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Redes Neurais Profundas (Deep Neural Networks – DNNs) se tornaram ferra-
mentas relevantes e populares para uma variedade de problemas que envolvem o
processamento de grandes volumes de dados e respostas inteligentes. Graças à sua
abordagem voltada a dados, DNNs oferecem desenvolvedores uma estrutura de tra-
balho relativamente simples que envolve a construção de modelos mediante inter-
ações com dados. Além disso, DNNs são estado da arte em aplicações que envolvem
visão computacional (Computer Vision – CV) e processamento natural de fala (Nat-
ural Language Processing – NLP). Desenvolvedores podem recorrer a esses modelos
bem estabelecidos para classificar imagens, rastrear objetos, melhorar a qualidade
de imagens, processar escrita, gerar textos etc., seja como aplicação principal ou
auxiliar. Porém, implementar DNNs em dispositivos com limitações de recursos e
cenários sensíveis a latências pode ser uma tarefa difícil, especialmente quando esses
modelos são construídos com múltiplas camadas e parâmetros. Esta dissertação
de mestrado discute essas dificuldades de implementação e apresenta dois mode-
los de NN cujos objetivos são aliviar esses problemas: Autoencoders Assimétricos
(Asymmetric Autoencoders – AAEs) e DNNs com saídas antecipadas (Early-Exit
DNNs – EE-DNNs) para segmentação semântica. O primeiro modelo oferece uma
arquitetura mais adequada a dispositivos com recurso limitados. O segundo busca
estender o sucesso das EE-DNNs com classificação de imagens para segmentação
semântica. No geral, esta dissertação se propõe a discutir a importância de incor-
porar mudanças na arquitetura de DNNs para facilitar sua adoção em dispositivos
com recursos limitados e aplicações sensíveis à latência.
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Deep Neural Networks (DNNs) have become a relevant and popular tool to han-
dle a variety of problems that involve processing high volumes of data and intelligent
responses. Thanks to its data-driven approach, DNNs offer designers a relatively
easy framework that involves model construction through interaction with data.
Additionally, DNNs are now state of the art in applications that involve Computer
Vision (CV) and Natural Language Processing (NLP). So, developers can resort
to these well-established models to classify pictures, track objects, enhance image
quality, process written language, generate text, etc, either as a main or auxil-
iary application. However, implementing DNNs in resource-constrained devices and
latency-sensitive scenarios can be challenging, especially when these models are con-
structed with multiple layers and parameters. This master’s thesis discusses these
problems, and presents two alternative Neural Network (NN) architectures that aim
to ease these deployment issues: Asymmetric Autoencoders (AAEs), and Early-
Exit DNNs (EE-DDNs) for semantic segmentation. The former offers a resource-
constrained friendly architecture to enable the implementation of autoencoder-based
solutions in paradigms like Internet of Things (IoT), whereas the latter has the ob-
jective to expand EE-DNNs success with image classification to semantic segmenta-
tion, addressing some implementation issues that come with this problem transition.
Overall, the results show the importance of incorporating architectural changes to
DNNs that hopefully will fuel future research on efficient and lightweight DNNs for
resource-constrained and latency-sensitive applications.
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MATHEMATICAL NOTATION

The notation compiled below represents the established standards adhered to by this
master’s thesis. Any deviation or introduction of notations inconsistent with these
standards will be explicitly addressed in the text when deemed necessary. Notations
listed with more than one meaning are clarified when they appear in the text.

x - a unit of input data (e.g. sample, or entry value )

y - a unit of ground-trough data

ŷ - a unit of output data (e.g. generated output, inference)

X - input data or the input data domain

Y - ground-trough data or the output data domain

Ŷ - output data

σ - activation function

W - weight matrix

b - bias vector

bi - i-th early exit (or side branch)

lr - learning rate

i, j, k - indices

s - stride

r - dilation rate

C - a collection of classes on a given problem

TPc - True positives of the c-th class

FPc - False positives of the c-th class
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FNc - False negatives of the c-th class

H[X] - Entropy of random variable X

H[X|Y ] - Entropy of random variable X conditioned on Y
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Chapter 1

Introduction

In the last decade, Deep Neural Networks (DNNs) has become a relevant and
popular tool to handle a variety of problems that involve processing high volumes of
data and intelligent responses. For instance, recent state-of-the-art applications in
Computer Vision (CV) and Natural Language Processing (NLP) employ DNN [1, 2].
DNNs can be designed to classify pictures, track objects, enhance image qual-
ity, process written language, generate text, etc. However, implementing DNNs
in resource-constrained devices and latency-sensitive scenarios can be challenging,
especially when these models are constructed with multiple parameters. DNNs can
easily require a lot of storage space and computation, which can lead to signifi-
cant power consumption and processing time. Moreover, the size of processed data
can worsen these issues, whether by its dimension (e.g. image size) or the rate at
which they are generated. To address these problems, many researchers are focused
on designing alternatives to construct computationally-efficiently DNNs [3, 4]. This
work investigates alternative DNN’s designs that focus on reducing the number of
parameters that are used by the model. A carefully designed DNN can deliver com-
parable results with overparameterized models and can handle simpler data with
fewer computations, thus saving time and resources.

1.1 Why resort to DNNs?

Usually, complex problems demand complex solutions to deal with them. Prob-
lems may require non-linear models, which can be difficult to devise, or dealing with
challenging data. They can require specialized expertise that might not be easily
available, or involve a substantial time investment in data interpretation and prob-
lem modelling. Moreover, if such requirements can be met, some solutions cannot
generalize well if too many restrictions are adopted. Taking advantage of the re-
cent improvement in hardware technology and data availability, Deep Learning (DL)
became an important framework that offers powerful and easy-to-implement solu-
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tions for many of these problems [5]. DL enables a data-driven approach in which a
functioning model can be obtained autonomously through its interaction with data.
During the processing of tuning, referred to as learning, a model adjusts its parame-
ters in a manner that allows it to extract and combine data features to perform the
intended task. Hence, when given enough data and time, DL models are expected to
learn how to adequately perform an intended task, obtaining the capacity to identify
data particularities needed for better generalization.

Central to DL are DNNs. DNNs are layered models that enable hierarchical ag-
gregation of information, where data that flow from the input to the output layers
traverse intermediate layers that extract and fuse its features. These models provide
a relatively easy framework in which performance improvements can be achieved by
inserting more intermediate layers or adding more computational resources to ex-
isting layers. The premise is that a model with more resources can extract more
distinct and complex features. With additional cascading layers, the last layers can
merge primitive features extracted in layers that precede them, generating more
elaborate data and enabling the DNN to become a more complex model. For in-
stance, in CV, it is a common practice to construct layers with multiple filters that
extract distinct features in parallel and to add more layers to enable the DNN to
extract features in multiple resolutions [6].

In a future where large amounts of diverse data are expected to be ubiquitous,
DNN tends to become an increasingly relevant tool. For instance, vision-aided wire-
less communication is an emerging paradigm that promises to assist communication
applications with visual data by exploiting the increased availability of cameras in
urban environments [7]. Additionally, with sensing equipment constantly becoming
cheaper and new devices being integrated into the home and urban environments,
new applications must be capable of handling heterogeneous data [8, 9]. Hence, un-
derstanding DNN limitations and learning how to address them will be fundamental
to using this model effectively.

1.2 When “Deep” becomes an issue

Even though adding more layers to a DNN can lead to performance improve-
ments, this addition can make implementing DNN-based applications in resource-
constrained devices and latency-sensitive scenarios difficult. More layers mean more
parameters to store, which can be an issue when embedding DNNs in devices with
low memory. Additionally, the computation needed to reach the DNN’s exit in mod-
els with multiple layers can lead to significant processing time, which is problematic
in applications that require fast responses. State-of-the-art DNNs are usually imple-
mented in high-performance equipment, thus deploying these models in non-cutting-
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edge devices can increase response delay. Moreover, deep DNNs have significantly
more parameters to fit, requiring more data to adjust their parameters. With more
parameters, a model is more prone to adjusting perfectly to data presented in the
learning process, harming its generalization capabilities. Thus, constructing DNNs
with multiple layers in applications with limited available data may not be advisable,
meaning that performance improvements must be sought through other approaches.

