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Os dispositivos da Internet das Coisas (Internet of Things - IoT) sao fundamen-
tais para setores como industria 4.0, assim como casas, cidades e redes inteligentes.
Apesar dos beneficios trazidos pela IoT, a existéncia de bilhoes de dispositivos
com recursos computacionais limitados os torna alvos ideais para botnets. Assim,
varias propostas foram feitas para detectar esse tipo de ataque. No entanto, com-
parar diferentes propostas é dificil, uma vez que aplicam variados métodos de pré-
processamento, usam diferentes algoritmos e hiperparametros e consideram métricas
de avaliacao distintas. Este trabalho implementa e compara o desempenho de oito
arquiteturas de rede neural aplicadas aos conjuntos de dados BoT-IoT e N-BaloT.
A acuréacia, precisao e sensibilidade dos modelos s@o medidas, bem como a perda
durante o treinamento. Posteriormente, a vazao dos modelos em um ambiente de
borda é avaliada usando um dispositivo de borda tipico, o NVIDIA Jetson Nano;
também é implementada a quantizacao pés-treinamento, avaliando-se seu impacto
no desempenho dos modelos. Adicionalmente, este trabalho propde e implementa
o DL-SAFE, um IDS baseado em aprendizado profundo para deteccao de botnet
em tempo real em dispositivos de borda. Esta ferramenta implementa modelos de
classificacao baseados no conjunto de dados BoT-IoT em um cenario real; adicional-
mente, resultados de acuracia, precisao, e sensibilidade sao obtidos para avaliar o
desempenho da ferramenta, demonstrando sua efetividade na deteccao de ataques
de negacao de servigo. Os resultados demonstram que 7 dos 8 modelos avaliados
apresentam precisao e sensibilidade superiores a 98%, enquanto os testes de vazao
demonstram que a maioria dos modelos desenvolvidos apresentam capacidade de
processamento capaz de lidar com os requisitos de rede em um ambiente tipico de
[oT.
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Internet of Things devices (IoT) are fundamental for sectors such as Industry 4.0,
as well as smart homes, cities, and grids. Despite the benefits brought by IoT, the
existence of billions of devices with limited computing resources makes them ideal
targets for botnets. Thus, several proposals have been made to detect this type of
attack. However, comparing different proposals is difficult since they apply varied
preprocessing methods, use different algorithms and hyperparameters, and consider
distinct evaluation metrics. This work implements and compares the performance
of eight neural network architectures applied to the BoT-IoT and N-BaloT datasets.
We measure the accuracy, the precision, and the recall for each model, as well as
the loss during model training. Subsequently, the throughput of the models in
an edge environment is evaluated using a typical edge device, the NVIDIA Jetson
Nano; post-training quantization is also implemented, and its impact on model
performance is evaluated. Additionally, this work proposes and implements DL-
SAFE, a deep learning-based IDS for real-time botnet detection on edge devices.
This tool implements classification models based on the BoT-IoT dataset in a real
scenario; additionally, accuracy, precision, and recall results are obtained to evaluate
the tool’s performance, demonstrating its effectiveness in detecting denial of service
attacks. The results demonstrate that 7 of the 8 evaluated models present precision
and recall greater than 98%, while throughput tests demonstrate that most models

are capable of dealing with the network requirements in a typical IoT environment.
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Chapter 1
Introduction

The Internet of Things (IoT) is a paradigm characterized by a growing number of
simple interconnected devices that can be managed remotely, usually equipped with
lightweight processors [I]. ToT has become increasingly popular, being adopted in
sectors such as energy, water, transportation, health, and housing, among others.
According to IoT Analytics, 29 billion IoT devices will be connected to the Internet
by 2027 [2].

Despite the numerous use cases, the IoT paradigm has brought challenges re-
garding device security. IoT devices often have vulnerabilities such as inadequate
authentication, unnecessarily open ports, and inadequate access control [3]. The
large number of vulnerable devices has resulted in the emergence of botnets capa-
ble of carrying out powerful Distributed Denial of Service (DDoS) attacks, such as
those carried out against Yandex and Microsoft in 2021 [4, 5], and against Google in
2022 [6]. A botnet is a network of compromised computers remotely controlled by a
botmaster via a Command and Control (C&C) server [7]. Botnets can take advan-
tage of vulnerabilities in IoT devices and networks to infect machines and propagate
themselves; infected machines can then be used to execute network attacks.

Simple security practices can be adopted to secure IoT devices. Such practices
include changing default passwords to strong ones and keeping devices up-to-date [§].
However, these measures only act as a first line of defense. Advanced solutions must
be adopted to protect devices against sophisticated attacks and identify when a de-
vice is compromised. Intrusion Detection Systems (IDSs) are an example, which
can be host-based or network-based. Host-based systems run directly on each de-
vice, relying on log analysis to identify suspicious activity. Network-based systems
are deployed at strategic points in the network to analyze the flow of transmitted
data. As IoT devices often have limited memory and processing resources, the im-
plementation of host-based IDSs is generally avoided, as it can interfere with device
performance; thus, IDSs for IoT environments tend to be network-based [9].

Network-based IDSs can use classification models obtained from machine learn-



ing algorithms to reduce both the need for human intervention and the time required
to identify attacks. This process starts by selecting a labeled dataset that contains
both regular traffic data and data from the attacks that need to be detected. In
addition to this selection, the algorithms’ hyperparameters must also be tuned to
optimize their performance. Tuning hyperparameters is usually an expensive and
time-consuming process. Initially, the neural network’s architecture must be de-
fined, consisting of the number, type, and order of the layers, as well as the number
of neurons per layer. In addition to the architecture, hyperparameters such as the
number of epochs, the learning rate, and the batch size must also be considered.
Despite the considerable time spent in the tuning process, differences in the pre-
processing methods and the employed datasets make it difficult to compare models

proposed by different papers.

1.1 Challenges and contributions

Due to the high financial losses commonly caused by cyber attacks [10], threat
detection is currently a prominent research topic. New proposals and studies are
constantly made to deal with the ever-evolving threats and to take advantage of new
technologies. However, one major challenge regarding this research topic is the vari-
ous methodologies employed by different authors; the lack of standardized datasets,
the use of multiple preprocessing techniques, and the selection of varied hyperparam-
eters present significant hurdles in effectively comparing and benchmarking different
proposals. Moreover, although [oT devices are at greater risk of being infected by
botnets, few proposals attempt to offer solutions that work directly at the edge,
primarily due to the inherent limitations imposed by such devices. Relatively new
products such as the NVIDIA Jetson allow GPU utilization on the edge, presenting
an opportunity to apply machine and deep learning methods closer to vulnerable
devices.

Aiming to assist in the construction of future models, this work implements
and evaluates the performance of multiple architectures of neural networks used to
detect botnet attacks in IoT networks. Two datasets are selected to build classi-
fication models, both containing labeled IoT network traffic with botnet attacks:
the BoT-IoT [I] and N-BaloT [9] datasets. A similar preprocessing method is ap-
plied to both datasets, and the same predefined set of hyperparameters is used
during hyperparameter optimization. Then, the throughput of the models that ex-
hibit the best performance for each architecture is also evaluated. Additionally, as
a method of improving model throughput, quantization is applied to convert the
model’s weights from their original 32-bit floating points to 8-bit integers; this al-

lows faster processing speeds at the cost of slightly lower classification accuracy. The



results show that, after optimization, seven of the eight models based on the BoT-
IoT dataset can classify the dataset with accuracy rates greater than 99%. Models
based on the N-BaloT dataset, on the other hand, offer lower accuracy, with a single
model surpassing 85% accuracy. Through throughput tests, we also observe that,
although each model’s performance varies according to the implemented architec-
ture, most models are capable of supporting the average network usage of an IoT
device, which varies from 10 to 3,000 packets per second [11]. We also propose and
implement DL-SAFE (Deep Learning-based SAFeguard for Edge botnet detection),
an IDS for real-time traffic analysis and classification in edge environments. The
BoT-IoT dataset is selected to build the tool’s classification models, given that its
models presented a better performance in the evaluated metrics. In our proposed
tool, Open ArgusE] is used to convert, in real-time, network traffic into flows. The
Pandad?] library extracts relevant features from the converted network flows. The
PyTorch framework performs flow classification. Furthermore, our tool allows for
building and testing neural network architectures using three types of layers: mul-
tilayer perceptron (MLP), recurrent neural network (RNN), and long short-term
memory (LSTM). The training implements hyperparameter tuning using the grid
search method, and 8-bit post-training quantization (PTQ) is available as an option
to improve model throughput. DL-SAFE’s results show that the tool can identify
at least two types of distributed denial of service (DDoS) attacks with greater than
98% accuracy.

