcos(ψobj) + czobjsin(ψobj) + xobj −cxobjsin(ψobj) + czobjcos(ψobj) + zobj cxego zego − lcr

d dxobjcos(ψobj) + dzobjsin(ψobj) + xobj −dxobjsin(ψobj) + dzobjcos(ψobj) + zobj dxego zego − lcr

Next, we analyze when an intersection exists between ego-vehicle vertices and
bounding boxes converging to the AV path. For this, data from the detected object
vertices and ego-vehicle vertices are analyzed to determine the interactions between
them. For this analysis, a line segment is defined as the line connecting the adjacent
vertices of the bounding box. We define line’s equation for each selected bound-
ing box segment of both object and the ego-vehicle and potential intersections are
calculated, as shown in Equation 4.3:

Aegox+Begoz = Cego,

Aobjx+Bobjz = Cobj,
(4.3)

where A, B, and C correspond to the line’s equation values for each segment of the
bounding box (object) interacting with the ego-vehicle. These values are given by
a set of conditions that depend on the detected object’s orientation.

Once the line equations have been calculated, the resulting values are used to
compute the intersection coordinates at x, z, as shown in Equation 4.4:

xego∩obj =
(BegoCobj)− (BobjCego)

(AegoBobj)− (AobjBego)
,

zego∩obj =
(AobjCego)− (AegoCobj)

(AegoBobj)− (AobjBego)
.

(4.4)

Thus, the distance d is calculated between the potential conflict vertices and
segments between the detected object and the ego-vehicle, as shown in Equation 4.5:

d =
√

(xsegego − xego∩obj)2 + (zsegego − zego∩obj)2. (4.5)
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Finally, it is possible to identify the location of objects around the AV. Neverthe-
less, in order to determine not only moving objects, as reported in [82], the goal is to
define also when movable/static objects (e.g., vehicles parked, traffic signals, among
others) can provoke AV evasive actions that may represent potential risk events
immediately. Thus, this work aims to evaluate the interactions between vertices of
both AV and movable/static objects. This is important considering that although
the proximity of the AV to other objects is inherent in the vehicular environment
(e.g., adjacent vehicles, crosswalks, crossing vehicles, among others), and therefore
some risk events can result in false positives.

Through this analysis, it is possible to describe various interactions with sur-
rounding objects detected by the AV. Nevertheless, it is necessary to quantify the
risk when the AV is on a collision course. For that, this work uses the TTC consid-
ering the detected objects’ orientation as a metric to improve the analysis of traffic
risk events involving the AV. The goal is to propose an improved TTC and test it
with real data from AVs.

4.5 TTCmo Calculation from Camera Images

From the analysis of camera images, it is possible to determine the position of
objects. We can derive both the absolute location of the object and its position in
the image through projections from 2D camera frames. As shown in Figure 4.10, it
is possible to analyze the mapping between the world coordinate system and cam-
era coordinate system that corresponds to the coordinate system used for vehicle
navigation. Also, the object’s speed related to the ego-vehicle is calculated by mea-
suring the time difference between the sending and rebounding laser pulses from the
LiDAR sensor.

To reduce the shortcomings of SSMs proposed in the literature, we include the
motion orientation and position of objects detected by the AV as a parameter for
the TTC calculation. The goal is to improve the accuracy of TTC to assess risk
events for AV. Equation 4.5 summarizes the computation of the proposed TTCmo:

TTCmo =



d(obj,ego)
vego−vobj cos(ψobj)

, if (vego − vobj cos(ψobj)) > 0,

∞ :


if (bego + sa2) < (a, b, c, d)obj < (aego − sa1),

or (vego − vobj cos(ψobj)) < 0,

or vego = 0,

where d is the distance between the segment/vertex on the ego-vehicle’s course and
the front-side of the ego-vehicle, vego is the speed of the ego-vehicle, vobj is the speed
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Figure 4.10: Mapping between a real frame and the camera frame.

of the detected object, and ψobj is the yaw angle of the detected object. The product
of vobj and ψobj captures the influence of the speed component on the same axis of
the ego-vehicle shift (z-axis), since the geometric analysis uses the camera’s reference
system. On the other hand, TTCmo tends to infinity when none of the bounding
box vertices of detected objects are in the path of the AV or invading the safety area
(sa). Likewise, it is assumed that when detected objects with speed higher than the
AV. Finally, when the AV is stopped, it is inferred that there will be no risk event.
The speed values of the detected objects and the ego-vehicle in the AV nuScenes
are obtained directly from the dataset. On the other hand, the speed data of the
ego-vehicle in the Lyft5 dataset is obtained from the analysis of translation data by
means of the haversine formula [87].

As a result, it is possible to simultaneously analyze and differentiate traffic risk
events in both car following and head-on scenarios. Therefore, TTC is conditioned
to the yaw orientation of each road user detected by the ego-vehicle. Positive yaw
angles describe road users moving in the same direction as the ego-vehicle, which
represents a car following scenario. On the other hand, negative yaw angles describe
road users moving in the opposite direction to the ego-vehicle, which defines a head-
on scenario.

To quantify the risk level from the TTC analysis, we employ the risk coefficients
proposed in [88]. This criterion gathers values which correspond to the reaction time
requirements in AVs, based on the parameters described in [89]. Table 4.7 shows
the risk coefficient defined according to the TTC values.

Motion orientation has a direct impact on the safety analysis. The road users’ is
random by nature, therefore it is inferred that traffic risk events require a mapping
analysis of the detected objects around the ego-vehicle. Next, TTCmo analysis is
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Table 4.7: Risk coefficient as a function of TTC.
Severity grade TTC [s] Description Risk coefficient

0 > 4.0 No safety risk 0.0
1 2.5 to 4.0 Accident-to-conflict ratio stable 0.2
2 1.5 to 2.5 Low risk level 0.3
3 1.0 to 1.5 Moderate risk level 0.6
4 ≤ 1.0 High risk level 0.8

used on the AV datasets presented in Section 3.

4.6 Performance Evaluation

As stated in Chapter 1, this work proposes a strategy to analyze road safety
metrics for AVs, using traffic conflict techniques based on SSMs. To extract the
information from sensor datasets and calculate SSMs, a Monitoring subsystem is
proposed. The data sequences ordered in the Data Analysis module are distributed
in both the SSMs analysis and Reports modules, as shown in Figure 4.11. The SSM
analysis module calculates the TTC and TTCmo discussed in Section 4.3 and 4.4.
On the other hand, the Reports module shows the data resulting from the data
analysis module since it organizes and calculates direct metrics, defined in Sec-
tion 4.2.1 and 4.2.2, in addition to quantitative characteristics related to data se-
mantic interpretation. Meanwhile, data from the SSM analysis module are delivered
to the reports module in an organized way, corresponding to the order delivered from
the data analysis module. The SSM analysis module uses the NumPy library for the
SSMs calculation, while the reports module uses the Pandas library for the report
format organization and the Matplotlib library for graphical analysis of road safety
metrics used in the Monitoring subsystem shown in Figure 4.11.

Data collection

Acquisition Perception Cognition Action

Monitoring

Customer

Services

Insurer

Data
extraction

Data
analysis

SSM analysis

Reports jsonlog/CSV

OpenStreetMap
Server

Location, Address,
Road Type,
Speed Limit

Figure 4.11: Architecture proposed for the monitoring analysis.
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4.6.1 Vehicle Tracking

The frequency of each event is influenced by the topology of the cities where the
AVs circulate, as shown in Figure 4.12. To analyze the vehicle tracking, we enriched
the datasets with data related to road type and speed limit. The ego pose data
encoded in translation data are transformed into geodetic coordinates to track the
vehicle. Geodetic coordinates are used to make queries in Nominatim1 and Overpass
API2.

(a) Singapore. (b) Boston. (c) Palo Alto.

Figure 4.12: Trajectories of the AVs in the datasets.

4.6.2 Speed Limit Analysis

From the vehicle tracking analysis in Section 4.6.1, the ego vehicle speed profile is
verified. Figure 4.13 shows that the ego vehicle maintains an average speed between
15 km/h and 30 km/h in Boston, 20 km/h and 40 km/h in Singapore, and between
30 km/h and 50 km/h in Palo Alto. Likewise, the speed of vehicles moving in front
of the ego vehicle is analyzed. It is possible to observe that some samples exceed
the threshold speed limit established by the traffic regulations; obviously relevant
information, given that speeding increases the probability of risky events.

4.6.3 TTCmo Evaluation

Kinematic measures like speed of and distance to the detected objects are used for
the TTCmo. Speed and distance are estimated through LiDAR measurements, while
the images are used for the recognition of the various objects around the AV. Data
is available in the datasets in form of annotations and metadata for each instance
(object) detected by the AV. Moreover, annotations are identified by categories,
each one associated with each object detected.