Usually, developers tend to stick to a similar approach when designing DNNs.
DNN innovation is usually focused on discovering new ways to make models with
multiple layers learn effectively, or through the proposal of new and more powerful
layers (to replace the ones currently in use). Even though both approaches help
advance the performance of DL models in general, they are not accessible to a wider
audience that is not very familiar with the theory behind DNNs. Moreover, designers
might not be interested in cutting-edge DNNs if they can’t meet their application’s
restrictions. For example, people who want to employ DNNs to support applications
in CV-assisted wireless communication may not be interested in a state-of-the-art
DNN capable of identifying dozens of classes if it takes a lot of time to deliver its
answer. Additionally, those interested in deploying DNNs in Internet of Things (IoT)
and edge computing may prefer compact and energy-efficient models to enable easier
implementation on resource-constrained devices. Obviously, these developers can
benefit from the advances in the DL community, but they will likely be satisfied
if they can design a functional DNN that meets their applications’ requirements
with the current tools available. This work addresses these concerns by presenting
alternative DNN architectures for resource-constrained devices and latency-sensitive
applications. The new architectures exploit DNN’s versatility to deliver models that
work well with fewer layers and parameters to enable wider adoption of DNN-based
solutions in areas such as IoT, edge computing, CV-assisted wireless communication,
and autonomous driving.

1.3 Work contributions

This work proposes two alternative DNN architectures. The first is the
Asymmetric Autoencoder (AAE), an alternative to the traditional symmetric
Autoencoder (AE) for resource-constrained devices. AEs are a common choice when
dealing with dimensionality reduction and data enhancement problems. They are
suited for applications that require the extraction of data’s defining features to re-
cover the information inserted at the AE’s input. Its architecture is divided into
an encoder-decoder model, where the first layers are responsible for extracting the
features needed for “summarizing” the input data in lower dimensions, whilst the
remaining layers are responsible for reconstructing the original data. The traditional
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approach is constructing AEs where the encoder mirrors the decoder’s layer disposi-
tion. This can be problematic when embedding the encoder on devices with limited
space and energy concerns. For example, many AE-based solutions that deal with
IoT data have been proposed recently in problems that involve data compression
and noise removal [8, 9]. Data transmission is a power-demanding application in IoT
networks, meaning that compression systems to reduce redundant data transmission
are always in high demand. Additionally, data enhancement applications can assist
in many problems, from noise suppression to fusing heterogeneous data, to generate
more refined information. However, leaning on the traditional approach of inserting
more layers to seek performance improvements can be problematic in these scenar-
ios because IoT networks are usually composed of resource-constrained devices. The
proposed AAE addresses this issue by presenting an asymmetric architecture, where
the number of layers and other resources in the encoder is smaller than in the de-
coder. The results show that AAEs are a suitable alternative to the symmetric AEs,
even capable of outperforming their symmetric counterparts in some cases where
there are few training examples.

The second proposal is Early-Exit DNNs (EE-DNNs) for semantic segmenta-
tion, a CV problem that involves pixel-level classification. Semantic segmentation
focuses on identifying different elements within a picture, dividing an image into re-
gions and classifying them accordingly. Applications like autonomous driving, smart
health and vision-aided wireless communication are interested in semantic segmen-
tation [1, 7] because it is fundamental for identifying obstacles and sensitive objects
in an image. DNNs are very successful in semantic segmentation, with many models
being state-of-the-art in many CV datasets [1, 10, 11]. However, these cutting-edge
models are characterized by having multiple layers, which can be an issue when im-
plementing these DNNs in constrained hardware or when working with applications
that require low latency. Following the recent success of EE-DNNs in image clas-
sification [12, 13], this work shows that the proposed DNN can deliver segmented
images that can be useful in applications that demand fast response. Additionally,
the proposed architecture can be easily split to allow some layers to be placed closer
to the end users in local devices and edge instances. In this approach, data is for-
warded to remote cloud servers only when necessary, meaning that inference can
happen closer to the end device whenever possible, minimizing response delay and
power expenditure associated with data transmission.

In summary, the main contributions of this work are:

• proposing Asymmetric Autoencoder for dimensionality reduction and data en-
hancement applications in scenarios that involve resource-constrained devices;

• extending EE-DNNs for semantic segmentation, enabling this CV application
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in edge-cloud co-inference implementations that offer a resource- and latency-
efficient deployment; and

• promoting a different approach for DNN design that inserts architecture-
based restrictions to construct models more suited for resource-constrained
and latency-sensitive applications.

Additionally, the papers that are by-products of this Master’s thesis can be found
in Appendix A.

1.4 Thesis outline

The remainder of this thesis is organized as follows. First, chapter 2 presents
proposals that employ DNN in IoT networks and EE-DNNs in image classification.
Also, other approaches to ease DNN implementation in resource-constrained devices
are quickly revised in this section. Chapter 3 brings a summarized review of DNN,
presenting the theory needed to understand the topics of this thesis, as well as
a discussion on what kind of problems DNNs are well-suited and obstacles to its
implementation that this work pretends to address. Next, chapter 4 presents the
AAEs, experiments showing their advantage to the traditional AEs, and remarks on
future projects where the proposed model can be employed. After that, chapter 5
discusses the usage of EE-DNNs in semantic segmentation, outlining proposals on
how these models can be adopted effectively in time-sensitive applications and edge-
cloud co-inference scenarios. Lastly, chapter 6 concludes the paper, discussing the
results in a broader view and drawing future directions.
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Chapter 2

DNN Research and Related Work

The main focus of this thesis is to provide an analysis of DNNs implementation
in scenarios where it may face resource- and time-constraints. Multilayered Neural
Networks (NNs) are fundamental to many applications, as they can extract and
combine complex features to enable more elaborate and refined inferences. How-
ever, these deep models, together with data dimensionality, may require storage
and computational resources that can be scarce or non-existent in cheaper and
smaller devices. For example, to keep low implementation costs, many IoT net-
works tend to employ resource-constrained devices as sensor and actuator nodes, in
which implementing a DNN can be challenging. Additionally, processing time is a
concern in time-sensitive applications. Usually, DNNs are designed using cutting-
edge equipment, thus implementing them in other devices may impact inference
time negatively and can vary a lot from equipment to equipment. Moreover, when
dealing with resource-constrained devices, it is common to choose to store these
models in remote servers (e.g. cloud) rather than implementing them locally, which
adds transmission delays. Although we can expect hardware improvements that can
ease some implementation concerns for some of the current state-of-the-art models,
we can expect that the discussed issues with local implementations will not disap-
pear, as the continuous development of NN theory will likely bring bigger and more
complex DNNs. Hence, having alternative NN architectures specially designed for
resource-constrained and latency-sensitive implementations can an important tool
in the arsenal of any developer.

A quick literature review is provided in the remainder of this chapter. The
works are divided according to the two main themes discussed in this thesis. First,
we start with projects that resort to DNNs in IoT applications, and are followed by
works that discuss multi-exit DNNs for distributed implementations. These works
are presented with commentary on how increasing DNN size can be problematic
in these cases. Finally, in the end, a review of other works that try to address
DNN implementation issues is presented. These follow a different approach from
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this thesis’s aim and can be complementary.