This work’s main contributions can be summarized as follows:

e Evaluation of Multiple Neural Network Architectures: This work im-
plements and evaluates various neural network architectures for the detection
of botnet attacks in IoT networks using two botnet datasets. This evaluation
provides insights into multiple models, given that differences in the employed
dataset and set of hyperparameters may lead to a substantial impact on model
performance. These insights will hopefully allow for more informed choices in

hyperparameter optimization for future botnet detection systems.

e DL-SAFE Implementation: This work introduces and implements DL-
SAFE, an Intrusion Detection System (IDS) for real-time traffic analysis and
classification in edge environments. The tool leverages various open-source
technologies, and its code and documentation can be accessed on Githuhf¥} DL-
SAFE has two main purposes: to allow the construction and testing of neural

network architectures and to achieve accurate results in real-time IoT traffic

Thttps://openargus.org/
2https://pandas.pydata.org/
3https://github.com/GTA-UFRJ-team /neuralnetwork-IoT



classification. Additionally, it demonstrates the adaptability of its models to

handle varying IoT network usage, essential for real-world deployment.
Additionally, part of this work also resulted in the following publication:

e Guimaraes, L. C. B., Couto, R. S. - "DL-SAFE: Protecao Baseada em
Aprendizado Profundo para Deteccao de Botnets na Borda", in Salao de Fer-
ramentas do XXIIT Simposio Brasileiro em Seguranga da Informacao e de
Sistemas Computacionais (SBSeg2023), Juiz de Fora, MG, Brazil, September
2022.

1.2 Outline

The remainder of this work is organized as follows. Section [2] presents related works
that either attempt to detect botnets using deep learning methods, or propose real-
time botnet detection tools. Section [3| describes and presents the features of the
two botnet datasets used by this work: the BoT-IoT dataset and the N-BaloT
dataset. Section [4] presents an overview of neural networks, quickly describes the
relevant types of neural network layers employed by this work, and describes the
architectures used for the experiments. Section [5| describes the initial experiments
and presents the models’ performance results, both before and after hyperparam-
eter optimization. Section [6] introduces DL-SAFE, describes its architecture, and
presents its performance results. Finally, Section [7] concludes the work and presents

future work.



Chapter 2

Related Work

Detecting botnet attacks using machine learning techniques is an issue that several
authors have already worked on. Analyzing the works of these authors it is possible
to study the different methods used during their respective research, including data
processing and preprocessing methods, employed performance evaluation metrics,
and chosen datasets. In addition, although multiple papers and surveys evaluate the
classification performance of models on both newly created and previously available
datasets, few recent proposals implement tools that perform this classification in
real-time.

Current solutions for threat detection, including botnet detection, often rely on
classic machine learning techniques [I2HI4]. These works have provided valuable
insights into the classification performance of models considering a wide array of
machine learning methods, like the decision tree, random forest, support vector
machine, and naive Bayes, among others. However, comparatively few works propose
solutions focusing on deep learning approaches; with advances in GPU technology
making the execution of neural networks viable in lower-cost devices, it becomes
essential to evaluate how deep neural networks perform when applied to security
tasks such as identifying malicious network traffic. Therefore, this chapter introduces
papers focusing on botnet detection through deep learning methods, as well as papers

proposing tools for real-time botnet detection.

2.1 Botnet detection using deep learning methods

A work that focuses on botnet detection using deep learning is Ferrag et al.’s sur-
vey of deep learning-based intrusion detection systems [I5]. The survey considers
seven deep learning algorithms and employs them to obtain binary and multiclass
classification models for the BoT-IoT and CSE-CIC-IDS2018 [I6] datasets. The
survey evaluates the performance of a simple architecture for each selected neural

network algorithm, optimizing hyperparameters such as the number of neurons in



the hidden layers and the learning rate. Ferrag et al. show that the IDSs reach up to
98.22% accuracy for the Deep Neural Network (DNN) model and 98.31% accuracy
for the Recurrent Neural Network (RNN) model while maintaining a false positive
rate below 1.15%.

Ferrag and Maglaras propose DeepCoin, an energy exchange framework for smart
grids based on blockchain and deep learning [17]. The proposed framework includes
a deep learning-based scheme that uses an RNN to detect network attacks. The
paper tests the proposed IDS using three datasets: BoT-IoT, CICIDS2017 [18] and
a Power System dataset [19]. Their proposal reaches up to 99.91% accuracy in the
BoT-IoT dataset, maintaining a false positive rate of 1.28%.

Alkandi et al. propose a blockchain-based collaborative IDS framework, designed
to preserve privacy in a cloud environment while making data exchange a simple
and secure process [20]. Attacks are detected using a classification model obtained
from a Bidirectional Long Short-Term Memory (BLSTM) and are evaluated using
the UNSW-NB15 [21] and BoT-IoT datasets. The model achieves 98.91% accuracy
and a false positive rate of less than 1%.

Popoola et al. propose a federated deep learning method for zero-day botnet
attack detection, focusing on protecting the privacy and security of network traffic
data in IoT devices [22]. The authors evaluate multiple architectures by stacking
an increasing number of fully connected layers and testing different values of hidden
neurons for each layer. The architectures are tested using the BoT-IoT and N-
BaloT [9] datasets. The classification model that presents the best performance for
both datasets is built by stacking four fully connected layers with 100 neurons in
each one, obtaining 97.04% average recall and 97.88% average recall for the BoT-IoT
and N-BaloT datasets, respectively.

Popoola et al. also propose SMOTE-DRNN;, a deep learning algorithm for botnet
detection in IoT, with a focus on handling highly imbalanced data [23]. The pro-
posed architecture uses an RNN; the model shows high performance on the BoT-IoT
dataset, achieving 99.50% precision, 99.75% recall, and 99.62% F1-score.

Saurabh et al. propose LBDMIDS, a network-based IDS that uses two types of
LSTM to train predictive models [24]. The paper evaluates the models using the
UNSW-NB15 and BoT-IoT datasets and proposes two architectures: one based on
multiple LSTM layers, and another using a single BLSTM layer. Their evaluation
presents an accuracy of 99.99% for both architectures.

Sualihah et al. propose an IDS designed to detect attacks in IoT environ-
ments [25]. The paper proposes a DNN built by stacking several fully connected
layers with a variable number of neurons, as well as an LSTM-based architecture.
These models are tested solely on the BoT-IoT dataset, and achieve an accuracy of

99.7% for the DNN model and 99.8% for the LSTM model.



Unlike previous works, this work initially implements and evaluates the perfor-
mance of multiple neural network architectures by applying a similar preprocessing
method to both datasets and using the same set of hyperparameters. Evaluating the
performance of various models created with the same datasets using specific hyper-
parameters allows us to study each hyperparameter’s influence, which is useful for
future proposals dealing with similar problems or datasets. Thus, we train classifi-
cation models based on the BoT-IoT and N-BaloT datasets and have each model’s
performance evaluated using the same train-test subsets and metrics such as accu-
racy, precision, recall, and F1-Score. The throughput of the optimized models of
each architecture, as well as their quantized implementations, are also evaluated to
verify their applicability in IoT environments, which are more vulnerable to botnet

attacks.