1https://nominatim.org/
2https://overpass-turbo.eu/
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(a) Ego-vehicle speed vs. road speed limit in Singapore.

(b) Ego-vehicle speed vs. road speed limit in Boston.

(c) Ego-vehicle speed vs. road speed limit in Palo Alto.

Figure 4.13: Relationship between the ego-vehicle speed and the road speed limit.
x-axis shows the main key used for identifying any kind of road, street or path. y-
axis shows the road speed limit for each road type (green marks), ego-vehicle speed
(red box plots), and other_vehicles speed (blue box plots). Variations in road speed
limits for a same road type are provided with different green marks.

To analyze potential risk events, AV datasets are examined to assess the driving
behavior. For that, annotations made to images captured by the front camera are
analyzed. Annotations with no speed data are discarded: 5% from the Lyft5 dataset,
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4.3% from the nuScenes Boston subset, and 1.1% from the nuScenes Singapore
subset. Next, we evaluate the TTC for all remaining valid annotations, in order to
observe the proportion of objects that are analyzed through the regular TTC defined
in Equation 4.1. In proportion, approximately 70% of the samples represent some
risk level w.r.t. valid ones, as shown in Figure 4.14. Different from the analysis with
the regular TTC, which only discards events when vobj > vego, the methodology
proposed in Section 4.4.1 allows to determine which objects may be in the ego-
vehicle’s course. Therefore, objects that are not in the course of the ego-vehicle are
discarded since they do not represent a potential traffic conflict. Thus, annotations
of objects detected in the AV course or the safety zone defined in Section 4.4.1 are
used to analyze the TTC. Thus, the proportion of samples representing some risk
w.r.t. valid ones corresponds approximately to 8% for the Singapore subset, 5% for
the Boston subset, and 4% for the Palo Alto subset, as observed in Figure 4.14.

Figure 4.14: Number of annotations (× 103) assessed for the analysis of potential
risk events in the AV datasets studied. x-axis shows the quantity of annotations
available in the dataset, annotations from the CAM_FRONT and the valid and
analyzed annotations. Hatch pattern bars in Analyzed label on x-axis correspond
to the TTC general formulation analysis; solid color bars correspond to the TTCmo

proposed in this work.

Figure 4.15 shows the TTCmo frequency distributions for each analyzed dataset.
It is possible to observe that the distribution in all cities is very similar, with distri-
butions skewed to the right. Therefore, the 5th and the 85th percentiles are evaluated,
which represent the most pronounced inflection points in the cumulative distribu-
tion. Values below the 5th percentile represent TTCmo values < 2.4 s in all datasets.
We also note that the bulk of representative TTCmo samples are concentrated in up
to 33 s, with an average of maximum 18 s.

From the annotations analyzed in Figure 4.14, it is possible to observe the fre-
quency and the type of events concerning potential risk events, when both the objects
and the ego-vehicle are in collision course. Table 4.8 shows the total frequency of
event types based on the course of detected objects, as described in Section 4.4.1,
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(a) Singapore.

(b) Boston.

(c) Palo Alto.

Figure 4.15: Cumulative and Probability Density Functions for TTCmo < 100 s for
each dataset.

classified as following, head-on, and crossing events. Course analysis can help to
analyze the way in which these objects converge with the AVs. These data are im-
portant to consider the severity of the event. For example, a car-following event can
have a different effect than a head-on event.

To analyze the risk level of the ego-vehicle interactions with other objects, we use
the severity hierarchy based on the level and severity zones proposed by Hydén [4].
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Table 4.8: Conflict types defined by position and orientation w.r.t. the ego-vehicle.
Event/City Singapore Boston Palo Alto

Following 3,094 4,452 7,022

Head-on 595 824 147

Lane-change 267 349 104
Crossing 4,947 6,456 1,463

Total events 8,903 12,081 8,736

Severity level defines a threshold for serious and non-serious conflicts. On the other
hand, severity zones quantitatively define severity levels. Both severity level and
zones are based on a relationship between time and speed. A fixed threshold to define
a high-risk event is based on the Time-to-Accident (TA) under a traffic conflict.
This value was established at 1.5 s [4], which is consistent with the studies reported
in [89], and that corresponds to the response time of the sensors readings, processing,
recognition and planning tasks of the AV between the detection of an obstacle and
the evasive action. The diagram in Figure 4.16 is used to define the severity level of
the conflict.

Figure 4.16: Conflict severity diagram.

All interactions that represent some level of risk for the ego-vehicle are presented
in Figure 4.17. All interactions within the 5th percentile are plotted, as observed
in the cumulative distributions of Figure 4.15. We note that most of the observed
interactions in Singapore (SG) and Boston occur with vehicles and objects. Fig-
ure 4.17(a) shows that interactions with TTCmo < 1.5 s occur with other moving
vehicles, with a deceleration pattern as the TTCmo decreases. On the other hand, in
Palo Alto (PA) we observe more interactions with parked vehicles: this characteristic
is due to the interaction with vehicles that invade the safety area we have defined for
the AV. It is interesting to note that interactions with pedestrians show some events
that represent lower risk of collision, as shown in Figure 4.17(b). The same behavior
is observed for the two-wheelers in Figure 4.17(c). Finally, Figure 4.17(d) shows the
interactions with objects of the vehicular infrastructure like barriers, traffic cones,
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among others.

(a) Vehicles.

(b) Pedestrians.

(c) Two-wheelers.

(d) Objects.

Figure 4.17: TTCmo 5th percentile indicators for each scenario. The columns describe
the city where the interactions take place: to the left Singapore (SG), to the center
Boston, and to the right Palo Alto (PA). Meanwhile, the rows describe the general
category of objects interacting with the AV. Conflicts above the black line on the
graphs are ranked as serious; below the black line, non-serious.
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To summarize, the proportion of interactions for all the annotations analyzed
represents less than 1% for high-risk events, whereas events with some risk represent
approximately 10%. Events that do not represent any risk represent more than
70%, as shown in Figure 4.18. Compared to valid annotations, the proportion of
interactions that represent some risk level is less than 2%.

Figure 4.18: Annotation volume based on severity grade ratio.

The present TTCmo analysis allows assessing risk events through the geometric
analysis of the boundaries associated with each object detected by the AVs. Thus,
it is possible to limit the analysis to objects in a possible collision course. This is
relevant for TTCmo analysis since it is possible to identify how interactions occur
with various road users and objects. Nevertheless, further investigation is needed
to establish a pattern of AV behavior with a longer time sequence in the scenes,
mainly to obtain more parameters to describe driving behavior patterns related the
AI system that controls the vehicle.

An advantage of data analysis through exteroceptive sensors available in au-
tonomous vehicles is that risk assessment is not limited to claims related to vehicles
only; as shown in Figure 4.17, where the TTCmo is assessed for various categories
and attributes available in the datasets. Moreover, the distribution of risk events
was similar among the three datasets, with 85% of the sampling concentrated in less
than 33 s, and the highest risk events below 2.4 s, as shown in Figure 4.15. It is also
important to note that the analysis of safety metrics for various road users will de-
pend on the data labeling available. This can be observed for example in Table 3.4,
where the Lyft5 dataset does not have data related to traffic infrastructure objects.

It should be noted nonetheless that there are some limitations in the used AV
datasets. The sampling time of each scene is limited to a maximum of 25 s (Lyft5),
and 20 s (nuScenes), in most cases without sequence, which prevents observing a
greater number of events with potential risk. Another limitation is related with the
speed of the AVs analyzed, which is much lower than the limit speeds of the road
infrastructure. The speed uniformity of the AVs reduces the possibility of observing
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the effect of the evasive actions by the AV. Finally, the number of vehicles limits the
risk assessment analysis since the age and learning experience of the autonomous
system may still be limited.

Finally, the calculation of TTCmo considering the motion orientation of the de-
tected objects reduces the overload generated by the volume of data in the safety
analysis. Thus, TTCmo reduces by up to 60% the proportion of data to be analyzed
when compared to the regular TTC, as shown in Figure 4.14. Motion orientation
and geometry analysis enable to discard all objects that, despite interacting with the
AV, they do not converge on a collision course, and therefore, they do not represent
a risk for AV. It is relevant if we consider that safety monitoring requires immediate
analysis when exists potential high-risk events.