2.1 DNNs in IoT

IoT data is characterized as being extremely heterogeneous [8], which can make
processing data and developing applications to deal with it challenging. A single IoT
network can comprise distinct devices, each with its own sampling rate and utiliz-
ing hardware with varying quality. A single network or application may collect and
transfer distinct phenomena, and environmental noise can add another degree of dif-
ficulty. Additionally, another issue that arises from IoT network size and operation
is the amount of collected data and the need to transfer them among nodes. In many
cases, especially networks that involve sensing applications, employing multiple sen-
sor nodes and requiring high sampling rates is needed to monitor the environment
appropriately. Efforts to minimize data size are in high demand to assist in saving
transmission bandwidth [14]. Many researchers are resorting to DNNs to deal with
IoT data [9], as these models can offer a data-driven application design. With a
DNN, developers can use historical data to make the model learn how to deal with
the intrinsic difficulties of the desired application, thus enable intelligent applica-
tions in which sensors and actuators can adapt to environmental changes or make
automated decisions.

Usually, to keep implementations cost low, a typical IoT network is composed
of low-cost resource-constrained devices. Thus, DNN size plays a crucial role when
designing an NN-based application for this type of network. Specifically, designers
must take into account the amount of resources these models will impose on net-
work nodes, both in terms of memory space and energy consumption. Particularly,
the traditional approach of performance improvements through increased NN depth
should be rethought. In particular, AAEs (proposed in chapter 4) aim to address
this problem when designing applications that employ AE.

AEs in IoT

Given the IoT data characteristics discussed previously, many applications re-
quire some sort of dimensionality reduction or data enhancement. For instance,
data compression helps save bandwidth and transmission resources, noise removal
can improve data quality, and extracting main data features from high volumes of
data is fundamental to give a better understanding of a monitored phenomenon.
Usually, AEs are the models of choice when dealing with dimensionality reduction
and data enhancement problems. They are an NN with an encoder-decoder design
constructed to reconstruct inserted data (see chapter 3 for more details). Hence,
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several works that involve data compression and noise suppression in IoT networks
use AEs [9]. Alsheik et al. [15] demonstrate how a shallow AE-based compression
schemes can deal with IoT data. The authors design a shallow AE, which has a
single intermediary layer, to handle temporal series. With it, they showed that this
model can deliver a lightweight compression scheme that significantly reduces en-
ergy consumption. As expected, increasing the depth of this symmetric AE yields
better data compression results. As discussed previously, the more layers an NN,
the more complex functions it learns. For instance, Ghosh et al. [16] constructs a
dimensionality reduction application to decrease data size for transmission, in which
AEs with more layers outperformed the ones with fewer layers. However, the layer
disposition of the encoder in a typical AE mirrors the decoder’s, thus increasing
the number of layers can be a problem. More encoding layers incur storing more
parameters and running more computations locally in the sensor. The proposed
AAE offers an alternative IoT-friendly design whose aim is to reduce the number of
layers stored in sensing nodes. In particular, in the experiments in chapter 4, the
number of encoding layers in all AAEs is the same as in Alsheik et al.Thus, these
chapter’s results show that it is possible to keep the lightweight implementation
benefits shown in that work without affecting performance.

Having applications that can deal with environmental noise is necessary for
many IoT applications, and many researchers have resorted to AEs to remove
this unwanted feature. In this direction, two recent works use Denoising Autoen-
coder (DAE) to remove noise from data. Laakom et al. [17] propose a new loss
function to help the model learn how to remove the noise. Even though they con-
sider data compression, they focus on denoising, showing that autoencoders can
deal with both challenges. Additionally, their model is symmetrical and has mul-
tiple encoding layers, as it does not consider IoT data. In another work, Lee et
al. [18] propose a modification to DAE, which shifts from the traditional approach
of learning how to reconstruct the noiseless signal to extract the noise, subtracting it
from the signal. They show that their approach outperforms DAE in the evaluated
scenario, but differs from ours by resorting to a symmetrical architecture and not
addressing data compression. Overall, AAE can offer a compression scheme that can
deal with environmental noise with fewer encoding layers, as we incorporate limited
encoder size as a learning regularizer.

An asymmetric AE design was previously analysed [19], but adopting an encoder
containing more layers than the decoder. This architecture is the opposite required
in typical IoT scenarios, as the bulk of computation would be shifted towards the
resource-constrained nodes. Ideally, in an IoT network, we want applications to out-
source most computation to a resource-rich central node. This can be addressed by
the proposed AAE. Hence, the key contribution is presenting asymmetrical NN ar-
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chitectures that can be a valuable alternative when implementing applications that
use AEs in IoT networks or other implementations with similar implementation
issues. Through chapter 4 experiments, we will see that AAEs can deliver compara-
ble performances to their symmetrical counterparts, capable of even outperforming
them. Hence, in addition to its architecture suited for resource-constrained devices,
AAEs can be fundamental to NN deployment in IoT. Table 2.1 summarizes the
differences between chapter 4 work and other proposals that involve data processing
with autoencoders.

Table 2.1: Summary of related work resorting to autoencoders for data compression
(or dimensionality reduction) and noise removal.

Reference
Data Compression

&
Dim. Reduction

Noise
Removal

Single
Encoding Layer

Asymmetric
Design

[15] ✗ ✗

[16] ✗ partial
[17] partial ✗

[18] ✗

[19] ✗ ✗

chpt. 4 ✗ ✗ ✗ ✗

2.2 Ubiquitousness of CV applications

DNNs have been used in a variety of problems. Among them, one where they
are very successful are CV problems, where DNNs are now state-of-the-art [1]. This
success has prompted many researchers and developers to include DNN-based CV
models in autonomous driving, smart heath, and environment monitoring [1], either
as the main or auxiliary applications. In the latter case particularly, with cameras
becoming cheaper and more ubiquitous in urban and building environments, many
applications and new paradigms are seeking to leverage this visual data abundance to
support existing functionalities. For instance, vision-aided wireless communication
is an emerging paradigm that aims to combine CV applications to communication
systems and protocols [7].

All this interest in CV applications, DNN-based solutions in particular, means
that the environment where these models will be implemented is extremely hetero-
geneous. Additionally, this diversity also means different performance standards.
For instance, time-sensitive require fast responses, and energy-constrained require
models to be less resource-demanding. Another issue with DNN implementation,
and relevant to the previous examples, is NN size. Models with multiple layers
demand more computational resources and take more time to finish computations.
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And although cloud-based implementations are an option for resource-constrained
implementation, sending data to the cloud can also add significant delay and energy
consumption. EE-DNN and DNN partitioning combined give an alternative where
portions of a DNN can be distributed and placed in local devices, edge, and cloud.
This setup is successful with image classification, where simpler image data can be
labelled faster with an auxiliary output. As will be shown in chapter 5, this con-
cept is extended to semantic segmentation, showing how this setup can address the
difficulties of other CV problems to realize a resource-efficient and faster semantic
segmentation.