2.2 Real-time botnet detection

Real-time botnet detection involves the quick identification of botnet activities
within a network in real-life scenarios, allowing for a fast response in cases where
a botnet is detected. Intrusion Detection Systems (IDSs) play a crucial role in
this process by monitoring network traffic and identifying possible botnet activ-
ity. Achieving effective real-time botnet detection demands proposals capable of
handling the dynamic nature of network traffic while maintaining low latency to
promptly respond to emerging threats. It is also essential to take advantage of re-
cent advances in areas such as machine learning and edge computing; employing
new technologies is essential to keep ahead of ever-evolving cyber threats such as
botnets.

While several commercial projects aim to offer security against botnet attacks,
such as SolarWinds’ Security Event Managei] and ManageEngine’s NetFlow Anal-
yselﬂ, little research is done to provide alternative tools to deter the botnet threat.
Among these proposals, Shao et al. poses a strategy to detect botnets using online
adaptive learning and online ensemble learning [26]. Training is implemented us-
ing 2 algorithms: the adaptive Hoeffding tree and the adaptive random forest. As
adaptive training is employed, a central aspect of the work is minimizing the impact
of concept drift on model performance. Concept drift happens when the statistical
properties of a target variable change as time passes; in this instance, it occurs due
to changes in IoT network traffic patterns over time.

Velasco-Mata et al. perform botnet detection using machine learning on high-

speed networks [27]. The authors employ a decision tree and a set of four simple

Thttps:/ /www.solarwinds.com /security-event-manager /use-cases /botnet-detection
https: //www.manageengine.com /products/netflow /



features coupled with a one-second time window, aiming to optimize the proposal’s
performance. There is a focus on identifying the hardware requirements for the
proposal to work in environments with various network requirements.

Yan et al. propose PeerClean, a system to detect P2P botnets in real-time [28].
Their proposal uses flow statistics and network connection behavior, in addition
to a Support Vector Machine (SVM) classifier, to detect possible infected machines.
PeerClean evaluated traffic from three P2P botnets, Sality, Kelihos, and ZeroAccess,
respectively achieving 95.8%, 97.9%, and 100% of accuracy.

Ghafir et al. propose BotDet, a system for real-time detection of botnet Com-
mand and Control (C&C) traffic [29]. The proposed system operates in two stages;
in the first stage, the system uses four detection modules to identify possible botnet
C&C communications. These modules identify known malicious IP addresses, ma-
licious SSL certificates, algorithmically generated domain flux [30], and connections
to a Tor network. In the second stage, a correlation framework is used to reduce the
false positive rate of the detection modules used during the first stage. The proposal
is evaluated using third-party PCAPs, where it achieves a detection rate of 82.3%
and a false positive rate of 13.6%.

As seen in the evaluated works, few works include proposals that run directly
at the edge of the network. Although edge devices may have limited processing
capabilities, proximity to affected devices is essential to mitigate botnet attacks
before significant damage is caused. Thus, another contribution of this work is
the proposal and implementation of DL-SAFE: Deep Learning-based SAFeguard for
Edge botnet detection, an IDS for real-time traffic analysis and classification in edge
environments. In addition to performing flow classification, the tool also allows the
construction and testing of neural network architectures. The results demonstrate

the tool’s effectiveness in detecting DDoS attacks.



Chapter 3

Botnet Datasets

This work employs two datasets containing botnet traffic to create and evaluate
classification models: the BoT-IoT and N-BaloT datasets. This chapter describes
these datasets, focusing on how they are built, their features, and the attack classes

present in each.

3.1 BoT-IoT

One of the datasets selected for the analyses carried out in this work is the BoT-1oT
dataset. The dataset, proposed in 2019, is created by simulating an IoT environment
using virtual machines (VMs). A testbed composed of five simulated IoT devices,
built using the Node-red!|tool, is made to represent a smart home. These IoT devices
are a weather station, a smart fridge, motion-activated lights, a remotely activated
garage door, and a smart thermostat. Kali Linux is used to execute attacks, while
the Ostinatd? tool is used to simulate network traffic between devices. The dataset
was chosen as it is relatively recent and has been used by multiple papers with a
focus on botnet detection[31H34].

As the total data collected exceeds 72 million records, the dataset’s authors
selected a 5% subset of the data to facilitate data analysis, as well as model training
and testing. As such, the BoT-IoT dataset offers both the original data with all
collected records, as well as a subset containing approximately three million records.
Both sets have 29 features extracted using Open Argus, while the subset has 14
additional features later extracted through data analysis techniques. The original 29
features are listed on Table while the additional features are listed on Table [3.2]
The authors also made available a reduced version of the subset containing only the
10 most relevant features, obtained after an analysis of the entropy and correlation

scores of each feature.

Thttps: //nodered.org/
2https://ostinato.org/



Table 3.1: Open Argus features used by BoT-IoT.

Feature Description
pkSeqID Row identifier
stime Record start time
flgs Flow state flags seen in transactions

flgs number

Numerical representation of feature figs

proto

Textual representation of protocols present in network flow

proto number

Numerical representation of feature proto

saddr Source IP address

sport Source port number

daddr Destination IP address

dport Destination port number

pkts Total number of packets in transaction
bytes Total number of bytes in transaction
state Transaction state

state_number

Numerical representation of feature state

Itime Record last timestamp
seq Argus sequence number
dur Record total duration
mean Average duration of aggregated records
stddev Standard deviation of aggregated records
sum Total duration of aggregated records
min Minimum duration of aggregated records
max Maximum duration of aggregated records
spkts Source-to-destination packet count
dpkts Destination-to-source packet count
sbytes Source-to-destination byte count
dbytes Destination-to-source byte count
rate Total packets per second in transaction
srate Source-to-destination packets per second
drate Destination-to-source packets per second

In addition to these features, the dataset also contains three labels in order to

identify whether the recorded traffic is legitimate or malicious, and in the latter’s case
also identify the attack’s category and subcategory. The four attack categories are:
scanning, theft, denial of service (DoS), and distributed denial of service (DDoS).
These categories are then divided further into 10 subcategories: OS Fingerprint-
ing, Service Scan, Keylogging, Data Exfiltration, DoS-TCP, DoS-UDP, DoS-HTTP,
DDoS-TCP, DDoS-UDP, and DDoS-HTTP.
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Table 3.2: Additional features employed by BoT-IoT, extracted based on Argus
data.

Feature Description
TnBPSrcIP Total number of bytes per source IP
TnBPDstIP Total number of bytes per destination IP
TnP_ PSrcIP Total number of packets per source IP
TnP PDstIP Total number of packets per destination IP
TnP _PerProto Total number of packets per protocol
TnP_Per Dport Total number of packets per dport
AR _P_Proto P _SrcIP Average rate per protocol per source IP
AR_P_ Proto P _DstIP Average rate per protocol per destination 1P
N IN Conn_ P SrcIP Total inbound connections per source 1P
N IN Conn P DstIP Total inbound connections per destination IP
AR_P_Proto P _Sport Average rate per protocol per sport
AR _P_Proto_P_Dport Average rate per protocol per dport
Pkts P State P Protocol Number of packets grouped by state
P DestIP and protocol per destination IP
Pkts P State P Protocol Number of packets grouped by state
P SrclIP and protocol per source IP

The authors also evaluate the reliability of the proposed dataset using several
machine learning techniques, such as Support Vector Machine, LSTM, and RNN.
The models obtain, respectively, an accuracy of 100%, 97.9%, and 98.1% for the

evaluated methods when using all 43 features.

3.2 N-BaloT

Another commonly employed botnet dataset used in this work is the N-BaloT
dataset[22], 35, 36]. Unlike BoT-IoT, which uses Kali Linux and other tools to
simulate botnet attacks, N-BaloT uses real network traffic data provided by nine
commercial IoT devices infected with two of the most common IoT-based botnets:
Mirai and BASHLITE. The authors employ five different types of IoT devices, those
being doorbells, thermostats, baby monitors, security cameras, and webcams.

The dataset, made available in 2018, has over 7 million records. The extracted
features are based on 23 central features obtained for five distinct time windows,
resulting in a total of 115 features; these features are presented in Table 3.3 As
seen in the Table, the network flows are aggregated using four distinct methods,
which are: aggregation by the same source MAC and IP addresses, aggregation by

the same source IP, aggregation for the same source and destination IP addresses
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(channel), and aggregation for the same source and destination IP addresses and

port numbers (socket).