4.7 Remarks

In this chapter, SSMs were studied with the idea of quantifying risk from the
interactions of self-driving vehicles with other road users and infrastructure. SSMs
enable the analysis of safety metrics based on variations in speed, distance, acceler-
ation/deceleration, and time. However, these measurements require validity. This
concept involves various features, such as sufficient evidence, an appropriate de-
scription of conflicts, identification of high-risk locations, among others. Therefore,
the validity process requires constant analysis. Hence, SSMs analysis can help to
improve the risk assessment process describing traffic risk events accurately. On
the other hand, validity processes are important for the explainability and fairness
paradigms in charge of policymakers. To validate traffic risk events, the method
selected in this section was the TTC. TTC has proven to be an effective measure
for severity of traffic conflicts. In fact, TTC allows risk quantification for each AV
interaction with other road users, discriminating critical from normal behavior. Be-
sides that, semantic data enable to analyze not just interactions with other vehicles,
it is also possible to evaluate the behavior of the autonomous controller system
with other road users, which also allows understanding the logic and priorities of
the autonomous controller system, which are part of the paradigm in HMT. In this
context, this chapter proposes TTCmo, an improvement of the regular TTC that
allows analyzing interactions with road users and objects in collision course with
the ego-vehicle. The metric uses the yaw orientation and the geometric analysis of
bounding boxes generated in the autonomous controller system for the recognition
and perception of objects detected by the exteroceptive sensors. This is important
to understand the risk when detected objects converge with the ego-vehicle. Some
highlights about the SSMs are described below:
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• All metrics require data validity to define their potential importance in the
road safety analysis.

• Road safety analysis through observation of real traffic risk events enables the
behavioral and situational assessment through parameters and their impor-
tance in potential conflicts between an ego-vehicle and road users.

• Road safety monitoring through SSMs allows defining assumptions about the
projected trajectories of the road infrastructure, and planned routes of road
users.

• Data collection of AVs allows validating SSMs through sensor readings inherent
to the vehicle. Although AV datasets do not have information on fatalities or
crashes, predictable event risks analysis makes available the development of
AI patterns in road safety monitoring.

• All metrics require real-time analysis. This is essential for the immediateness
of risk assessments. On the other hand, real-time analysis depends on pro-
cessing data from the AV sensor. Data interpretation is crucial to identify
detected objects around the vehicle, and consequently, that is reflected in a
high computational cost. Therefore, SSMs analysis depend on AV perception
and cognition processes to define road safety assessments, diagnostic activities
based on automated observations, and risk assessment models adjusted to the
real scenario.

Risk assessment in self-driving vehicles is an initial step towards understanding
potential AV driving patterns on the road. This is a challenging scenario consid-
ering that the insurer currently interacts with drivers through metrics, alerts and
suggestions to offer benefits and improve safety on the road; now, considering a
self-driving vehicle, the question is how to pass these monitoring results to the au-
tonomous controller system. It is well known that the insurer cannot influence the
decision-making of the autonomous system other than the car manufacturer or the
autonomous system administrator. In this context, it is necessary to consider that
both insurer and car manufacturer have data with different features since car man-
ufacturer has data coming from all the sensors of the AV, while the insurer has
more derived data (from OTS devices), but an overlap exists, e.g., speed or posi-
tion. Therefore, it is necessary to establish a collaborative environment in which
organizations can acquire information from one trusted another to improve their
corporate processes. Thus, it is possible then that the insurer’s monitoring helps
the car manufacturer to improve its autonomous driving model; on the other hand,
the insurer can reduce claims and the self-driving vehicle owner can be rewarded.
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In the next chapter, this thesis evaluates the use of ML techniques to establish a
collaborative environment in which it is possible to share data, while ensuring data
integrity and privacy-preserving.
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Chapter 5

Privacy-Preserving Collaboration for
Mobility Safety

Self-driving vehicles have numerous sensing systems to meet the challenges aris-
ing from the complexity of the varying vehicular landscape and preserving the safety
of the vehicle, passengers, and road users. This is an advantage if we consider the
sensors’ mobility a source to obtain data that, when interpreted, allow providing
accurate, personalized and real-time services. This is a challenging scenario for ve-
hicle risk assessment, considering that the growth of data volume generated by AV
is exponential [20], and therefore, data analysis can require high computational cost
in terms of complexity and efficiency. Thus, it is necessary to make use of edge
computing infrastructure or even cloud access to preprocessing or processing tasks
associated with road safety monitoring. These data are processed generally through
centralized algorithms based on machine learning techniques [90]. Nevertheless, this
data may contain sensitive personal information that could compromise the privacy
and data integrity, whether through data leakage or eavesdropping. This issue is
very relevant considering that several data protection and regulatory institutions
prohibit the upload of user data content without the user’s consent [91].

To address these challenges, a potential solution is the use of Federated Learning
(FL) techniques. The concept of federated learning is proposed by Google [28, 92–
94]. Their main idea is to build ML models based on datasets that are distributed
across multiple devices or sites while preventing data leakage [7, 95]. Unlike ML,
where the learning process is centralized, FL aims to train data in the location
where the data is stored, then, each party communicates the results of its “local”
model in order to reach a consensus to obtain a “global” model. Finally, the global
model feeds back the local model, and the learning process continues. As a result,
information of the model training can be exchanged between parties, but not the
data. Depending on the application, FL may contain multiple parties, i.e., individu-
als (e.g., IoT devices, OTS devices, among others), or organizations (e.g., hospitals,
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car manufacturers, financial entities, among others). In addition to the information
exchange process, FL implements local algorithms to preserve party privacy and
data integrity. Furthermore, the FL architecture can be peer-to-peer, so it does not
require a coordinator.

The scenario to be analyzed is illustrated in Figure 5.1. The objective is to use
data from car manufacturers for risk assessment based on the insurance monitoring
analysis. In this context, car manufacturers learn from data sent by the AVs; in
the meantime, the insurer monitors the ego-vehicle and learns from the data sent
by OTS devices located on-board the ego-vehicle (red vehicle in the illustration),
making a driving profile audit. It should be noted that the car manufacturer learns
from its own vehicles, while the insurer can monitor multiple vehicles from multiple
car manufacturers. We assume that ego-vehicle sends data from the sensors readings
to the car manufacturer. In the meantime, we assume that ego-vehicle sends data
via OTS device to the insurer. We use the nuScenes AV dataset as car manufacturer
data. On the other hand, we evaluate the scenes individually in order to generate
risk assessment labels as part of insurer data. It is important to note that we do not
evaluate communication performance in the scenario shown. We assume that the
communication efficiency between vehicles, car manufacturer and insurer does not
pose a problem for the risk assessment based on Vertical Federated Learning (VFL).

Figure 5.1: Federated learning in the context of car manufacturers and insurance
companies sharing data from self-driving vehicles.

The use of VFL for risk assessment can bring several advantages within the
context of mobility safety:

• Self-driving vehicles can be individually evaluated to make them smarter and
make better decisions.
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• Car manufacturers and insurers can have a different way/perspective/metrics
to score AV driving software, but they don’t share data as they are different
companies, and they could work with different competitors.

• Both the car manufacturers and the insurance company would be glad to im-
prove the driving model, though (better driving experience and fewer claims to
pay). The driving model is supposed to be a reinforcement learning model, so
we need data labels along with new data to train the model with bonus/penalty
rewards. We assume that the label corresponds to a level of risk (i.e., 5 for
less risky and 0 for quite risky vehicles).

• Car manufacturers and insurers create a partner ecosystem to work together
towards self-driving model improvement and claim reduction. Figure 5.2 sum-
marizes the challenges of the collaborative environment.

Challenges
✓Coexistence with legacy vehicles
✓Reduce claims frequency
✓Improve self-driving model
✓Business-to-Business applications
✓Data exchange between trusted partners

Car manufacturer Insurer

Figure 5.2: Advantages and challenges of data sharing between automakers and
insurance companies.

In this chapter, the aim is to emulate VFL to assess risk based on shared data
between different automakers partners. We demonstrate the VFL results compared
to a traditional centralized ML environment. Thus, we aim to improve the au-
tonomous driving model (whatever it is) putting together data from insurer and car
manufacturer via the FL approach (so that they collaborate without sharing data).
Note that we consider that both insurer and car manufacturer have data with dif-
ferent sets of features, but some overlap exists, for example both may have speed
or positioning data. Moreover, we also assume that both the insurer and the car
manufacturer have their own labels. Ideally, the car manufacturer has data which is
collected from the vehicles, while the insurer has data which is collected from OTS
devices (e.g., an app installed in a smartphone). For this thesis, data from nuScenes
AV dataset is used as car manufacturer data. On the other hand, as we do not have
nuScenes AV data from the insurer, risk assessment data is provided by visually
evaluating the videos of scenes available in the nuScenes AV dataset. The result of
this visual analysis is used as data by the insurer in the collaborative environment.
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5.1 Federated Learning

One ML approach that implements data privacy-preservation techniques is Fed-
erated Learning (FL). FL allows building ML models based on datasets that are
distributed across multiple devices or sites, while preventing data leakage [7, 95].
Furthermore, a goal of FL is to take advantage of data silos, where data is collected
and located at individuals (e.g., IoT devices, OTS devices, among others), or or-
ganizations (e.g., hospitals, car manufacturers, financial entities, among others), in
order to improve learning processes to become more accurate at predicting outcomes
process. Besides that, federated learning seeks to maximize computational power in
order to share computed results, rather than raw data, improving communication
efficiency [95].