Early-exit DNNs and DNN partitioning

Teerapittayanon et al. [12] proposed BranchyNet as a first multi-output DNNs
for faster image classification. Their work showed how these multi-exit models were
faster on average than the unbranched model they were based on, laying the founda-
tion for most of EE-DNN research. These models can be dismantled and placed in
local devices, edge and cloud instances, offering a hierarchical inference system [20].
Simpler data can be classified in earlier stages, which can consist of a small set
of layers connected to an early exit only hard treat data are offloaded to a cloud
server, which has the resource-demanding remainder of the DNN. This opened the
opportunity for fast and lightweight DNN implementations, like the one proposed
by Lo et al. [21] that adopts a DNN with two exits, creating a lightweight DNN that
is placed in the edge and another that is placed at a remote server (e.g. cloud).
Pacheco and Couto [22] combine EE-DNNs with DNN partitioning to offer an edge-
cloud co-inference scenario. In the proposed partitioning method, layers connected
to early layers are positioned on the edge to enable first classification attempts to
occur close to end devices, and the remaining layers are placed on the cloud. Later,
Pacheco et al. [13] investigated models with different numbers of early exits and in-
vestigated different exit thresholds [13]. In both cases, they showed the advantages
of EE-DNNs in minimizing inference time, as classifications in early exits can save
the time-demanding offloading process. However, all these works tackle image clas-
sification. Usually, inserting early exits in a Convolutional Neural Network (CNN),
which are the base of most DNNs that deal with CV, can be hard due to the large di-
mensionality of image data, especially in layers close to the DNN input. To address
this, EE-DNNs for image classification can adopt hard downsampling and pooling
methods to decrease data size [20]. However, semantic segmentation doesn’t work
well with these methods because they can destroy localized and structured informa-
tion extracted in early layers. Additionally, most exit criteria rely on classification
probabilities, comparing them with a pre-defined threshold to determine if data
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should be classified in an early exit. This can be infeasible in semantic segmentation
because it involves pixel-level classification. The proposed EE-DNN for semantic
segmentation addresses these issues. Table 2.2 summarizes the differences between
chapter 5 work and other proposals that use EE-DNNs.

Table 2.2: Summary of related work resorting to EE-DNNs and that also resort to
DNN partitioning.

Reference Image
Classification

Semmantic
Segmentation

DNN
Partitioning

Entropy Based
Exit criterion

[12] ✗

[21] ✗ partial
[22] ✗ ✗

[13] ✗ ✗

chpt. 5 ✗ ✗ ✗

2.3 Other alternatives to ease DNN implementation

With the popularization of Machine Learning (ML) in recent years, especially
thanks to the recent success of DNNs, a great effort is being spent in simplifying
model requirements to embed them in resource-constrained devices. Tiny Machine
Learning (TinyML) is a paradigm that emerged recently, focusing on designing ML
models for low-power and low-cost microcontrollers [3]. Among different approaches,
TinyML usually relies on parameter pruning and quantization to offer more com-
pact and computationally efficient models [3, 4]. Although crucial for implementing
DNNs in resource-constrained devices, quantization can lead to performance degra-
dations because 32-bit floating point parameters are mapped into representations
that require fewer bits, thus losing representation precision. Additionally, the current
best quantization techniques can offer a maximum size reduction of four times [4],
and pruning-like techniques are more effective in over-parameterized models that
have many infinitesimal parameters. This means that DNN that are big to begin
with naturally take more space than models that are designed with fewer layers and
parameters. The proposed architectural changes use an unrelated approach that can
help TinyML. For instance, an IoT sensing node is expected to collect data from
multiple sources [23], so it will likely store multiple ML models to treat each one indi-
vidually or will require a complex model capable of dealing with this heterogeneous
data. With the proposed AAE, one can start with a more compact model, which
can downplay the need for parameter quantization and pruning. Additionally, when
deploying an EE-DNN with DNN partitioning, we can limit the number of layers
to be stored in edge- and end-used devices, meaning that softer quantization and
pruning techniques can be adopted.
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Another paradigm that aims to reduce DNN size for implementation is knowledge
distillation [24], which focuses on replacing a DNN with multiple layers with one
more compacter. Using the complex model as a reference, the idea is to extract the
most essential learned transformation, capable of replacing a big set of layers with
one or a smaller set of layers. This can be done by training the two models together,
trying to make the smaller model emulate the data generated by the bigger one, and
other approaches that are continuously being proposed [24]. Again, architectural
changes, such as the ones proposed in this thesis, and knowledge distillation can be
mutually beneficial. For instance, AAEs can encoders to replace a big set of DNN
layers, and knowledge distillation can help train and design EE-DNNs.
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Chapter 3

DNNs and its Applications

The popularization of solutions and applications that resort to Machine Learn-
ings (MLs), and in particular Deep Learnings (DLs), has seen Deep Neural Net-
works (DNNs) become an indispensable tool in the arsenal of developers and re-
searchers that deal with high volumes of data and that require a data-driven ap-
proach. DNNs are now state-of-the-art in many problems in Computer Vision (CV)
and Natural Language Processing (NLP), and are especially superior to design ap-
proaches that involve trial and error and expertise knowledge. For instance, the
traditional approach in Computer Vision (CV) is selecting feature extractors manu-
ally, a process that DNNs can automate by interacting with data [25]. Additionally,
DNNs offer a relatively easy framework in which performance improvements can
be sought through an increase in model’s complexity via the addition of more lay-
ers and more specialized computational units. However, implementing DNNs with
multiple layers can be difficult in scenarios that involve resource-constrained devices
and that require low-latency responses. In this chapter, we provide an overview of
DNN theory, covering its basics and components used in subsequent experiments.
We conclude by discussing challenges in constructing DNNs with multiple layers and
computing units.

3.1 Machine Learning basics

ML is the collection of data-driven models and algorithms that adjust their
parameters by interacting with data in a process commonly referred to as “learning”,
which requires little or no human intervention. ML models can determine their
performance in the task for which they were designed with the help of a cost function
that gives them a manner in which they can track their progress and determine which
parameters need to be adjusted. Ideally, through consecutive interactions with task-
representative data, the ML model parameters will be adjusted in a manner that they
capture the task particularities, allowing the model to be effective and generalize
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well.
The usual ML approach consists of two steps. In the first step, which is referred

to as training, the ML model interacts with a large quantity of task-representative
data to adjust its parameters. “Learning” effectively happens during this process,
as it’s during training that a model captures knowledge about the task for which
it was designed. After training is complete, a final evaluation step is executed to
measure the trained model’s generalization capabilities. In this step, referred to as
testing, the model is presented with data not present in the training process, and a
final score is obtained to estimate its field performance.

3.2 What are DNNs and what are they good for

Basically, a NN is an ML model that implements a mapping from a data domain
(X) to an “answers” domain (Y ), which has the desired outputs of a given task. For
instance, the data domain might contain observations of a phenomenon of interest or
all possible images of a specific size, and we want a model that relates each element
in X to the appropriate classification or action in Y . Ideally, there is a perfect
function f : X → Y that correctly associates every possible input to its appropriate
output, and we want the designed NN to represent it as closely as possible. How
close to f we can reach will depend on how many parameters the NN has, if the
model is constructed adequately, and the quality and quantity of data used in the
learning process. The first two requirements are related to the model’s architecture
and restrict the complexity of functions that the NN can represent. The latter is
fundamental to the success of NN’s pursuit of f because a model will only learn if
given good examples, even if constructed correctly.

The fundamental component of an NN is a computational unit (commonly re-
ferred to as neuron) that combines data and applies a non-linear function (referred
to as activation function) to it. Neurons can be grouped to form a structure known
as layer that receives the same data instances as input, allowing for the extraction
of distinct and complementing features in the same data. Additionally, layers can
be linked to enable the merging and fusion of extracted information into more com-
plex features. Usually, a neuron combines the input data using a weighted sum and
feeds the result to the non-linear function. Thus, a layer can be thought of as an
affine transformation followed by a non-linear transformation. If we denote σ as the
non-linear function, the output can be represented as

y = σ(W · x+ b), (3.1)

where x and y are the input and output data, respectively, W is the weight matrix
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whose entries represent the weights of the layer’s neurons, and b is a bias vector.
The training process objective is to learn the adequate values of W and b so that the
resulting NN can perform the application for which it was designed. For example,
suppose that y represents a class encoding in an image classification problem where
each neuron produces an encoding entry. Then we want the learned values of W and
b to effectively combine the features received by this layer to produce the correct
outputs.