Table 3.3: Features used by the N-BaloT dataset.
Feature ‘ Description

MI dir weight Packet count aggregated by MAC and IP
MI dir mean Mean outbound packet size aggregated by MAC and 1P

MI _dir variance | Outbound packet size variance aggregated by MAC and IP

H weight Packet count aggregated by source IP
H mean Mean outbound packet size aggregated by source IP
H variance Outbound packet size variance aggregated by source IP
HH weight Packet count aggregated by channel
HH mean Mean outbound packet size aggregated by channel
HH std Outbound packet size variance aggregated by channel
HH magnitude Root squared sum of the flows’

packet size means aggregated by channel

HH radius Root squared sum of the flows’
packet size variance aggregated by channel

HH covariance Covariance of the flows’ packet size aggregated by channel

HH pcc Pearson correlation coefficient of the flows’
packet size aggregated by channel

HH jit weight Packet count aggregated by channel

HH jit mean Mean time between packet arrivals
HH jit variance Time variance between packet arrivals

HpHp weight Packet count aggregated by socket

HpHp mean Mean outbound packet size aggregated by socket
HpHp_std Outbound packet size variance aggregated by socket

HpHp_ magnitude Root squared sum of the flows’

packet size means aggregated by socket

HpHp radius Root squared sum of the flows’
packet size variance aggregated by socket

HpHp covariance | Covariance of the flows’ packet size aggregated by socket

HpHp_ pcc Pearson correlation coefficient of the flows’
packet size aggregated by socket

The dataset is provided as several CSV files where each filename acts as the
label of the file’s contents. In addition to regular traffic the dataset contains five
attack classes for each botnet, totaling 10 attack classes. The BASHLITE attacks
are Service Scan, Junk (sending spam data), UDP flooding, TCP flooding, and
COMBO (sending spam data and opening a connection to a specific IP and port).
The Mirai attacks are Service Scan, ACK Flooding, SYN Flooding, UDP Flooding,
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and UDPplain Flooding (optimized UDP Flooding aiming for higher packets per
second).

In their work, the authors’ primary objective was to classify data as legitimate
or malicious through anomaly detection techniques, and their experiments achieved

a true positive rate of 100% and a false positive rate of 0.7%.
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Chapter 4
Neural Networks and Architectures

This chapter briefly introduces the concept of neural networks, describes some of
the layer types that can be used when building neural network architectures, and

presents the architectures evaluated during the tests.

4.1 Neural Networks

Neural networks typically operate by transmitting and processing data through in-
terconnected artificial neurons organized in layers. Each neuron in a layer receives
input signals, processes them based on an activation function, and produces an
output signal. These activation functions are non-linear, making neural networks
proficient at modeling non-linear data. These layers are categorized into three types:
input layer, output layer, and hidden layer. The input layer receives the initial data
to be processed, the output layer produces the final results or predictions, and the
hidden layers, if present, perform additional computations [37].

The neural network’s architecture is defined by its sequence of layers; when build-
ing the network, it is necessary to define each layer’s type and number of neurons,
and it is possible to change hyperparameters such as its activation function. Different
layer types excel at different tasks; for instance, convolutional neural networks excel
at performing image recognition. This work considers three types of layers when
building neural network architectures: dense, Recurrent Neural Network (RNN),
and Long Short-Term Memory (LSTM).

4.1.1 Dense layer and Multilayer Perceptron (MLP)

In a dense layer, each of its neurons is connected to every neuron of the preceding
layer. It is one of the fundamental building blocks of neural networks and a crucial
element of the multilayer perceptron.

The MLP is a neural network designed for supervised learning tasks. It is also
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classified as a Feedforward Neural Network (FNN), which means that information
travels from the input layer to the output layer without forming any loops or cycles.
MLP’s training process involves two main steps, known as forward propagation and
backward propagation. During forward propagation, each neuron in a layer receives
inputs from the previous layer, processes them using the activation function, and
generates an output. This process repeats from the input layer up to the output
layer, resulting in the network’s prediction. This prediction is then compared to
the actual output, and their difference is quantified using a loss function. During
backward propagation, this value is propagated backward through the network;
this is done by calculating the derivative of the loss function, taking into account
the network’s weights. The weights are then updated to minimize the loss, using
algorithms such as the stochastic gradient descent. This process continues over
multiple epochs, improving the network’s ability to make accurate predictions.

A significant issue with MLP is the vanishing or exploding gradient problems,
which negatively impact model performance when using deep networks. These
problems occur since, during training, each of the weights of the neural network
is updated according to its gradient. The vanishing gradient problem occurs when
the gradient has an extremely small value, effectively preventing the weight from
changing in future iterations, while the exploding gradient problem occurs when the

gradient value is too big, resulting in exponential growth.

Softmax function

An activation function commonly used on dense layers is the softmax function. This
function is primarily used in the final stage of a neural network to produce output
probabilities for multiclass classification tasks. The layer’s function is to transform
the raw output of the preceding layer into a probability distribution over multiple
classes. It gives higher probabilities to higher-valued inputs while ensuring that the
output values range between 0 and 1. By calculating the probability distribution
for all classes, the function not only identifies the most likely class but also gives
a confidence value associated with each class. This can be used to obtain insights

about how confident the model is in each of its predictions.

4.1.2 Recurrent Neural Network (RININ)

Recurrent Neural Networks (RNNs) are a specialized type of neural network designed
to process sequential or time-dependent data. Unlike the MLP and other FNNs,
RNNs are known for their ability to take into account temporal dependencies through
cyclic connections within the network.

RNN’s main difference compared to the MLP is its ability to retain information

15



from past iterations. In an RNN, each neuron’s output is not only transmitted for-
ward to the next layer but also sent back as an additional input, creating a cycle
in the network. This recurrent feedback allows RNNs to retain information learned
from previous iterations. Compared to MLPs, RNNs excel in tasks that involve se-
quences or patterns where the current output is also influenced by preceding inputs.
This capacity to retain information over time makes RNNs particularly proficient
at modeling sequential data.

Bidirectional Recurrent Neural Networks (BRNNs) are an extension of the tradi-
tional RNN architecture, aiming to take advantage of the sequential data commonly
associated with RNNs. Each BRNN is composed of two RNNs, which receive the
same input data in opposite directions. As the data is organized sequentially, the
first entry of one RNN is the last entry of the other RNN, and vice versa; the results
of the two RNNs are then concatenated to compose the BRNN result. The advan-
tage of BRNNs is their capability to consider context from both directions, offering
a more comprehensive understanding of sequence data. This is beneficial in tasks
where a complete context is essential, like natural language processing.

Similar to MLP, RNNs also suffer the vanishing and exploding gradient problems
when implementing deep architectures. Variations of the RNN were proposed as a
way to address this problem, such as the Gated Recurrent Unit and the Long Short-
Term Memory [3§].

4.1.3 Long Short-Term Memory (LSTM)

LSTM networks are a specialized type of RNN designed to address the vanishing or
exploding gradient problems. LSTMs mitigate these issues by introducing additional
gates that allow them to selectively retain information. Each LSTM unit contains
four essential components: a cell, an input gate, a forget gate, and an output gate.
The cell remembers values over arbitrary time intervals, the input gate controls the
information to be added to the cell, the forget gate decides what information to
discard from the cell, and the output gate filters the information from the cell to
produce the output.

LSTMs can also be combined with the bidirectional architecture used by BRNNS,
resulting in Bidirectional LSTMs (BLSTMs). Similar to BRNNs, BLSTMs process
the input sequence in both forward and backward directions, with each direction
utilizing its own set of memory cells. This analysis of the sequence from both
directions allows BLSTMs to better understand the data’s context, incorporating

information from both past and future time steps.
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4.2 Architectures

The architectures selected for experiments in this work are based on the proposals
presented in Chapter [2, which can be classified according to the type of layer used
as the input layer. Three possible initial layers can be observed: dense, RNN, or
LSTM. All architectures are presented in Table[d.T} dense layers are named Softmax
if they implement the softmax activation function, or MLP when another function is
used. The classification considers the 10 attack classes of the BoT-IoT and N-BaloT
datasets, presented in Chapter [3] plus a normal traffic class, totaling 11 classes for

each dataset.