Federated learning allows data to be manipulated in a distributed way among
different users, overlapping datasets with different features. This overlapping can
occur Horizontally (HFL) or Vertically (VFL). HFL assumes that samples of parties
contain distributed data and labels. On the other hand, VFL analyzes data and
labels with different features, i.e., labels are not contained in the data, but their
significance is relevant in the model analysis. Figure 5.3 shows the vertical federated
learning for a two-party scenario. Two parties A and B collect data samples from a
common user. Data from A and B can be overlapped or simply contain partitioned
data features or labels. Data user in A and B can be aligned, either by a common
ID or by time intervals, however, they contain different features. Party A can learn
from party B’s data and vice versa. Moreover, parties can learn jointly.

Features

Labels

Data from party A

Data from party B

S
am

p
le

s

Figure 5.3: Illustration of VFL [7]. Data from party A is highlighted with blue
color; data from party B is highlighted with yellow color. Dashed lines delimit the
samples in which A and B are taken to train a federated learning process.
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In general, VFL system defines the following considerations:

Xi ̸= Xj,Yi ̸= Yj, Ii = Ij ∀ Di,Dj, i ̸= j,

where X and Y denote the feature space and the label space, respectively. I is the
sample ID space, and matrix D represents data held by different parties [7]. It is
important to note that the identity and the status of each party in VFL is the same,
allowing each party in the federation being helped by the learning process.

5.1.1 Vertical Federated Learning

The purpose of VFL is to generate a learning environment where different parties
with different interests, with different feature spaces, but share a pool of common
users, can take advantage of the heterogeneity of their features to improve their
local learning models without raw data exchange or expose private data. Therefore,
we aim to use VFL to establish a partner ecosystem to improve the self-driving
model through risk assessment analysis. To implement VFL in this ecosystem, we
use AV datasets that contain raw and semantic data from the vehicle while it is
on the road. For instance, exploring the partner’s ecosystem allows the effective
participation of different entities, from Original Equipment Manufacturer (OEMs),
communication providers to government entities. Thus, it is possible to evolve to-
wards new learning models that allow coexistence and evolution between current
driving profile monitoring models, preserving privacy and data security.

5.2 Related Work

Vertical federated learning is a machine learning technique in which it is pos-
sible to share data that have similar information, without being exactly the same,
and that aims to predict predetermined activity patterns [7, 28]. Moreover, VFL
enables to build high-performance models shared along multiple parties considering
concerns regarding user privacy and data integrity, creating a trusted environment
that conforms to the legislative requirements for data protection [91]. VFL has been
explored by researchers and industry in different business activities, such as finance,
and healthcare.

Webank is a Chinese bank that together with its AI division become developing
FL-based solutions. Webank [96] developed FedRiskCtrl, a framework for assessing
the financial risk in loans for small and medium-sized companies. This model defines
two parties: an invoice agency A, which has data associated with each company’s
invoices; a bank, which has credit-related data and label features of each company.
To align company data, the framework uses Private Set Intersection (PSI) or secure
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entity alignment. The framework is based on Federated AI Technology Enabler
(FATE) [97], a framework that implements secure computation protocols based on
homomorphic encryption and Multi-Party Computation (MPC). The authors ob-
served that the model built with FL performs significantly better than the model
built only with the centralized dataset from the bank data.

Another tool developed by Webank is FedVision [96], an edge computing applica-
tion that aims to detect objects to train risk event recognition in video surveillance.
In FedVision, an initial object detection model is sent from the FL server to surveil-
lance companies that use local stored data to train the object detection model. At
the end, each surveillance company sends encrypted parameters of the local model
to the FL server to feed a global model. The process is repetitive until a criterion
consensus is reached. Despite the VFL having a better performance than the cen-
tralized model, the frameworks are susceptible to biased model by imbalanced data
samples, and also by unequal distributions.

Cheng et al. [98] proposed a system called SecureBoost, in which all participants
combine user features to obtain an improved accuracy in the prediction model.
SecureBoost is implemented over the FATE framework. The authors claim that
the system is lossless compared to the centralized model. The model defines two
parties: an active party, which is the data provider, who holds both a data matrix
and the labels. Data provider is defined as a server; and a passive party, which
has only the data matrix. Passive parties are clients in the model. The model is
tested with two credit public datasets: the first one, a credit scoring dataset based
on loans1; the second one contains information on default payments, credit data,
among others, of credit card clients in Taiwan2. The goal is to analyze financial
problems and payments on time. The authors conclude that theoretically proof
shows that the proposed framework is as accurate as non-federated gradient tree
boosting counterparts.

Another area where VFL has been explored is healthcare. Duverle et al. [99]
presents a statistical analysis model based on logistic regression to analyze hyper-
tension by smoking status in vertical data partition. The model uses the Paillier
cryptosystem for privacy-preserving framework. The authors use data collected
from a cohort study on genetic variants linked to chronic kidney disease. The ex-
periment analyze data from 4,257 patients clinically assessed with hypertension. In
the clinical data, the authors selected smoking status. The authors conclude that
the method is not only as secure and accurate as existing methods, but provides a
marked improvement in performance when compare with other models.

Chen et al. [100] proposes a Vertical Asynchronous Federated Learning (VALF)
1https://www.kaggle.com/competitions/GiveMeSomeCredit/
2https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
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method to perform stochastic gradient algorithms without requiring coordination
between clients. For privacy-preserving data, the authors use a local perturbation
embedding technique. Numerical tests were carried out to test VAFL for logistic
regression using a disease dataset, and VAFL for deep learning using the Medi-
cal Information Mart for Intensive Care-III (MIMIC-III) [101] dataset. The result
shows that VAFL learns a federated model with accuracy comparable to that of the
centralized model, and requires less time relative to the synchronous FL algorithm.

Budrionis et al. [102] benchmarks the PySyft framework in medical data [103].
The authors deployed a realistic scenario to compare the performance in terms of
execution time. Three scenarios were tested: (i) Data: the number of nodes in
the network was fixed, while the data as uniformly increased and distributed across
the nodes; (ii) Nodes: the number of nodes was increased from 1 to 128, while
the amount of data was fixed to maximum; and (iii) Distribution: the number of
nodes constant (n = 32) and the amount of data was fixed to the maximum. The
benchmark architecture uses a model-centric setup, where a coordinating node host
the global model, while computational nodes download the model and train it on
local datasets. The experiment setup uses the MIMIC-III dataset. The framework’s
performance shows that predictions of the federated model are equivalent to those
of the centralized model. Nonetheless, federated model training and inference took
between 9 and 40 times longer than equivalent tasks in a centralized model.

In the vehicular environment, an advantage with self-driving vehicles is the ubiq-
uity of sensors embedded in AVs, and therefore, an expectation that there will be a
greater volume of data and training ML models.

Peng et al. [104] propose the Blockchain-based Federated Learning Pool (BFLP)
framework solution that uses blockchain for privacy-preserving and VFL to deter-
mine complex road conditions and accident-prone areas. Depending on the applica-
tion, the authors propose a federated learning pool, a module carried in servers with
the capacity to select the most suitable FL method according to the data sources.
Moreover, the authors propose a lightweight encryption algorithm to be executed in
the local model. Specifically, in VFL, the authors consider data from vehicle sensing
and transport department data to analyze complex road conditions and accident-
prone areas. FL implementation in BFLP uses FATE framework. BFLP was tested
with simulated data from TOSSIM simulator. Results about road conditions and
avoiding obstacles show that success rates with BFLP was higher accuracy than
centralized model based on logistic regression model.