DNNs are an NN variation characterized by having many layers and adjustable
parameters. DNNs can use this big number of layers to produce complex informa-
tion, exploiting the consecutive application of non-linear transformations to combine
primitive information into more refined data. Most layers follow equation 3.1, thus
by linking their inputs and outputs we can construct a composite function that
leverages the chaining of equation-3.1-like functions to construct a more complex
non-linear model. This can increase the number of functions that a DNN can em-
ulate significantly. Both these attributes are particularly useful when dealing with
complex problems and are the reasons why DNNs with multiple layers can be power-
ful ML models. However, with too much freedom comes the risk of learning useless
functions because these deep models are more difficult to train and require signifi-
cant training data. This is one of the reasons why, even though NN is an old concept,
the popularization of DNNs occurred in the last decade after advances in hardware
and data availability that enabled the efficient construction and training of models
with multiple layers and parameters [5].

DNNs excel excel at problems that require extraction of information from com-
plex data and in which there is a clear relation between input data and the desired
output, even when this relationship is hard to determine. Additionally, DNNs can
work with raw or minimally-processed data because they can learn the transforma-
tions necessary for extracting required features [5]. For example, in image classifica-
tion, the choice of feature extractors depends on the specificities of the application
in which they will be employed, which can be a demanding task if done manually
and usually requires expertise knowledge [25]. DNNs can learn the extractors they
need on the fly while learning how to pair each image with its correct label. Thus,
DNN can be seen as a useful tool in hard-to-model problems or when dealing with
large amounts of heterogeneous data, where processing data can be challenging. Ob-
viously, preprocessing data can be helpful to DNNs, but these models can dismiss
data treatment at the expense of more layers and training data.
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Figure 3.1: A fully-connected-feedforward DNN. In this implementation, data flows
from the input to the output layers without cycles, and a neuron connects with all
neurons of the following layer.

3.3 Different models for different problems

The simplest DNN implementation consists of a model where neurons are placed
in layers, with a neuron connecting with all neurons placed in the next layer, as
shown in Figure 3.1. Because of this feature, this DNN can be referred to as fully
connected, given that all neurons in adjacent layers are connected with one another.
Additionally, in this implementation, data flows through the layers without cycles,
thus this model can also be referred to as feedforward. Feedforward DNN is the most
common NN implementation because of its architectural simplicity and versatility.
Although a simple and effective implementation, a DNN like the one in Figure 3.1
can be enhanced with the addition of different layers that are more suited for the data
being processed. And the number of neurons per layer can vary from application to
application, to meet implementation and performance requirements. In the following
subsections, we will review a few DNN variations and layers used in the experiments
of this thesis.

3.3.1 Autoencoders

Autoencoder (AE) is the NN most used in problems that involve dimensionality
reduction and data enhancement, such as data compression and noise suppression.
The AE is constructed in a manner that allows it to produce as output data inserted
in its input layer, functioning as a f : X → X mapping. The objective of this NN
implementation is to learn how to extract information from data so that the NN’s
output is a replica or an improved version of the original input. In dimensionality
reduction, an AE should be capable of generating smaller representations of the
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Figure 3.2: A typical AE. Its prominent feature is a similar neuron configuration
in the input and output layers, which enables the recovery of data inserted in the
model’s input.

inserted data, and to ideally function as an identity mapping. In data enhancing
problems like noise removal, an AE must learn to extract defining features of the
input data so it can generate an output without unwanted elements. Hence, it’s a
common practice to construct these NN with input and output layers that have the
same number of neurons, such as seen in Figure 3.2.

The AE’s architecture can be divided into an encoder-decoder model, where the
first layers extract features from the inserted data and the remaining layers recon-
struct the original data using these features extracted in the encoding layers. Hence,
we can interpret the encoding layers functioning as a f : X → F mapping and the
decoding layers as g : F → X, where F is the feature domain. For example, in a
dimensionality reduction application, X can be where the compressed representa-
tions of elements from F reside. Thus, in this interpretation, the whole AE can be
thought of as g ◦ f rather than a single function, where f is a feature extractor and
g is a function that produces the original data from extracted information.

A common approach in AE design is constructing it with intermediate layers that
have fewer neurons than the input and output layers, much like the configuration
shown in Figure 3.2. Sometimes referred to as undercomplete AE [26], this imple-
mentation creates a bottleneck that forces intermediate data to be smaller than the
input. Hence, the AE architecture becomes a restriction in the learning process that
forces the NN to learn compressed representations. In the remainder of this thesis,
undercomplete AEs will be referred to as AEs, which is usually the case.
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Figure 3.3: Convolutional layer’s typical operation. As we stack convolutional layers,
the deeper DNN layers can extract complex features by combining and extracting
new information from output feature maps of previous layers.

3.3.2 Convolutional layers

Even though fully-connected DNNs can learn a large number of functions if
constructed with enough neurons [27] and layers, computational units more suited to
exploit data particularities can lead to more powerful models and that require fewer
parameters. This is particularly useful in deeper implementations, which naturally
have a lot of parameters, because we can significantly reduce the number of neurons
and simplify the training process. In this direction, convolutional layers are popular
in problems requiring processing data with strong relations between neighbouring
entries [28], such as images and signals with temporal correlations. Instead of having
neurons that connect with all neurons of the next layers, convolutional layers employ
filters (also referred to as kernels) constructed with few parameters and that extract
features from data in a sliding-window fashion. Operationally, these kernels function
as a small set of neurons that are replicated along an NN layer, limiting the number
of neuron connections [28]. Furthermore, these filters extract similar features in
different portions of data, which is useful for problems like CV.

A common approach is constructing convolutional layers with multiple filters
to extract distinct and complementing features. For example, suppose we have a
convolutional layer that extracts horizontal, vertical, and diagonal lines tilted to the
right and left, using four different filters. Then, if given the picture on the left of
Figure 3.3, the convolutional layer will produce the pictures on the right as output.
Later, if we add more convolutional layers after this layer, these features can be
combined to generate more complex data. To distinguish the convolutional layer’s
output from the datum generated by each filter, the latter is usually referred to as
a feature map. Additionally, it is common to say that each feature map enters (and
exits) a convolutional layer through an input (output) channel. These nomenclature
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(a) Regular convolution. (b) Depthwise-separable convolution.

Figure 3.4: Comparison between regular convolutional layer and the one that uses
depthwise-separable convolution.

conventions will be adopted henceforward.
Even among convolutional layers, there is a diversity of implementations to ad-

dress different problems in feature extraction and DNN training. When a con-
volutional layer receives multiple input feature maps, it is expected to effectively
integrate inter-channel information to generate new and more complex features. In
a typical implementation, filters are required to learn how to perform spatial and
cross-channel correlations simultaneously. Depthwise-separable-convolutional layer
is an alternative implementation in which feature extraction and inter-channel mix-
ing operations are performed separately. This layer is shown empirically as being
capable of learning rich representations with fewer parameters than the typical im-
plementation [29]. This implementation leans on the assumption that the whole
convolutional layer operation becomes simpler and more efficient if these operations
are split. Thus, employing layers using depthwise-separable convolution can be use-
ful in problems with a shortage of training samples, like the ones studied in chapter 4.
Figure 3.4 brings a comparison of the two convolutional layers, in which both receive
two input feature maps and produce a single output feature map. Notice that, in
Figure 3.4(b), two sets of convolutional layers (two spatial and one inter-channel)
do the work of a single filter in Figure 3.4(a). Hence, in the depthwise-separable
case, each filter can specialize in a portion of the convolution task, simplifying the
training process.