Table 4.1: Neural network architectures and their source papers.

Name ‘ Architecture ‘ Source ‘
MLP1 MLP (100) — MLP (100) — MLP (100) — Softmax 5
MLP2 | MLP (100) — MLP (100) — MLP (100) — MLP (100) — Softmax | [22]
RNN1 RNN (60) — Softmax [17]
RNN2 RNN (100) — Softmax [15]
RNND | RNN (100) — MLP (100) — MLP (100) — MLP (100) — Softmax | [23]
LSTMI LSTM (32) — LSTM (32) — Softmax 2]
LSTMD | LSTM (128) — LSTM (128) — MLP (32) — MLP (10) — Softmax | [25]
BLSTM1 BLSTM (12) — Softmax [24]

The number of neurons used in each layer is shown between parentheses in Ta-
ble 4.1 while the number of epochs and the batch size used during training are
presented in Table

Table 4.2: Default batch size and number of epochs used for each evaluated archi-
tecture.

’ Name Batch Size ‘ Epochs ‘

MLP1 1000 100
MLP2 128 5
RNN1 100 5
RNN2 1000 100
RNND 64 10
LSTM1 32 5
LSTMD 128 100
BLSTM1 32 5

Two architectures composed of multiple dense layers in sequence with 100 neu-
rons per layer are employed, with the first stacking three dense layers and the second
stacking four dense layers. As both implement the MLP architecture, these are la-
beled MLP1 and MLP2. Three architectures starting with an RNN layer are also
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considered. The first two are short architectures, composed of a single RNN layer
before the output layer; these are labeled RNN1 and RNN2 and have, respectively,
60 and 100 neurons in the hidden layer. The last architecture, RNND, differs from
both previous architectures in that it implements three dense layers after the RNN
layer, with 100 neurons in each layer. Of the three architectures using LSTM, two
start by stacking two LSTM layers. LSTMI1 uses 32 neurons in both layers, while
LSTMD uses 128 neurons; similar to RNND, LSTMD also implements dense layers
before the output layer, with 32 neurons in the first layer and 10 neurons in the
second. The BLSTM1 architecture is composed of a single BLSTM layer with 12

neurons followed by a softmax layer.
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Chapter 5

Model Evaluation

This chapter first describes the test environment and preprocessing methods applied
to the dataset, followed by the metrics measured during analysis and a description of
how the hyperparameter optimization is implemented. The model evaluation itself is
then presented, with data from both before and after hyperparameter optimization;
this evaluation is divided into two sections, each focusing on one of the datasets.
Finally, the throughput of the models that presented the best performance for each
architecture is measured, as well as the influence of quantization on the models’

throughput and accuracy.

5.1 Test environment and dataset preprocessing

All architectures in Table are implemented using PyTorchE], while hyperparame-
ter tuning uses the RayE] tuning library. The experiments involving accuracy, preci-
sion, recall and loss, as well as the hyperparameter tuning, are performed on servers
with Ubuntu 22.04 operating system, Intel i5-9600K processor with 6 cores, at least
32 GB of DDR4 RAM, and NVIDIA RTX GPU with 4,352 CUDA cores and 11
GB of memory. The throughput tests with the optimized and quantized models are
performed on an NVIDIA Jetson Nano Developer Kit with Ubuntu 18.04 OS, ARM
Cortex-Ab7 processor with 4 cores, 4 GB of LPDDR4 RAM, and NVIDIA GPU
with 128 CUDA cores.

As the models’ evaluation is performed using multiclass classification, BoT-IoT’s
attack and category features are removed during preprocessing, and subcategory is
replaced with a class feature where each attack type is encoded to an integer. For
the N-BaloT dataset, a new class feature is created and filled based on each of
N-BaloT CSVs’ filenames, also employing an integer value for each attack type.

Additionally, features that might interfere with the execution of the algorithms are

thttps://pytorch.org/
2https://docs.ray.io
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removed during preprocessing. This includes features that record information in
strings, such as the saddr, daddr, proto, flgs, and state features for the BoT-IoT
dataset, as well as features containing redundant information, like the HH jit -
weight feature of the N-BaloT dataset, that contains the same information as HH -
weight. Empty features and features composed entirely of a single value are also
removed; after preprocessing, the BoT-IoT dataset ended up with 35 features, while
the N-BaloT dataset remained with 115 features.

Both datasets are balanced using the SMOTE [39] algorithm so that all 11 classes
have an equal amount of network traffic samples. SMOTE’s “not majority” sampling
strategy is used, which creates samples for all classes except the majority until all
have the same number of samples; the default value of 5 k-neighbors is used during
the execution of the algorithm. Next, min-max normalization of the datasets is
performed so that all values are within a [0,1] range. Normalizing the data is impor-
tant so that the gradient descent method, used during training, reaches convergence
faster. Since the N-BaloT dataset contains 115 features compared to BoT-IoT’s
35 features, a balanced subset totaling 1,000,000 samples is extracted from the N-
BaloT dataset to reduce training time, while the balanced BoT-IoT dataset is used
in its entirety. The datasets are then subdivided into a training set, consisting of
5,567,752 samples for BoT-IoT and 699,597 samples for N-BaloT, and a test set,
consisting of 2,387,934 samples for BoT-IoT and 300,403 samples for N-BaloT.

All experiments use the Adam optimizer; the RNN and LSTM layers use the
tanh activation function, while the MLP layers use the linear activation function.
For experiments before hyperparameter optimization, all other hyperparameters use
the PyTorch version 2.0.1 default values. The model training process uses K-fold

cross-validation, with K equal to 5, to verify the generalizability of each model.

5.2 Metrics and hyperparameter tuning

To assess the models’ performance, the accuracy, precision, and recall values for
each of the 11 classes of both datasets are obtained.

The accuracy calculates the proportion of correctly classified samples compared
to the total number of samples and gives a general idea of the model’s performance.
This metric is defined as the number of correct classifications (that is, true positives
and true negatives) divided by the total amount of samples. Precision calculates the
ratio of true positive samples among all samples classified as positive (that is, true
positives and false positives). Recall calculates the proportion of all true positive
samples among all the actual positive samples (that is, true positives and false
negatives). While accuracy can be represented by a single value for each model, it is

necessary to obtain the precision and recall values for each class since false positives
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and false negatives differ by class. Their equations are

p B TP+ TN 6.0
Y = TP Y TN+ FP 1 FN '
TP
P 1S1ON = ————— 2
recision = oo (5.2)
TP
RGC(Z” = m—m (53)

where TP = True Positives; TN = True Negatives; FP = False Positives; FN =
False Negatives.

The training accuracy is the accuracy obtained during model training, using the
training set and considering the performance obtained during the cross-validation
process. The test accuracy is the best-performing model’s accuracy when used to
classify the test set.

The hyperparameter optimization applied is based on the grid search method,
where each possible hyperparameter combination in a predefined grid is evaluated
to find the set that presents the best performance. The grid, shown in Table 5.1,
considers all hyperparameter values used in the source papers, including their archi-
tectures, batch sizes, epochs, and learning rates. An adjustment to the grid search
method was implemented to keep the best-performing model for each architecture,
allowing comparison of each proposal’s performance after the optimization process.
The grid search process selects the optimal model by optimizing a target metric
during training; the chosen metric is the mean Fl-score, as it takes into account

both the precision and recall results.

Table 5.1: Grid used for hyperparameter tuning.

Hiperparameter ‘ Values ‘

Architectures | [MLP1,MLP2,RNN1,RNN2,RNND,
LSTM1,LSTMD,BLSTM]|

Batch Size [32,64,100,128,1000]
Epochs [5,10,100]
Learning Rate [1e-3,5e-4,1e-4]

5.3 Accuracy, precision, and recall results

The accuracy results for each model, before performing the hyperparameter tuning,
are shown in Figures and A confidence interval of 95% is used for the
training accuracy, considering the results obtained during cross-validation. Since it

is a deterministic result that considers all test set samples, there is no confidence
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interval for the test accuracy.
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Figure 5.1: Accuracy, before hyperparameter tuning, of all evaluated neural network
architectures on the BoT-IoT dataset.