Yuan et al. [105] presents Federated Deep Learning based on the Spatial Tem-
poral Long and Short-Term Networks (FedSTN), a traffic flow prediction model to
improve mobility in smart cities. FedSTN uses collected vehicle trajectory data to
predict future road traffic stored in edge computer servers. The authors use VFL to
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design a layer of their model called the Federated Graph Attention (FedGAT), which
allows capturing short-term temporal information without loss of spatial information
among areas and sharing these parameters based on VFL. Specifically, in addition
to traffic flow prediction, FedGAT allows learning traffic flow from meteorological
data acquired by external sensors. The authors employed two datasets: TaxiNYC
and TaxiBJ. FedSTN is compared with other baselines, and the authors conclude
that FedSTN has higher traffic flow prediction accuracy than the centralized model.

Wang et al. [106] implements vertical federated factorization machine algorithm
by homomorphic encryption to realize EV charging point recommendation. The au-
thors use data from the historical charging point data, and at the same time generate
labels from the historical charging orders. The goal is to obtain recommendations
for electric vehicle charging services. Data from two parties are used in the VFL
environment: charge point data, and vehicle data. The architecture also implements
a coordinator node or third-party platform to manage the encrypted features. The
authors concluded that the federated model is almost lossless with respect to the
centralized model.

This thesis evaluates the use of VFL for risk assessment based on data sharing
between car manufacturers and insurers. Thus, it is possible that several partners
can share samples in similar time intervals. This message exchange allows partners
to access a part of a learning model at the same time that they can run a training
process for the segments they want to analyze. For that, we aim to emulate the
VFL techniques at the edge using data from self-driving vehicles as data owner, and
we define labels from the insurer as data scientist to learn and detect risk from data
owner with privacy preservation.

5.3 Architecture for Risk Assessment based on VFL

The architecture used to describe the VFL system used in this thesis is shown in
Figure 5.4. The model employed is peer-to-peer, i.e., without a coordinator. Thus,
organizations A and B communicate directly without the help of a third party. For
purposes of this thesis, we define organization A as the car manufacturer, and orga-
nization B as the insurer. We assume the car manufacturer is honest; meanwhile, the
insurer is honest-but-curious [107]. Honest-but-curious parties indicate that parties
involved in the federated environment try to deduce as much information as possible
from the data provided by the partners, without disturbing them while the federated
environment is active. Furthermore, it is assumed that the federated environment
is secure and reliable, while the communication is lossless and unaltered while ex-
changing intermediate results. In this scenario, the car manufacturer provides its
data in order to allow the insurer to improve its risk assessment model.
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Figure 5.4: Proposed architecture for VFL.

5.3.1 Problem Statement

Consider a set of n automotive industries: A := a1, a2, ..., an. For example, a1
may be a car manufacturer and a2 an insurance company. Both a1 and a2 can learn in
a collaborative scenario through a distributed machine learning model with a vertical
setting. In the problem definition, we assumed that a1 shares a complete dataset
X ∈ R containing m samples, and that a2 contains a label dataset Y ∈ R. Each
label is associated with a unique set of features. Thus, we assume that a customer is
affiliated with each organization, and these hold different data from the customer’s
information. Thus, a new dataset Xa1 |Ya2 is created, being that it does not exist in
one place, and each an in the network maintains data privacy through encryption
techniques. This work considers a passive partner (a1) that makes available the
self-driving vehicle data, and an active partner (a2) that analyzes data from a1 to
learn about mobility safety.
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5.3.2 The Syft Framework

Experiments were performed using Syft [108] version 0.5.0. Syft is an Open-
Mined3 open source federated learning framework developed for building secure and
scalable ML models [108, 109]. Syft provides diverse methods for privacy preserva-
tion like federated learning with differential privacy, encrypted computation through
Multi-Party Computation (MPC) and homomorphic encryption. Moreover, Syft is
supported on PyTorch [110], an open source machine learning framework, and com-
patible with other tensor libraries like Tensorflow, scikit-learn, among others [108].
A goal of Syft is to provide an approach where parties can perform models with
data encrypted. For that, Syft uses Duet, a framework focused on providing coordi-
nation functionalities between parties in a FL environment. Duet enables parties to
perform data analysis, in addition to data control, for the data owners [108, 111].

Syft’s architecture defines two parties, the Data Owner (DO) and the Data Sci-
entist (DS). The Data Owner is the party who creates a Duet session. Moreover, DO
has control over permissions to share and access information. On the other hand,
the DS is the party that connects to the DO. Once a DS requests a connection, it
requires an input verification key. Signing is done through PyNaCl library, using a
256-bit public keys [108]. Once public key authentication is satisfactory, the socket
connection between DO and DS is established.

Once the connection is established, Duet shares data via serial communication.
Remote computation in Syft uses Abstract Syntax Tree (AST), which is a tool that
allows to map Python modules to support third-party Python libraries, in addition
to generating Agents to resolve issues using credentials, attributes, among others.
Also, all remote computing operations are performed locally and marked as network
pointers. Thus, all operations performed on these network pointers are encapsu-
lated as remote procedure calls performed on the remote machine [108]. Finally,
all interactions and metadata are stored in the DO, this includes all intermedi-
ate data created on remote execution in DS and results from the learning process.
Serial communication on Duet is based on sockets through WebRTC4 library. Com-
munication connection takes place over UDP, and uses Datagram Transport Layer
Security (DTLS) as data integrity mechanism. In addition to integrity, Syft uses the
Multi-Party Computation solution (SyMPC)5 encryption method or homomorphic
encryption through TenSEAL [112].

3https://github.com/OpenMined/PySyft
4https://webrtc.org/
5https://github.com/OpenMined/SyMPC
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5.4 Methodology

Next, the methodology for data preparation is described, and the establishment
of a federated environment to assess risk from the car manufacturer’s data is de-
scribed.

5.4.1 Manual Risk Level Classification

In this section, image sequences from each scene available in the nuScenes AV
dataset are manually (visually) classified. The objective is to generate labels to
define the risk level of the self-driving vehicle from the perception of different eval-
uators. These labels will be used as part of the insurer’s risk assessment model.

First, all images corresponding to the keyframes of each scene are selected to
generate a video sequence of 20 s each scene. In this step, three human evaluators
classify the risk level into three levels: 0 (low_risk), 1 (moderate_risk) and 2 (high_-
risk). Each evaluator was responsible for the manual evaluation of 850 scenes.
In this way, approx. 32,965 frames (98.37%) were evaluated as low_risk events,
approx. 480 frames (1.37%) were evaluated as moderate_risk events, and approx.
87 frames (0.3%) were evaluated as high_risk events. It is important to note that
the evaluators selected for this task have experience in driving, and the evaluation
was carried out for all available video sequences. Figure 5.5 shows some examples
of how each video/sequence of scenes was evaluated, and the labels generated from
the risk perception. “name” is defined as the ID; “driver/no_driver ” defines if the
evaluator is driver or not; and “Time video player ” denotes the second of the video
sequence where is detected some risky event.

Figure 5.5: Example of the manual labeling classification.

We evaluate the confidence degree of the information manually classified by the
judges by means of the Alpha Krippendorff coefficient, which is a statistical evalu-
ation strategy between 0 and 1 used to estimate the agreement degree of the eval-
uators [113]. An agreement degree of 0.73 was observed in our evaluation, which
indicates that there is moderate to strong correlation among the labels suggested
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by the evaluators.

5.4.2 Imbalanced Data

A classic risk assessment problem is data imbalance, since high risk events are
considered unusual cases, as shown in Figures 4.3 and 4.4. This is even more visible
considering in AVs, where risky situations are limited. Moreover, AV coexists with
other road users, not only vehicles, and therefore, it is inferred that more no risk
events are more frequent. This is an expected situation, considering that one of
the self-driving vehicles goals is to increase traffic safety. However, it is inferred
that even though it is safer, it is susceptible to issues due to the randomness of the
vehicular environment.

In a first stage, data resulting from the TTCmo analysis is filtered in a first
stage by TTC events with low_risk below 20 s. Meanwhile, we kept the records for
moderate_risk and high_risk. Figure 5.6 shows the distribution of data filtered by
TTCmo. Therefore, we adopted resampling techniques. These consist of removing
samples from the majority class (undersampling) and/or adding more samples from
the minority class (oversampling) [114]. To reduce misclassification and biases by
unbalancing, we employ data level solutions based on hybrid undersampling and
oversampling techniques to balance the class distribution. First, we undersampling
the class with the most samples. Since potentially important data is not expected
to loss, the majority of data reduction is controlled. Next, after the undersampling
process, oversampling of the minority classes is done to increase the sampling for
training and validation. To apply these techniques, we use imblearn, a Python
toolbox used to tackle the curse of imbalanced datasets in machine learning [115].
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Figure 5.6: Multilabel data distribution.
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We apply an undersampling process based on Heinrich’s pyramid (see Figure 4.3),
a theory of industrial accident prevention which postulates that there is a numerical
relationship between low risk events, with minor or major injuries [116]. In vehicular
environments, this theory can be used to define the relationship between the severity
and frequency of conflict events [4]. A widely used representation is that for every
10 risk events with minor injuries, 1 event with major injuries occurs [117]. We also
use this theory to reduce the sampling of low-risk events. Thus, low_risk events
are defined as “no_risk” or 0, while moderate_risk and high_risk are defined as
“risk” events or 1. Therefore, we assume that risk events correspond to events with
imminent risk of crash, while no_risk events represent low-risk events that may
become risk events. We undersample no_risk class to 10 times the sum of events
detected as risk events, as shown in Figure 5.7(a). Figure 5.7(b) shows the data
distribution for moderate_risk and high_risk events.
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Figure 5.7: Data distribution for multilabel and binary risk classification.