Atrous-convolutional layer [10], which is also referred to as dilated-
convolutional [30], is an implementation that employs filters that perform atrous
convolution to extract low-resolution features without data decimation. DNNs con-
structed with regular convolutional layers require consecutive data downsampling in
order to extract low-resolution features. This is an issue with CV applications like
semantic segmentation that need localized information [31]. Feature maps of layers
closer to the DNN’s exit, which come after a sequence of downsampling steps, no
longer have access to localized information extracted in layers that dealt with data
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Figure 3.5: An 2D atrous convolution, for r equal to 1, 2 and 3. When r = 1, it
functions as a regular convolution. Overall, it is noticeable that with bigger r, the
greater is the filter’s FoV.

in higher resolutions. Atrous convolution enables the extraction of low-resolution
features in higher resolutions because it increases a filter’s Field of View (FoV) by
skipping neighbouring samples in a datum. For each entry i in an y output feature
map

y[i] =
∑
k

x[i+ rk]w[k], (3.2)

where x and w are the input feature map and convolutional filter, respectively, and
r is the input sampling rate [10]. In practice, an atrous-convolutional layer functions
much like a regular convolutional layer if we replace w with a bigger filter that
has r − 1 zeros between two consecutive values. Hence, an atrous-convolutional
filter FoV is increased because it utilises values that are multiple samples apart, as
shown in Figure 3.5, enabling it to extract low-resolution features that are dispersed
over a wider range of samples in higher dimensions. However, it is known that
employing a single atrous rate can be harmful to the overall DNN, as this can lead
to loss of information [11]. Given its inherent characteristic, a large portion of high-
resolution information is lost in this convolutional process. Hence, it is common
(and advisable) to construct layers that utilise different atrous rates, such as Hybrid
Dilated Convolution (HDC) and Atrous Spatial Pyramid Pooling (ASPP) layers.
With these layers, an NN can extract features in multiple resolutions from the same
data instance, exploiting the advantages of atrous convolution to the fullest.

An issue that may occur when constructing a DNN with multiple convolutional
layers is that it can make training them significantly harder, leading to bad models.
An ingenious solution adopted in many state-of-the-art DNNs to add feature maps
extracted in early layers to the ones generated later, thus propagating features ex-
tracted earlier further down the NN graph. Referred to as residual connections [32],
this modification is the building block of Residual Network (ResNet), itself the back-
bone of many state-of-the-art DNNs in CV applications. Formally, supposing that
f represents the set of layers bypassed by the residual connection and h as the set
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of layers without this modification, the learning problem becomes

y = h(x) = f(x) + x, (3.3)

For example, if the optimal solution of this set of layers was an identity mapping,
f ≡ 0. In practice, residual connections are added to bypass two consecutive convo-
lutional layers, shown theoretically and empirically to be the best configuration [33].

3.4 Implementation obstacles

Even though DNN is a powerful and versatile tool, implementing models with
multiple layers and parameters may be difficult in devices with limited resources.
For instance, IoT networks usually have resource-constrained devices with limited
memory and energy sources, in which storing multi-layered DNNs can be infeasi-
ble. An alternative for some applications is storing the DNNs remotely in a cloud
server, but this can be problematic in latency-sensitive applications and does not
remove energy concerns entirely, as wireless transmission can be a power-hungry
application [34]. As discussed in chapter 2, many researchers are actively search-
ing for solutions to make DNNs more accessible to resource-constrained devices. In
particular, TinyML researchers seek efficient manners to implement DNNs locally,
resorting to model pruning, parameter quantization, efficient coding, etc. Another
alternative, and the focus of this thesis, is promoting architectural changes to the
DNN so that the resulting model can satisfy resource constraints or enable fast NN
inference. Constructing more compact models and resorting to EE-DNNs can assist
in bringing computation closer to end devices, offering more alternatives to designers
when designing DNNs for these type of problems.

An additional problem with a DNN with multiple parameters is that they are
difficult to train. As discussed earlier, one of the reasons that slowed a wider adop-
tion of NNs was shortage of training data. Moreover, if the application involves
a lot of classes or instances that are hard to classify, an NN will require a signif-
icant amount of data to learn the task adequately. For instance, ImageNet [35] is
a huge image dataset that, as of 2023, has almost millions of images belonging to
1000 object classes a. However, not every application has the luxury of having large
quantities of data easily available [36], and constructing one is a laborious task that
may involve labelling a large quantity of data. Hence, constructing models that are
more robust to a shortage of training data is desirable.

ahttps://www.image-net.org/download.php
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The “costs” of overparametrization

A good way to estimate power consumption and computation latency of an NN
model is by counting the number of Floating-point Operations (FLOPs) it takes for
each inference [13, 37]. Let’s take a fully-connected DNN layer that takes an input
array with M samples and produces an output with N samples. Remembering equa-
tion 3.1, the linear operation is an affine transformation. A matrix multiplication
between an M × N matrix and an N × 1 vector takes M × N multiplications and
M ×N − 1 additions, and if we add the bias’ summation, we get a total of

2MN +N −M

FLOPs. Now, supposing that the input is two-dimensional with P attributes (or
channels), becoming an M × P sized matrix. Now, the matrix multiplication takes
M ×N × P multiplications and M × P × (N − 1) additions, bringing the number
of FLOPs to

2MNP +NP −MP.

Hence, even though the addition of layers can enable an NN to deal with more
complex data and problems, this increase can pose a significant cost to resource-
constrained devices and latency-sensitive applications. Moreover, both equations
show that data size plays a significant role in the number of FLOPs. Overall,
these costs can be critical to the feasibility of these models’ deployment, especially
when we want to deploy DNNs on resource-constrained and non-cutting-edge equip-
ment. Although convolutional layers can save computations in comparison with
fully-connected layers, they can demand a lot of computations, especially when
dealing with high-dimensional data. And considering that it is common to add mul-
tiple kernels in the same convolutional layer, these computational requirements can
quickly stack up.
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Chapter 4

Asymmetric Autoencoders

As seen in chapter 3, AE is a NN model commonly employed in problems that
require extraction of features that characterise the core information of inserted data.
In dimensionality reduction, these features summarise data and remove redundant
information. In data enhancement, they enable the distinction between information
we want to preserve or improve from unwanted signals and noise. Many recent ap-
plications in Internet of Things (IoT) resort to AEs, leveraging NN’s data-driven
approach to design models for compression and noise removal. IoT data can be
challenging to traditional approaches because it can involve high volumes of data,
inconsistent sample generation rates and can come from distinct sources, which can
make it extremely heterogeneous [9, 23]. In particular, the development of dimen-
sionality reduction models to minimize the amount of transmitted information is
desirable because of IoT data volume and the fact that wireless transmission is a
known source of significant energy consumption [9, 14, 23]. Additionally, IoT ap-
plications should be robust to noise and equipment failure, inconveniences that AE
models can learn how to deal with. However, IoT network usually employs resource-
constrained devices, which may not be suited for deep DNNs with multiple layers
and parameters. Thus, the traditional approach of searching for performance im-
provements through NN depth increase will be problematic in this case. Asymmetric
Autoencoder (AAE) is an alternative AE that addresses this issue by resorting to
an encoder-decoder design in which the encoder has fewer layers and parameters
compared to the decoder. The results compiled in this chapter show that AAEs
are capable of delivering comparable performance to traditional AEs and are even
capable of outperforming its symmetrical counterparts.

4.1 Problem description and proposal

Usually, IoT networks comprise many resource-constrained devices that resort
to wireless communication to transfer their data. Wireless transmission tends to be
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a power-demanding application, so solutions that minimize redundant data trans-
mission are always in high demand [34]. Also, data can come from distinct sources,
meaning that it can be extremely heterogeneous. Each device can generate data at
different rates and can sense distinct phenomena. Furthermore, to keep implemen-
tation costs low, devices that compose a typical IoT can have limited capabilities,
impacting the quality of collected data negatively. Because IoT data can be challeng-
ing to treat [8], many recent proposals to compress and enhance data quality that
resort to AEs are being proposed [8, 9]. For example, Alsheik et al. [15] showed that a
shallow AE configuration is an interesting tool that offers a lightweight compression
system for resource-constrained devices, as the resulting decoder is a small set of
parameters corresponding to the AE’s encoder. Increasing the number of encoding
layers can lead to performance improvements, much like many DNN models. In a
similar problem, Ghosh and Grolinger [16] proposed an AE for dimensionality reduc-
tion to assist a Human Activity Recognition (HAR) application in which increasing
the model’s depth culminated in performance improvements. However, designing
DNNs that will demand that a lot of layers be stored in resource-constrained devices
is problematic. Considering that complex problems usually require large quantities
of layers, having an alternative architecture that requires a small number of lay-
ers be stored locally can be helpful when implementing AE-based solutions in IoT
networks and other scenarios that share these resource problems.