5.3.1 BoT-IoT Dataset

From Figure [5.1] it is possible to observe that the non-optimized models already
present satisfactory results, with all models surpassing 93% and two models exceed-
ing 98% accuracy. Among the models, the best performance is obtained by those
trained for a greater number of epochs; the only model that presents significant per-
formance differences during training, having a large confidence interval, is MLP2.
This difference potentially occurs due to the model having a large number of dense
layers but being trained for only five epochs.

Figure [5.2| presents the precision and recall results obtained for each class before
hyperparameter optimization. A color scale is used to represent the value of each cell,
in which the color tends toward red for low values and green for high values. It can
be seen that the models perform worse when detecting DoS and DDoS attacks, while
they perform well in detecting legitimate traffic and other attack classes. This occurs
due to the dataset balancing process; due to the very nature of these attacks, DoS
and DDoS have a large number of records in the dataset. On the other hand, other
attack classes are present in smaller quantities, so more attacks are algorithmically
added by the SMOTE procedure. As these extra attacks are based on information

present in relatively few samples, they tend to be correctly identified more often.
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The difference observed between model accuracy and the precision and recall
results is due to the accuracy acting as an average of the classification performance
for all classes: as most classes show good accuracy, the accuracy of the model
as a whole is high. On the other hand, precision and recall allow for verifying
the classification performance for each class, indicating which specific classes of
the model have more cases of false positives and false negatives. Through this
information we can observe that, even though the MLP2 model offers between 93%
and 95% accuracy, it has issues when detecting HTTP-based DoS and DDoS attacks.

BLSTM1
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Figure 5.2: Precision and recall percentages for each evaluated class and neural
network architecture before hyperparameter tuning, for the BoT-IoT dataset.

After the hyperparameter tuning, the impact of different hyperparameters on
the BoT-IoT models’ performance can be analyzed. The precision and recall for the
optimized models are presented in Figure [5.3] while test accuracy and each model’s
optimal hyperparameter values are shown in Table [5.2]

Comparing Figures[5.2] and the performance increase observed for all models
is evident. As opposed to the original models, that had trouble correctly classifying
DoS and DDoS attacks, most optimized models offer precision and recall values
above 90% for these attacks, the only exception being the RNND model.

Comparing the results of Table with the test accuracy of Figure [5.1] it can
be seen that all architectures perform better when trained for a greater number of

epochs, indicating that higher values for this hyperparameter potentially improve
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Figure 5.3: Precision and recall percentages for each evaluated class and neural
network architecture after hyperparameter tuning, for the BoT-IoT dataset.

Table 5.2: Test accuracy of the optimized BoT-IoT models, and the values of the
optimal hyperparameters for each model.

Architecture | Accuracy | Epochs | Batch Size | Learning Rate
MLP1 99.94% 100 100 le-4
MLP2 99.94% 100 1000 le-4
RNN1 99.39% 100 64 be-4
RNN2 99.44% 100 128 be-4
RNND 96.79% 100 128 le-4

LSTM1 99.94% 100 32 le-4
LSTMD 99.56% 100 1000 be-4
BLSTM1 99.99% 100 64 be-4

model performance for this dataset. This is valid even for architectures that origi-

nally employed a smaller amount of epochs during training. It can also be seen that

the best-performing models employ a learning rate of 5e-4 or le-4, both lower than

the default rate of le-3. Finally, the optimal batch size for each model varies by ar-

chitecture, with architectures with fewer layers tending to show better results when

using a smaller batch size. As the optimal result for most models involves using a

higher amount of epochs and smaller values for the learning rate, thus taking longer
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to converge, it can be inferred that the BoT-IoT dataset is somewhat resistant to
overfitting.

To assess how the number of epochs impacts each model’s performance, the
training’s cross-entropy loss is also evaluated. By the loss variation of the optimized
models, presented in Figure [5.4] it can be seen that most models present variable
performance before approaching a loss threshold, in which the loss variation reduces
significantly. The amount of epochs required to reach this threshold varies, with
BLSTM1 reaching it with 40 epochs and RNN2 reaching it with more than 50
epochs. Early stopping methods can be used to conclude training the model when
this threshold is reached, to save energy and processing time. The RNND model,
which presented the worst performance among the optimized models, did not reach

this loss threshold before the model training concluded.
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Figure 5.4: Loss per epoch of the best models obtained for each architecture after
hyperparameter tuning, for the BoT-IoT dataset.

5.3.2 N-BaloT Dataset

From Figure it is possible to observe that the N-BaloT models before hyper-
parameter optimization offer worse performance than the ones obtained with the
BoT-IoT dataset. This difference may occur due to multiple factors, such as the
different feature sets of each dataset, the fact that N-BaloT models are trained with
fewer samples, and the fact that N-BaloT uses real botnet traffic instead of simu-
lating them in virtual environments. It can be seen that models based on RNN and
LSTM offer better performance, which is expected given that the N-BaloT dataset

contains temporal data in many of its features; the only exception is the RNND
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model, which presents significantly worse performance than the other RNN-based

models.
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Figure 5.5: Accuracy, before hyperparameter tuning, of all evaluated neural network
architectures on the N-BaloT dataset.

Figure [5.6] presents the precision and recall results obtained for each class be-
fore hyperparameter optimization, considering all evaluated neural network archi-
tectures. A red-green color scale is used to represent the value of each cell. As
seen in the figure, while most models perform satisfactorily when classifying be-
nign traffic, they have difficulties in classifying some attack classes. In particular,
BASHLITE’s TCP and UDP Flooding attacks and Mirai’s ACK and UDP Flooding
attacks are the ones with the worst overall performance among models, indicating
that they are not ideal for combating DDoS attacks. Additionally, it can be seen
that the MLP1, MLP2, and RNND models obtained precision and recall equal to
0% for certain attack classes. This indicates that these models did not classify any
element as belonging to those specific classes. Since these models employ multiple
dense layers with a high number of neurons, this sequence of layers may potentially
result in overfitting for models built using the N-BaloT dataset. This also explains
why the RNND model obtained a significantly worse performance compared to the
RNNT1 and RNN2 models, despite also employing RNN as its initial layer.

After the hyperparameter tuning, it is possible to observe the impact of different
hyperparameters on the N-BaloT models’ performance. The precision and recall

for the optimized models are presented in Figure [5.6] while test accuracy and each
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Figure 5.6: Precision and recall percentages for each evaluated class and neural
network architecture before hyperparameter tuning, for the N-BaloT dataset.

model’s optimal hyperparameter values are shown in Table [5.3]

Table 5.3: Test accuracy of the optimized N-BaloT models, and the values of the
optimal hyperparameters for each model.

Architecture | Accuracy | Epochs | Batch Size | Learning Rate
MLP1 80.50% 5 64 le-4
MLP2 79.27% 10 1000 be-4
RNN1 80.97% 10 1000 le-4
RNN2 81.64% 5 32 le-3
RNND 76.79% 10 32 le-4
LSTM1 82.44% 100 64 le-4

LSTMD 82.66% 10 32 le-4
BLSTM1 86.38% 10 32 le-3

Comparing Figures[5.6|and 5.7}, the performance increase observed for all models
is evident. However, as opposed to BoT-IoT’s results in which the performance
increase led to most models achieving extremely high precision and recall values, the
optimized N-BaloT models still have trouble correctly classifying multiple attack
types, particularly the BASHLITE flooding attacks. The main benefit obtained

from hyperparameter optimization is that all classes were correctly identified, thus
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BASHLITE Precision 51.33 50.6 51.71 50.77 44.73 51.34 50.84 51.49
UDP Flooding Recall 61.58 74.35 40.78 71.64 52.38 57.94 49.73
Mirai Precision 72.84 57.24 66.02 69.66 65.9 61.03 75.36 78.92
ACK Flooding Recall 65.78 68.24
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Figure 5.7: Precision and recall percentages for each evaluated class and neural
network architecture after hyperparameter tuning, for the N-BaloT dataset.

no attack type ended up receiving 0% precision and recall as previously observed.
Comparing the results of Table [5.3] with the test accuracy of Figure [5.5] it’s
evident that, unlike what was observed in the models obtained with the BoT-1oT,
most of the optimal N-BaloT models were obtained using a smaller number of epochs
during training. It can also be seen that the optimal batch size of the models tends to
be smaller than the ones observed in the optimized BoT-IoT models. These factors
indicate that the N-BaloT dataset suffers more easily from the effects of overfitting
compared to the BoT-IoT dataset, and should use smaller hyperparameter values
during training. As most optimized N-BaloT models employ a small number of
epochs, the loss threshold is not reached for most models as the model training

concludes too early.