Since the dimensionality of the labels in the selected data can affect the classi-
fication, with an Imbalanced Ratio, IR > 341, we use a binarization technique to
decompose the imbalance problem [118] into binary classification sub-problems [119].
Next, we did an oversampling process using Synthetic Minority Oversampling TEch-
nique (SMOTE)[120]. The goal is to increase the minority class samples by intro-
ducing synthetic samples rather than by over-sampling with replacement.

5.4.3 Preprocessing

The preprocessing stage encompasses the following actions: (i) Data alignment
between Xa1 and Ya2 ; (ii) partitioning Xa1 |Ya2 into training, validation and test
subsets; (iii) imbalanced data treatment; and (iv) data normalization.
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• a1 and a2 are aligned based on the scene_id to ensure data alignment in the
partition process.

• Partitioning data is defined as follows: validation subset uses 10% of the
dataset’s samples and test subset uses 20% of the dataset’s samples. The
remaining 70% is used as training data.

• Undersampling process is applied for the majority class in training, validation
and test subsets to reduce it to 10 times the quantity of samples in the minority
class.

• Oversampling process is applied for the minority class in training and val-
idation subsets to equalize the majority class samples. Test subset is not
oversampled. Figure 5.8 shows the data distribution of training, validation
and test subsets.

Once the oversampling process is performed, the resulting subsets from Xa1

are normalized to obtain the minimum and maximum value of the features between
0 and 1. Normalized values are transformed to tensor format, a vector n-dimensional
that represents all the data contained in the subsets from Xa1 . Next, tensor subsets
will be used in the next Section 5.4.4. Meanwhile, subsets resulting from partitioning
Ya2 were not modified.

Figure 5.8: Data distribution for training, validation and test subsets.

5.4.4 Framework Setup

We use Syft framework, Python version 3.7.13, and PyTorch version 1.8.1.
The experiments were performed on the Google Compute Engine platform (Intel®

Xeon® CPU @ 2.30GHz, 12 GB RAM). Syft allows computing data by implement-
ing encryption methods that enable privacy preservation. A Data Owner (DO) and
Data Scientist (DS) setup model is used. In this approach, we define DO as the
car manufacturer (a1), and DS as the insurer (a2). Figure 5.9 shows the details
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of the model used to VFL implementation. The Syft-based federated environment
happens as follows:

• DO launches the Duet server on its own machine and generates a session ID
and a public key that needs to be shared with DS to join the session. DO
waits until DS sends its public key to start the session.

• DS uses the session ID and public key from DO to join the Duet session.
Next, a DS public key is generated and returned to the DO that prompt the
public key from DS to validate the start of session.

• Once the DS is authenticated, the connection is established and the parties
can start exchanging information.

• DO does all the preprocessing processes in Xa1 .

• DO sends the data to Duet framework, who performs all encryption processes
and pointer identification on this data to preserve privacy and data integrity.
A Pointer is the main handler when interacting with remote data. Next, the
data pointer from DO is sent to DS.

• DS receives the data pointer from DO.

• DS loads Ya2 and data pointers from DO on its own machine.

• DS setups hyperparameters, DNN and manages parallel iteration between
encrypted Xa1 and Ya2 .

• DS trains the model, computes gradients and loss, and updates the model
until obtain a federated model. Intermediate results are shared with DO.

The model used for the experiments is a simple Deep Neural Network (DNN)
model using Pytorch, with the architecture shown in Figure 5.10. The deep learning
network consists of 2 different hidden layers and involves use of ReLU activation
function in the first hidden layer in the network. The model also has Dropout set
to 0.5. The input layer consists of 3 different perceptrons which corresponds to each
of the input feature for the training dataset. The layers of the model are described
below:

• Input layer: For both classifiers we use the following data from a1: vehicle
speed, in [km/h], TTCmo, in [s], and quantity of objects detected. The input
vector of the model is expressed as [TTCmo, vehicle_speed, qty_obj_detected ].
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Figure 5.9: Illustration of the model used for VFL evaluation using the Syft frame-
work.
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Figure 5.10: Neural network for risk prediction.

• Hidden layers: The first hidden layer of the model contains 64 neurons and
is a full connection layer, with rectified linear unit (ReLU) as the activation
function. The second hidden layer contains 16 neurons fully connected.

• Output layer: The output layer corresponds to the prediction of risk and
no_risk events.
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Once the processes described in the methodology were elaborated, the simulation
experiments were performed. The results are described below.

5.5 Results

In this section, we provide the details of our experiments and compare a local
machine learning against vertical federated learning. To evaluate the results, we
consider the same subsets distribution a1 and a2. Table 5.1 shows the parame-
ters defined for both models, as shown in presents these parameters. The learning
rate was set different until we observed a quick drop in the loss function in the
train/validation learning.

Table 5.1: Parameters defined for the learning stage.

Parameter Values

VFL Local

Optimizer Adam Adam
Loss model CrossEntropyLoss CrossEntropyLoss

Learning rate 0.01 0.001
Training epochs 10 10

Batch size 32 32

Figure 5.11 shows that validation subset in both local and VFL models maintain
the same progress of the loss function on the training subset. Indeed, it is possible
noting high accuracy in each model, with approx. 70% for the local model (see
Figure 5.11(a)), and 98% in the VFL model (see Figure 5.11(b)). In fact, the VFL
model converges faster than the local model. Moreover, the findings show that VFL
accuracy is 30% higher than local model accuracy. This may be associated with the
data randomness at the time of preprocessing, as well as in the synthetic sampling
inserted by oversampling process. On the other hand, the model training time was
5 s, while VFL training time is approx. 30min. This difference may be associated
with problems in synchronization with the Duet socket due to communication delays
in the gradient aggregation process, intermediate exchange and model updates.

The classification results for the test subset in the local model and VFL can
be analyzed through the confusion matrices in Figure 5.12. The values are within
the range of 0 to 100%. The higher the color tone, the greater the number of
classifications belonging to the label. In the local model, it is possible to observe
that 100% of the “risk ” events were detected, while 91.92% of “no_risk ” events
were detected, and 8.08% were classified as false negatives (FN). In the VFL model,
94.74% of the “risk ” events were detected, and 5.26% were classified as false positives
(FP); on the other hand, 100% of the “no_risk ” events were detected.
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(a) Local model.

(b) VFL model.

Figure 5.11: Loss function vs. accuracy for train-validation analysis.

(a) Local model. (b) VFL model.

Figure 5.12: Confusion matrix for test analysis.

Besides Accuracy, we also measure other metrics, such as Precision, Recall and
F1-Score. The accuracy of a method is the ratio of the total of correctly sorted
samples (True Positives (TP) + True Negatives (TN)) divided by the total number of
samples. The precision is the ratio between the number of samples correctly classified
for the positive class (TP), divided by the total of samples classified for this class
(TP + FP). The Recall, also known as sensitivity or true positive rate, is the ratio of
the number of correctly classified samples to the positive class (TP), divided by the
total of samples belonging to this class (TP+ FN). F1-score is the harmonic mean of
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the precision with the sensitivity. Table 5.2 and 5.3 show the classification reports
of the local model and VFL. By observing the values of Accuracy and Precision, it
is possible to see the good performance of the models in the classification of events.
As shown in Figure 5.12, both models showed high accuracy in all classes, with a
low rate of false positives. Moreover, both models achieve high precision values,
almost 100%. Altogether, the overall accuracy for the local model is 0.927, while
the VFL model is 0.995. Nonetheless, recall and F1-score in local model gets low
values, seems to underfitting. This behavior can be influenced by the dataset skewed
(imbalanced data), as well as by the undersampling/oversampling methods adopted
in Section 5.4.2, since data nature do not allow observing a trend to detect risk
events, e.g., risk events do not always occur at high speeds. In fact, since there is no
clear trend, the randomness inserted in the oversampling process can result in data
synthetic sampling that impacts on the learning process.