AAE: differences and advantages of an asymmetric design

When constructing an AE for dimensionality reduction problems, the encoder
will typically be stored at the node that collects and transmits data, so any increase
to this structure will lead to the expenditure of more computational and energy
resources. Typically, an AE is constructed symmetrically, in which the decoder
configuration mirrors that of the encoder. With this approach, whenever we increase
the DNN depth we are adding at least two layers, one at the encoder and another
at the decoder. The AAE is an alternative to this approach in which the number of
layers and other resources in the encoder is smaller than in the decoder. The key
idea relies on a relevant recommendation for developing compression systems for
Wireless Sensor Networks (WSNs), a subset of the IoT paradigm, that states that
system design should be asymmetrical in a manner that outsources computation
requirements away from resource-constrained nodes [38]. For instance, as shown in
Figura 4.1, we can construct an AAE with a single encoding layer (like the one in
Alsheik et al. [15]), and add as many layers to the decoder as needed to achieve our
performance goals. This approach is more IoT-friendly because we can follow the
heuristic of seeking performance improvements through DNN-depth increase without
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Figure 4.1: The proposed AAE. Its defining feature is having an asymmetrical
design, in which the number of layers and other resources is lower at its encoder
than at its decoder. For instance, we can construct an AAE with a single encoding
layer, and as many decoding layers as we like.

incurring more layers to be stored in resource-constrained devices. With an AAE,
we restrict ourselves to storing strictly necessary encoding layers, adding more layers
to decoders to compensate for a compacter encoder. Furthermore, depth increase in
an AAE occurs with the addition of a single layer. Hence, AAEs have fewer layers
and parameters than a symmetric AE with similar decoding depth, which can make
them easier to train than its symmetric counterpart.

The proposed AAE is deployed much like most AE-based solutions in IoT, where
encoding layers are placed in the resource-constrained nodes and decoding layers are
stored at a remote server [9, 15], the destination of the data transfer operation. For
example, in a sensing application, nodes in a typical WSN benefit from this setup to
maintain their operation costs low. The model is trained offline using historical data
of the phenomenon we want to monitor. To enable the outsourcing of computation
away from the resource-constrained devices, it is assumed that the destination has
enough resources to store and perform the computations required by the decoder.

4.2 AAEs for stream-like data compression

In the following experiments, AEs are designed for stream-like data compression,
in which a number of samples are collected in a single sensing node for a period of
time before being transmitted to its destination. The DNNs are trained to learn how
to extract intrinsically temporal correlations from the collected data to generate a
compressed representation. The experiments are divided into two main sets, one
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involving noiseless compression and another that requires data compression with
noise removal. Altogether, the experiments show how increasing the model’s depth
impacts reconstruction error, and how the limited amount of training data impacts
the deeper models’ training. As discussed in chapter 3, lack of training samples can
be a common issue when training DNNs to deal with time-series data [36]. This can
be problematic when training models to handle complex tasks, which usually require
more training data. The experiments with noisy data enable this investigation, as
the problem becomes more complex than the first set of experiments because now
models need to learn how to perform data compression together with noise removal.
AAEs are fully-connected or can contain convolutional layers (Convolutional AAEs
(CAAEs)). Specifically, the latter group of AAEs shows the advantages of adding
NNs suited for exploiting data particularities, which in the following experiments are
short- and medium-term relations. Overall, the results show that AAE are capable
of delivering comparable performance to AEs. Moreover, it shows that the proposed
DNN is even capable of outperforming the symmetric AE, and is more robust to
shortage of training samples.

4.2.1 Experiment setup

The models are evaluated using temperature readings from a wireless sensor
node from the American River Hydrologic Observatory (ARHO). Specifically, a
node located near Caples Lake, in California. Samples were taken uninterruptedly
from June 2014 to October 2017, in regular intervals of 15 minutes. Usually, IoT
datasets are often challenging to handle due to inconsistent data generation rates
and variable data quality, which may hinder the interpretability of initial experi-
ments. Preliminary experiments identified the value of using the selected dataset,
and later introducing data irregularities into it, to aid result interpretation. All AEs
(AAEs included) are designed to take an array of 100 samples as input, and compress
them down to an array of 25 values. Thus, the sensor node forwards data every 1500

minutes or roughly a day’s worth of samples. This is not a result of the AEs com-
putation, but rather a limitation of the dataset adopted. Adopting a shorter period
between consecutive samples is sufficient if one desires a faster transmission rate.
Specifically, in the data compression with noise removal experiments, an array of
samples can be corrupted with Additive White Gaussian Noise (AWGN). Noise lev-
els can vary from 2.5 to 80 db Signal-to-noise ratio (SNR), and are randomly drawn
in the training phase. As the experiment results will demonstrate, training AEs to
perform data compression in the presence of noise compared to noiseless conditions.
This difficulty arises because the models must now learn both tasks concurrently,
highlighting the relation between DNN size and training sample availability.
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All models are trained using the same methodology. First, samples up to June
2016 were split to form the training set, whilst the remaining samples formed the
testing set. This means that approximately 60% of samples are used for training,
and the remaining 40% for testing. Additionally, training arrays were constructed
using a sliding window method to increase their numbers, adopting strides equal
to 10, 17 and 23. These values were selected to maximize the number of unique
training arrays, as these numbers are coprime. After this process, repeated arrays
were discarded. These decisions were adopted after early experiments indicated
that training with such a set allowed the models to generalize well. In addition
to this, models receive batches of 50 arrays at each training iteration, and their
reconstruction errors are measured using Mean Squared Error (MSE).

The Nesterov-acelerated Adam (NAdam) optimiser is used together with a re-
duce Learning Rate (LR) on plateau scheduling a and early stopping. NAdam is
a variation of Adaptive Momentum Estimation (Adam) optimiser [39] that adopts
Nesterov momentum [40] to speed the Stochastic Gradient Descent (SGD) conver-
gence [41]. Reduce LR on plateau is a scheduling policy that decreases the LR when
a model stops improving after a period of epochs b since the last best parameter con-
figuration was found. Using the validation set, each model performance is measured
after each epoch and the configuration that produced the lowest reconstruction error
is saved. In the experiments that follow, this period is set to be equal to 5 epochs,
after which the LR is reduced to 75% its original value, and the starting LR was
defined empirically for each AE configuration. Finally, the early stopping policy
consists of finishing the training process after the model stops improving. The early
stopping waiting period is set to 15, and its evaluation starts after the last update
of the reduce LR on plateau (when the smallest LR is achieved).

The code used in the experiments is written in Python, built using the
TensorFlow framework [42]. It is made available at a GitHub repository [43]. Each
model is trained 10 times, using different initial weights. The performance of each
model is evaluated by computing the average reconstruction error over all testing
arrays, and the reconstruction error of each array is measured using the MSE. Fi-
nally, in the case of the models trained to perform noise suppression, we assess their
robustness to noise using AWGN and the same SNR levels.