5.4 Processing throughput results

All throughput experiments are performed with the optimized models, using the
hyperparameter values presented in Tables [5.2] and Table [5.4] presents the pro-
cessing throughput of each model, called “Base Throughput”, obtained by dividing
the number of test set samples by the time each model takes to classify all samples.

The experiment uses an NVIDIA Jetson Nano Developer Kit to evaluate the clas-
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sification models’ performance when operating on an edge device and considers a
confidence level of 95%.

As observed in Table [5.4] the biggest impact on throughput is caused by the
model’s architecture; each model presents similar processing speeds even when ap-
plied to different datasets. Processing speed varies greatly depending on the model,
varying from a minimum of 227.07 up to 1,058.65 samples classified per second.
The BLSTM1 model, which presented the best classification performance for both
datasets, shows an average throughput of 614.54 samples per second. Network usage
of IoT devices varies by device type, with TCP streams from IoT devices sending
an average of 10 to 3,000 packets per second [11]. Since network flows extracted
by Open Argus commonly contain hundreds of packets per flow, a processing rate
of more than 500 flows per second is sufficient to handle the standard network-
ing requirements of IoT devices. For models with lower processing capacity and
for environments with higher traffic requirements, it is necessary to evaluate the

performance of each model to ensure that it fits the environment’s requirements.

5.4.1 Influence of quantization

Quantization can be applied to the optimized models to reduce their size and po-
tentially improve processing throughput [40]. Quantization is a technique that con-
verts model weights, usually 32-bit floating points, to less accurate representations
using fewer bits. This allows models to run more efficiently but may harm model
classification accuracy. One of the methods of implementing quantization is called
Post-Training Quantization (PTQ), where a quantized model is obtained using an
existing model as a base. For this work, PTQ is applied to the models using Py-
Torch’s quantization API so that layer weights are calculated using 8-bit integers.

The PTQ results are also displayed in Table under the name “Quantized
Throughput”; from the table, it can be seen that 8-bit quantization offers up to
3.67% throughput improvement for the quantized model. While a positive result,
the performance improvement is not significant compared to each model’s base per-
formance.

Table presents the influence of quantization on model accuracy; the accu-
racy difference is obtained by subtracting the post-quantization accuracy from the
original accuracy. Thus, positive values indicate that there has been a performance
loss in the quantized model, while negative values indicate that there has been a
performance gain.

As seen from the table, the influence of 8-bit PTQ was negligible on most mod-
els’ accuracy, exceeding 0.06% in only 4 of the 16 evaluated models. The overall

results indicate that, while quantization does influence model performance, its im-
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Table 5.4: Throughput in samples per second of the optimized models, using the
hyperparameters presented in Tables [5.2] and [5.3

Architecture | Dataset | Base Throughput | Quantized Throughput
(samples/s) (samples/s)
MLP1 BoT-IoT | 1,058.65 + 19.79 1,087 + 20.64
N-BaloT | 1,009.43 + 9.53 1,042.14 + 10.51
MLP2 BoT-IoT | 946.52 4+ 11.22 981.05 + 16.65
N-BaloT | 933.72 + 13.39 961.48 + 15.36
RNN1 BoT-IoT | 1,037.51 4+ 24.32 1,068.23 + 24.17
N-BaloT | 1,010.14 + 26.57 1,033.93 + 29.75
RNN2 BoT-IoT 992.98 £ 6.39 1,027.41 £+ 2.58
N-BaloT 960.92 + 15.1 993.75 + 17.96
RNND BoT-IoT T77.74 + 5.61 795.44 + 5.52
N-BaloT 752.08 + 9.58 779.69 £+ 5.38
LSTM1 BoT-IoT 577.05 £ 6.57 587.55 + 1.80
N-BaloT 517.99 + 5.6 530.27 + 9.96
LSTMD BoT-IoT 227.31 £ 14.8 227.53 + 14.74
N-BaloT 227.07 + 0.17 229.9 +£ 0.71
BLSTM1 BoT-IoT 614.54 + 2.81 625.36 £ 5.1
N-BaloT 578.77 + 7.91 595.75 + 3.15

Table 5.5: Influence of quantization on the optimized models’ accuracy.

Architecture | Dataset | Accuracy Difference (%) ‘

MLP1 BoT-IoT 0.00
N-BaloT 0.00

MLP2 BoT-IoT 0.00
N-BaloT 0.00

RNN1 BoT-IoT -0.03
N-BaloT 0.01

RNN2 BoT-IoT 0.03
N-BaloT 0.15

RNND BoT-IoT 0.54
N-BaloT 0.03

LSTM1 BoT-IoT 0.06
N-BaloT -0.02

LSTMD BoT-IoT 3.05
N-BaloT -0.02

BLSTM1 BoT-IoT 0.27
N-BaloT -0.02

pact is overall small. Quantized models present, on average, 2.56% faster processing

throughput at the cost of 0.25% lower accuracy.
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Chapter 6

DL-SAFE: Deep Learning-based
SAFeguard for Edge botnet detection

This chapter details DL-SAFE, an IDS for real-time detection of botnets for edge
devices. Initially, the proposed architecture is described, detailing the four modules
that comprise the tool and their respective functions. Afterward, we describe how
a prototype was implemented using open-source tools and how its performance was
evaluated with simulated DDoS attacks.

6.1 Proposed architecture

The proposed architecture consists of four modules: the model training module,
the data capture module, the data processing module, and the data classification
module. Figure illustrates these modules.

The model training module is responsible for creating the classification models
used by the data classification module. The training process starts by preprocessing
the BoT-IoT dataset, removing incomplete, null, or redundant data. The data is
then split into two sets: a training set, containing 70% of the data, and a test set
containing the remaining 30%. The training set is used to train the classification
models; this training uses K-fold cross-validation, with a K value of 5. The neural
network architectures presented in Table are set during training, while the hy-
perparameters are optimized using the grid search method; this way, it is possible to
obtain the optimal hyperparameters for each evaluated architecture. After obtain-
ing the models, their classification performance is evaluated by the offline evaluation
module using the test set, acquiring performance metrics like accuracy, precision,
recall, F1-Score, and loss. Unlike other modules, the model training module does
not need to be active during real-time traffic classification; thus, it is possible to

train the models in advance before using the tool to classify traffic data in real-time.
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Figure 6.1: DL-SAFE’s architecture, presenting the four modules.

The data capture module is implemented through Open Argus, the same tool
used to create the BoT-IoT dataset. Open Argus reads network traffic and converts
the data into an ARGUS file. Using Open Argus’ methods, a CSV document is
extracted from the ARGUS file containing the flows and their respective features in
a format readable by the data processing and data classification modules. The data
capture module groups network data using a configurable time window, generating
a CSV file every five seconds by default.

The data processing module reads the CSV file generated by the data capture
module, extracts additional features so that the final set has the same feature set
used during training, and performs data cleaning using the same method imple-
mented by the training module. This module waits until it receives a CSV file,
processes this data, and sends the resulting CSV file to the data classification mod-
ule.