Table 5.2: Evaluation metrics for local model.
Precision Recall F1-Score Accuracy

no_risk 1 0.919 1 0.927
risk 1 0.125 0.222

Table 5.3: Evaluation metrics for VFL model.
Precision Recall F1-Score Accuracy

no_risk 1 0.994 0.997 0.995
risk 0.947 1 0.973

The experiments presented in this chapter illustrate the initial results of com-
paring ML models trained in local and federated manners. Models are evaluated
in terms of predictive performance, training and inference duration. The effects
of data amount, imbalanced data are studied, giving an indication that the model
performance and system scalability depends on data distribution. Both local and
VFL models converged appropriately, with similar trends in the loss function and
accuracy. However, it was possible to observe that the VFL model converged faster
both the loss function and the accuracy, showing a better performance than the lo-
cal model. Minimal differences are observed in models performance when measured
overall accuracy. This is also observed that there are minimal differences in no_risk
events with precision, recall, and F1-score metrics; nonetheless, there are differences
between local and VFL results for the risk events perception. It can be an issue
for the perception of risk events since they are limited. Although the accuracy is
maximum (1), the Recall may indicate that there may be False Negatives that can
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interfere with the perception of risk events. This trend is not observed in the VFL
model, which indicates that VFL can deliver accurate results from the analysis from
other parties data.

These results coincide with those observed in Section 5.2, where it was observed
that in common, all VFL models converged with a similar performance of the cen-
tralized models. On the other hand, experiments with VFL were more extensive
with PySyft, as reported in Budrionis et al. [102], which indicates that the frame-
work can extend the learning time up to 40 times longer; it was possible to observe
this behavior.

The results obtained also have some limitations. Due to the randomness of
vehicular environment, in addition to the data uniformity in the nuScenes AV data,
it can prevent to correctly learn the risk through VFL. Furthermore, the use of
synthetic samples can generate random trends that may not correctly represent the
original trend of the data. In fact, oversampled data distribution can insert wrong
data or repetitive data in VFL, resulting in False Negative detection. In this sense, a
solution could be to filter only the time section where some type of risk was detected,
in order to avoid imbalanced data.

5.6 Remarks

Risk assessment from data analysis in federated learning environments promises
to be a functional solution that can help designing shared models which require
privacy preservation and data integrity. In addition, it is a promising solution to
integrate data silos and reduce data fragmentation due to isolated data. As noted
in this chapter, collaboration between organizations can allow higher interaction
between partners who share user groups in industrial sectors.

• Although there are some frameworks that work for specific tasks, there is still
no framework or base toolbox for developing VFL-based solutions. This can
be a limiting factor for other participants to be willing to share their data in
federated environments, since there is no common framework for all potential
participants.

• Since data cannot be inspected, there is a general lack of knowledge about
how to manipulate the data. VFL processes can be difficult due to data
distribution, specifically how it will be handled. That is, definition of hyper-
parameters, optimizers, type of neural network and number of neurons, among
others, which can take a long time to understand how the data distribution of
participants is arranged in the federated environment.
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• As observed in the experiments carried out, VFL can be susceptible to com-
munication delays in the gradient aggregation process, intermediate exchange
and model updates. This can be reflected in delays, high computational cost,
and slow data transfers.
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Chapter 6

Conclusions

The development of this thesis demanded an interdisciplinary effort which ex-
plores the risk assessment in traffic risk events. We focus on self-driving vehicles
since it is a challenging field for companies offering driver-based insurance services.
We start by giving an overview of sensors in intelligent vehicles, exploring the most
used sensors in OTS devices and exteroceptive sensors. It is important to note that
sensors play an essential role in self-driving vehicles since they allow monitoring
surroundings, detect oncoming obstacles and plan routes safely. Therefore, from
the performance of these and other functionalities in the vehicle, it is possible to
determine the reliability and liability of each sensor installed in the self-driving ve-
hicle or in the OTS device. Furthermore, we note that depending on the complexity
of the vehicle’s functionalities, sensor fusion techniques are required to improve the
accuracy and precision of vehicle telemetry in order to improve sensing performance.
These analyses were reported in [24].

From sensor analysis, we carried out an analysis of road users and infrastructure
of the environment around the self-driving vehicle. In a first stage, we analyzed pub-
lic AV datasets with available exteroceptive sensor readings [1, 2]. These datasets
contain raw data from the sensor readings, as well as semantic data from the detec-
tion of objects, categorization, attributes and detected object metrics stand out.

Data from the AVs are used to analyze, in offline mode, traffic risk events based
on Surrogate Safety Measures (SSMs). We established a monitoring layer to cal-
culate SSMs for all objects detected and categorized in the AV datasets. However,
many of the detected objects, despite interacting with the AV, may not represent a
risk for it. Thus, we formulated the implementation of TTC with motion orientation
(TTCmo). We use data from the bounding boxes generated for each detected object.
We calculate which of these objects are in the course of the AV as they interact. Fur-
thermore, the velocity of the ego-vehicle and the object are calculated about the axis
of displacement of the ego-vehicle and its yaw orientation. Meanwhile, the distance
is calculated to the closest potential impact point between the ego-vehicle and the
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object. In this way it is possible to explain interactions in car-following, head-on and
intersection scenarios. This analysis is important for the explainability of traffic risk
events, in addition to clarifying which of all the detected objects represent a real risk
for the ego-vehicle. The results show that motion orientation analysis optimizes the
regular TTC calculation by evaluating those objects interacting with the ego-vehicle
on the path of motion. Likewise, in our analysis, it is also possible to determine the
first point of potential impact of the ego-vehicle. Furthermore, risk assessment by
analyzing other road users allows understanding what the decision pattern is like
and can help to intuit what are the priorities of the autonomous system controller.

Another strategy to analyze risk assessment is data sharing. It is becoming a
relevant topic to analyze various factors in traffic. This is an area that requires
continuous development of machine learning and artificial intelligence techniques in
order to obtain the maximum amount of information from the available data with a
low computational cost. In this sense, we implemented the vertical federated learning
technique, which is a method to create collaborative environments between different
entities, allowing data sharing between trusted partners, preserving privacy and data
integrity. However, due to the learning time, it was possible to observe that there is
an overhead that impacts the model performance in terms of time and computational
cost, which we associate with the encryption and privacy methods implemented in
the framework used. Therefore, we propose a neural network as simple as possible
to try to improve the processing overhead of the framework. We observed that
a simple neural network becomes practical for the type of data to be analyzed,
managing to converge to the detection of risk events from the alignment of shared
features in different automakers. Our results show that VFL model classification
was successful for risk event detection, showing a higher precision and accuracy in
the classification.

6.1 Future Work

In the vehicular environment, it is possible to observe that it is a promising
solution since the generation of data in self-driving vehicles is exponential, and it is
expected the analysis of this data will contribute to the improvement of road safety,
since it can be collaborated globally with other vehicles and computing centers.
Nonetheless, some challenges remain open:

• Liability: Self-driving vehicles have a set of sensors that aim to emulate a
sense of perception similar to the human. In this respect, self-driving vehicles
trust the set of sensors and will execute its processes from the readings of its
sensors. Therefore, sensor’s liability requires continued monitoring. Moreover,
this is also directly linked to the sensing of the vehicle’s mechanics.
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• Perception data: Misclassifying data can be crucial in self-driving vehicles.
This can happen because it is assumed that AV operation may not be perfect
due to limitations associated with the performance of learning algorithms exe-
cuted by the autonomous driving system. In this sense, federated learning can
enrich the information of the autonomous driving system from the evaluation
of third-party decision-making to improve the vehicles, passengers and other
road users safety.

• Data standardization: Still under development, self-driving vehicles and
manufacturers do not have a standard defined for semantic data analysis. Data
heterogeneity can make the autonomous driving system able to live with the
randomness of the vehicular environment, however, it requires stable and ro-
bust approaches to ensure the safety of drivers in each and every situation. In
this sense, there are several AV datasets [24], but it was observed that there
is no standard in the data categorization, which can be an issue to assess the
safety of both vehicles and passengers as well as other road users. Therefore,
it is necessary to standardize the categorization of data from objects detected
in AVs.