Finally, the data classification module receives the processed data in CSV format,
runs the selected classification model, and saves the classification results for further
analysis by the user in a CSV file. The user can employ the classification model
in its regular format or use the 8-bit post-training quantization (PTQ) format to

obtain better throughput in exchange for slightly lower classification performance.
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6.2 DL-SAFE Implementation

A prototype of the tool using the proposed architecture was developed using the
Python language and Shell Scripts. The prototype’s code, as well as the wiki
explaining how to install, configure, and execute the tool, can be accessed on
https://github.com /G TA-UFRJ-team /neuralnetwork-1oT.

A shell script coordinates the modules; this script executes relevant Python code,
moves and deletes files, records the classification results, implements an IP filter,
defines the time window size, and runs the necessary Open Argus commands. Each

main module is implemented as follows:

e Data Capture Module: This module is implemented using the Open Argus
system, as described in the previous section. The necessary Open Argus calls

are made by the shell script that orchestrates the prototype.

e Model Training Module: This module is implemented as the “model train-
ing.py” file. The training is mainly implemented using the PyTorch framework,
with hyperparameter optimization being accomplished through the Ray Tune
library. The Scikit-Learn library is used for cross-validation and data normal-
ization, while the Pandas library is used to read BoT-IoT’s CSV files.

e Data Processing Module: This module is implemented as the “csv_ pro-
cessing.py” file. Both the feature extraction and the data cleansing are done

using the Pandas and Numpy libraries.

e Data Classification Module: This module is implemented as the “main -
tool.py” file. Similar to the data training module, the classification is imple-
mented using the PyTorch framework. Scikit-Learn is used for data normal-
ization, and Pandas is used to read the treated CSV files received from the
data processing module. The Watchdog library is used to monitor files, so
that classification is performed as soon as the processed data is received from
the data processing module. The implemented classification is based on the
same code used in Chapter [5[to obtain throughput results, and thus presents a
similar processing performance to that observed in Table for the BoT-IoT

models.

When the classification model detects an attack, the traffic data is added to the
“detection results.csv” file. The information recorded for each attack is the source
IP, destination IP, source port, destination port, protocol, and attack type. The

possible attack categories are the same 10 implemented by the BoT-IoT dataset.
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6.3 Performance analysis

Two experiments are carried out to evaluate the tool’s performance: a throughput
test, evaluating the rate at which Open Argus can extract features from network
traffic, and a classification test, in which DDoS attacks are simulated to verify the

tool’s ability to identify attacks in real time.

6.3.1 Open Argus throughput

The data capture module must be able to extract features from IoT network traffic
in real-time. To avoid creating a bottleneck, this process must be faster than the
classification itself, whose performance was presented in Table [5.4]

We use the PCAP files provided by the BoT-IoT dataset to evaluate Open Argus’
ability to convert network traffic into ARGUS files during an attack. These files
contain the simulated attacks used when creating the dataset. The analysis evaluates
the processing capacity of Open Argus in samples per second, taking into account
the time required to process each PCAP and the number of records present in the
resulting file. This analysis was done separately for each attack class, to ascertain
whether certain attacks significantly affect Argus’ performance, and considers a
confidence interval of 95%. The results are presented in Table [6.1]

Table 6.1: Throughput of Open Argus in samples per second, by evaluating BoT-
IoT’s PCAPs containing synthetic attacks.

Attack Class Throughput (samples/s) ‘

DoS-HTTP 19,279.75 4+ 29.52
DoS-TCP 199,319.49 + 4,491.73
DoS-UDP 169,343.67 + 449.66

DDoS-HTTP 13,495.35 &+ 67.67
DDoS-TCP 164,221.74 + 1,661.27
DDoS-UDP 112,536.61 + 380.61
Data Exfiltration 260.31 £ 0.22
Keylogging 1,201.77 £ 2.58
OS Fingerprinting 97,759 + 386.94
Service Scan 22,345.829 + 37.55

As seen in Table[5.4] the data classification module classifies an average of 614.54
samples per second. By analyzing the results in Table [6.1] it is evident that Open
Argus’s throughput significantly exceeds that value for most classes, indicating that
the data capture module will not act as a bottleneck on DL-SAFE’s performance.
The only exception is for attack traffic belonging to the Data Exfiltration class,

which achieves an average of only 260.31 samples per second.
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6.3.2 DDoS detection

To perform a classification experiment in real-time, the MHDDoY]] tool was used
to simulate distributed denial of service (DDoS) attacks. Three types of attacks
were performed: UDP flood, HTTP flood, and SYN flood. We evaluate how many
network flows are correctly classified as denial of service attacks by DL-SAFE by
comparing the tool’s detection history with the Open Argus log. This log contains
all network information extracted by Open Argus before any additional processing.
As executing attacks using MHDDoS requires defining a target IP address and port,
it is possible to obtain the ground truth by filtering the Open Argus log. Based
on these results, the accuracy, precision, and recall values are calculated for each
attack type. These results are obtained using the optimized BLSTM1 model, as it
offers the best performance among the BoT-IoT models. The classification results
are presented in Table [6.2]

Table 6.2: DL-SAFE’s accuracy, precision, and recall when classifying various Dis-
tributed Denial of Service (DDoS) attacks in real-time.

’ Attack Type ‘ Accuracy | Precision ‘ Recall ‘

UDP Flood 98.68% 99% 99.68%
HTTP Flood | 99.08% 99.44% | 99.63%
SYN Flood 86.65% 96.13% | 89.78%

The results demonstrate that DL-SAFE offers performance greater than 98%
for all evaluated metrics when detecting denial of service methods that are present
in its training data. As can be seen, the tool achieves precision and recall values
greater than 99% for the UDP and HTTP Flood attacks, both attacks present on the
BoT-IoT dataset. On the other hand, performance is inferior when detecting DDoS
attacks not present on the training data, as seen with the SYN Flood attack. While
precision remains above 96%, the inferior recall indicates that a higher amount of

DDosS traffic is erroneously classified as legitimate.

Thttps://github.com /Matrix TM/MHDDoS
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Chapter 7
Conclusion

This work presented a performance evaluation of multiple neural network architec-
tures applied to the detection of botnets using the BoT-IoT and N-BaloT datasets.
Eight neural network architectures were implemented using the PyTorch framework,
and metrics such as accuracy, precision, and recall were obtained for each model.
Next, the hyperparameters of the implemented architectures were optimized using
the grid search method, using F1-Score as the target metric while also evaluating
the loss variation of each model during training. Finally, the models were run on an
NVIDIA Jetson Nano Developer Kit to verify performance on an edge device, which
is the target environment for using the models. From the obtained results, it was
possible to observe that the initial BoT-IoT models offer satisfactory classification
performance, exceeding 93% accuracy in all evaluated architectures. It was also
possible to achieve 99% accuracy in seven of the eight models after hyperparame-
ter optimization, demonstrating this step’s importance when building classification
models. On the other hand, the N-BaloT models’ performance was noticeably infe-
rior: before hyperparameter optimization, the best-performing model had less than
90% accuracy, and three of the evaluated models presented an accuracy inferior to
65%. Optimization improved the models’ overall performance, with most models
surpassing 80% accuracy; while the final performance is far from ideal, it was pos-
sible to observe the influence of different architectures and hyperparameters on a
dataset that is prone to overfitting.

Additionally, this work proposes and implements DL-SAFE, an IDS for real-time
traffic classification in edge environments built using Open Argus and PyTorch. In
addition to classifying traffic in real-time, the tool also allows the user to build
and test neural network architectures using 3 types of layers. From the obtained
results, it was possible to observe that DL-SAFE offers high precision and recall
when classifying known attack classes. The throughput results also demonstrate
that most models are capable of handling the network traffic requirements of IoT

devices, as Open Argus itself does not act as a bottleneck when extracting features
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in real-time.

The future steps include optimizing the execution of the models, aiming to use
them more efficiently in environments with multiple IoT devices. For the deeper
architectures, a possible model optimization method is to apply an early exit tech-
nique. If the predictive model indicates in a few layers that a given sample has a
high probability of belonging to a certain class, the final prediction can be made
in advance. Other future work includes evaluating different architectures and layer
types not covered in this work, aiming to offer a more in-depth analysis of their

impact on the performance of different models.
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