• Driving profiling vs. Experience: Self-driving vehicles are still a young
industry, so it is possible to assume that they need to mature in terms of driv-
ing/learning time [121]. For example, Tesla has millions of miles driven, which
allows it to be one of the few manufacturers to offer autonomy services up to
level 4 [9]. Nevertheless, there is no collaborative environment in which other
manufacturers can learn from Tesla’s experience in order to converge towards
a highly autonomous vehicle environment. In this sense, although there is no
minimum experience/learning threshold, self-driving vehicles require continu-
ous monitoring of their processes. In this regard, collaborative environments
based on federated learning could be a solution, since most of these AVs have
similar data acquisition and processing methodologies for their perception and
action processes. In addition, it is important noting that the sensing is not
unique to the vehicle, it also contains information on the surroundings and also
on the infrastructure monitoring, which can enrich experience in new AVs.

• Learning from human driving: Coexistence of the self-driving vehicle with
vehicles with a human driver is another challenging environment within the
risk assessment in self-driving vehicles. These vehicles can be used to monitor
human driver behaviors and share this data with partner organizations inter-
ested in controlling their vehicles, as well as insurance. Thus, well-informed
driving behaviors can make the vehicle environment more intelligent to im-
prove the road safety of human driver vehicles.
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[94] KONEČNỲ, J., MCMAHAN, H. B., RAMAGE, D., et al. “Federated opti-
mization: Distributed machine learning for on-device intelligence”, arXiv
preprint arXiv:1610.02527, 2016.

[95] WAHAB, O. A., MOURAD, A., OTROK, H., et al. “Federated Machine Learn-
ing: Survey, Multi-Level Classification, Desirable Criteria and Future Di-
rections in Communication and Networking Systems”, IEEE Commun.
Surv. Tutorials, v. 23, n. 2, pp. 1342–1397, 2021.

[96] CHENG, Y., LIU, Y., CHEN, T., et al. “Federated Learning for Privacy-
Preserving AI”, Commun. ACM, v. 63, n. 12, pp. 33–36, nov 2020.

[97] LIU, Y., FAN, T., CHEN, T., et al. “FATE: An Industrial Grade Platform
for Collaborative Learning With Data Protection”, J. Mach. Learn. Res.,
v. 22, n. 226, pp. 1–6, 2021.

[98] CHENG, K., FAN, T., JIN, Y., et al. “SecureBoost: A Lossless Federated
Learning Framework”, IEEE Intell. Syst., v. 36, n. 6, pp. 87–98, 2021.

[99] DUVERLE, D. A., KAWASAKI, S., YAMADA, Y., et al. “Privacy-Preserving
Statistical Analysis by Exact Logistic Regression”. In: IEEE Secur. Pri-
vacy Workshops, pp. 7–16, 2015.

[100] CHEN, T., JIN, X., SUN, Y., et al. “VAFL: a method of vertical asynchronous
federated learning”, arXiv preprint arXiv:2007.06081, 2020.

[101] JOHNSON, A. E., POLLARD, T. J., SHEN, L., et al. “MIMIC-III, a freely
accessible critical care database”, Sci. Data, v. 3, n. 1, pp. 1–9, 2016.

[102] BUDRIONIS, A., MIARA, M., MIARA, P., et al. “Benchmarking PySyft Fed-
erated Learning Framework on MIMIC-III Dataset”, IEEE Access, v. 9,
pp. 116869–116878, 2021.

[103] ZILLER, A., TRASK, A., LOPARDO, A., et al. “PySyft: A Library for Easy
Federated Learning”. In: Federated Learning Systems: Towards Next-
Generation AI, pp. 111–139, Cham, Springer International Publishing,
2021.

[104] PENG, Y., CHEN, Z., CHEN, Z., et al. “BFLP: An adaptive federated learning
framework for internet of vehicles”, Mobile Inf. Syst., v. 2021, 2021.

[105] YUAN, X., CHEN, J., YANG, J., et al. “FedSTN: Graph Representation
Driven Federated Learning for Edge Computing Enabled Urban Traffic
Flow Prediction”, IEEE Trans. Intell Transport. Syst., pp. 1–11, 2022.

105



[106] WANG, X., ZHENG, X., LIANG, X. “Charging Station Recommendation
for Electric Vehicle Based on Federated Learning”, J. Phys. Conf. Ser.,
v. 1792, n. 1, pp. 012055, fev. 2021.

[107] BONAWITZ, K., IVANOV, V., KREUTER, B., et al. “Practical Secure Ag-
gregation for Privacy-Preserving Machine Learning”. In: ACM SIGSAC
Conf. Comput. Commun. Secur., p. 1175–1191, 2017.

[108] HALL, A. J., JAY, M., CEBERE, T., et al. “Syft 0.5: A plat-
form for universally deployable structured transparency”, arXiv preprint
arXiv:2104.12385, 2021.

[109] RYFFEL, T., TRASK, A., DAHL, M., et al. “A generic framework for privacy
preserving deep learning”, arXiv preprint arXiv:1811.04017, 2018.

[110] PASZKE, A., GROSS, S., MASSA, F., et al. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: 33rd Int. Conf. Neural Inf.
Proc. Syst., p. 8026–8037, 2019.

[111] ZILLER, A., TRASK, A., LOPARDO, A., et al. “PySyft: A Library for Easy
Federated Learning”. In: Federated Learning Systems: Towards Next-
Generation AI, pp. 111–139, Cham, Springer International Publishing,
2021.

[112] BENAISSA, A., RETIAT, B., CEBERE, B., et al. “TenSEAL: A library
for encrypted tensor operations using homomorphic encryption”, arXiv
preprint arXiv:2104.03152, 2021.

[113] KRIPPENDORFF, K. “Reliability in content analysis: Some common mis-
conceptions and recommendations”, Hum. Commun. Res., v. 30, n. 3,
pp. 411–433, 2004.

[114] HE, H., YUNQIAN, M. Imbalanced Learning: Foundations, Algorithms, and
Applications. USA, Wiley-IEEE Press, 2013.

[115] LEMAÎTRE, G., NOGUEIRA, F., ARIDAS, C. K. “Imbalanced-learn: A
Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine
Learning”, J. Mach. Learn. Res., v. 18, n. 17, pp. 1–5, 2017.

[116] HEINRICH, H. Industrial Accident Prevention, A Scientific Approach. USA,
McGraw-Hill, 1931.

[117] BIRD, F., GERMAIN, G. Practical Loss Control Leadership. USA, Interna-
tional Loss Control Institute, 1985.

106



[118] HE, H., GARCIA, E. A. “Learning from Imbalanced Data”, IEEE Trans.
Knowl. Data Eng., v. 21, n. 9, pp. 1263–1284, 2009.

[119] FERNÁNDEZ, A., LÓPEZ, V., GALAR, M., et al. “Analysing the classifi-
cation of imbalanced data-sets with multiple classes: Binarization tech-
niques and ad-hoc approaches”, Knowl.-Based Syst., v. 42, pp. 97–110,
2013.

[120] CHAWLA, N. V., BOWYER, K. W., HALL, L. O., et al. “SMOTE: synthetic
minority over-sampling technique”, J. Artif. Intell. Res., v. 16, pp. 321–
357, 2002.

[121] KALRA, N., PADDOCK, S. M. Driving to Safety: How Many Miles of Driving
Would It Take to Demonstrate Autonomous Vehicle Reliability? Santa
Monica, CA, RAND Corporation, 2016.

107


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Sensors in Intelligent Vehicles
	Risk Assessment
	Federated Learning
	Objectives
	Organization

	Sensors in Intelligent Vehicles
	Background
	Proprioceptive vs. Exteroceptive Sensors
	Active vs. passive sensors

	OTS Devices
	OBD-II dongles and CAN bus readers
	Black-box and windshield devices
	Dashcams
	Smartphones
	Wearable devices

	Exteroceptive sensors in vehicle applications
	Global Navigation Satellite System (GNSS)
	Magnetometer
	Microphone
	Biometric sensors
	Ultrasonic sensor
	Radar
	LiDAR
	Camera

	Remarks
	Challenges

	Self-Driving Vehicle Datasets
	Datasets overview
	Preliminary Analysis
	Remarks

	Risk Assessment Based on Surrogate Safety Measures
	Road Safety Metrics
	Surrogate Safety Measures
	Direct metrics
	Context-aware metrics

	Time-to-Collision (TTC)
	Related work

	Time-to-Collision with Motion Orientation
	Data Preparation

	TTCmo Calculation from Camera Images
	Performance Evaluation
	Vehicle Tracking
	Speed Limit Analysis
	TTCmo Evaluation

	Remarks

	Privacy-Preserving Collaboration for Mobility Safety
	Federated Learning
	Vertical Federated Learning

	Related Work
	Architecture for Risk Assessment based on VFL
	Problem Statement
	The Syft Framework

	Methodology
	Manual Risk Level Classification
	Imbalanced Data
	Preprocessing
	Framework Setup

	Results
	Remarks

	Conclusions
	Future Work

	References