4.2.2 AAE configurations

All models are designed to reduce 100 temperature readings to a compressed
array of size 25. AAEs encoders consist of a single layer that is responsible for the

ahttps://keras.io/api/callbacks/reduce_lr_on_plateau/
bAn epoch refers to a single pass through the entire training set, encompassing all the available

samples.
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aforementioned compression. All hidden layers adopt Scaled Exponential Linear
Unit (SeLU) as the activation function, whilst the output layer activation function
is the sigmoid function, the latter a common choice for AEs. Because of this, each
sample array is normalized to fall within the sigmoid codomain. Consequently, the
maximum and minimum values of the corresponding batch are also transmitted with
the compressed data for reconstruction.

All fully-connected decoder configurations exhibit a gradual increase in the num-
ber of neurons per layer as they approach the output layer. As seen in Table 4.1,
arrows are used to highlight the data flow direction for all decoder configura-
tions. Fully-connected AEs are labelled using the notation “Autoencoder-Model-
DepthOfTheVaryingBlock”, adopting the decoder’s depth as the index of each model.
For example, the first AAE architecture (AAE-1) contains a single hidden decoding
layer between the decoder’s input (layer with 25 neurons) and output (100 neurons).
The symmetric AEs, against which we compare the proposed AAEs, have encoders
that mirror the configurations seen in Table 4.1, as in Figure 3.2. In the case of AE-
0, it refers to the shallowest symmetrical AE, which has only two NN layers, one
for encoding and another for reconstructing data. This is the base model, being the
simplest and starting model for evaluation, which is modified to achieve performance
enhancements.

Table 4.1: AEs and AAEs fully-connected decoder configurations
Label Layer sizes
AE-0 25 → 100

(A)AE-1 25 → 50 → 100
(A)AE-2 25 → 50 → 75 → 100
(A)AE-3 25 → 45 → 65 → 85 → 100
(A)AE-4 25 → 40 → 55 → 70 → 85 → 100

4.2.3 CAAE configurations

Intrinsic temporal correlations are an attribute present the data used in the
previous experiments, and are underused in the fully-connected models. Although
fully-connected AAEs exploit them to to a certain degree, their usage is enhanced
thanks to the inclusion of convolutional layers. These layers are added to the decoder
to encourage the utilization of short- and medium-term relations in the reconstruc-
tion process to a greater extent than in the previous AAEs. This approach aims to
leverage prior knowledge of the sensed signal to achieve performance improvements.
To distinguish it from the previous AAE, and because it has convolutional layers, it
is referred to as CAAE.
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All CAAEs proposed analysed in the following experiments are constructed mod-
ifying AAE-2 (seen in Table 4.1), replacing the layers that perform 50 → 75 and
75 → 100 transformations with convolutional layers. Another feature of the CAAE
is that no convolutional layer performs upscaling operations. Instead, data is up-
sampled by a factor of 2 before the last convolutional block (i.e., set of convolutional
layers). Finally, all data from the last convolutional block are fused together using
a convolutional layer with kernels with both size and stride equal to 1. This layer is
the CNN’s output, thus it also uses sigmoid as its activation function.

Table 4.2 brings the convolutional block configurations of each CAAE. Similar
to Table 4.1, the first index in the identifier reflects the decoder’s depth. Differently,
the second index reflects the complexity of the convolutional layers, with the higher
identifier reflecting the models with more kernels. Additionally, all kernels have a
size equal to 3, and the convolutional blocks can have an expansion factor of 4 or
8. This value represents the amount of spatial convolutional filters applied at each
input channel. Hence, for n input channels, if the block has t expansion factor, the
total number of kernels is nt. If nt is different from the number of output channels,
inter-channel mixing is applied. Similarly to the hidden layers of the previous AAEs,
we employ SeLU as the activation function of intermediate layers. Finally, regarding
CAAE-4.x models, the second convolutional block is an HDC.

Table 4.2: CAAE configurations
1st Conv. Block 2nd Conv. Block 3rd Conv. Block

Label nout exp dil nout exp dil nout exp dil
CAAE-3.1 4 4 1 4 4 1 - - -
CAAE-3.2 8 4 1 8 8 1 - - -
CAAE-4.1 4 4 1 [4, 2, 2] [4, 4, 4] [1,2,3] 8 4 1
CAAE-4.2 8 4 1 [4, 2, 2] [8, 8, 8] [1,2,3] 8 8 1

4.3 A resource-constrained friendly way to increase

AE’s depth

When working with DNNs, a rule of thumb when seeking performance improve-
ments is increasing the number of NN layers. However, this approach may be limited
or not possible when working with constrained devices. In the experiments that fol-
low, we will see this trend of improvement with deep symmetric AEs, and how the
proposed AAEs can accompany their symmetric counterparts. Moreover, the results
show that they can outperform the symmetric models while requiring fewer FLOPs.
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Figure 4.2: Mean reconstruction error for all symmetric AEs.

4.3.1 Increasing AE depth

Figure 4.2 brings a boxplot showing the distribution and the mean reconstruction
error for all analysed symmetric AEs. It clearly shows the advantages of increasing
the number of layers, especially compare AE-0 with the deeper configuration. Apart
from a single model that delivered a mean reconstruction error close to 0.176 MSE,
all AE-0 models were unable to outperform any of the deeper AEs. Moreover, the
models that delivered the lowest reconstruction error are those with at least seven
NN layers (AE-2 and deeper configurations). However, when observing the median
(red horizontal line segment) and the mean (dark red diamonds) of these models, it
is noticeable that there is no significant gain when opting for a model with more than
two hidden decoding (and encoding) layers. Notice that, by increasing the number
of layers symmetrically, we are adding two more layers compared to the previous
configuration, adding one layer at the encoder and another at the decoder. Hence,
the deeper models have a significant amount of parameters to adjust, requiring
more training data. This is another problem that may occur when deploying deep
symmetrical-AE architectures in IoT networks, as the amount of data on a particular
phenomenon can be limited. As will be seen later with our proposed models, this
issue is minimized significantly.

Table 4.3: Number of parameters and FLOPs needed for each compression in each
AE encoder.

Conf. Numb. Params. FLOPs
AE-0 2525 5025
AE-1 6325 12575
AE-2 12650 25150
AE-3 18295 36370
AE-4 21775 43275

Before moving on to the AAEs, it is important to quantify the increase in size
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of the encoders. Table 4.3 brings the number of trainable parameters (weights
and biases) in the encoder of each AE configuration. The number of parameters
grows considerably as the number of layers increases. For instance, to achieve the
performance gains in Figure 4.2, the number of encoding parameters more than
doubles from AE-0 to AE-1, and doubles going from AE-1 to AE-2. Moreover,
this issue tends to worsen when dealing with more complex data, which requires
more layers and neurons. The proposed AAEs are an alternative to minimize these
problems. Even if quantization is adopted later, starting with a model that is already
more compact can lead to even more space conservation. For instance, this can be
beneficial when envisioning that multiple models can be stored in a sensing node
to deal with data collected from multiple phenomena [23]. Current quantization
methods can reduce a maximum of 4 times the original size at best, meaning that
we can still face storage and energy problems when adding multiple DNNs in a single
resource-constrained node.

Another issue with increasing AE size is the increase in encoding computations.
Table 4.3 brings an approximation of FLOPs for each encoder (ignoring the FLOPs
that SeLU may impose). As discussed in chapter 3, this can give us a good es-
timate of the number of computations needed to generate one compressed array.
For instance, when opting for AE-1, the amount of FLOPs more than doubles in
comparison with AE-0. Moreover, if we opt for AE-2, which was one of the best-
performing models, the resulting encoder imposes FLOPs that are more than five
times higher than those of AE-0. Adopting a similar analysis as Alsheikh et al. [15],
which computed the power consumption in an MSP430 microcontroller, these in-
creases in FLOPs lead to about 4.02 mJ and 10.71 mJ more energy spent in each
data compression (appendix 4.A). AE-0 spends 2.65 mJ per compression. Thus,
opting for AE-1 nearly triples power consumption, and AE-2 spends more than five
times more energy. This trend tends to worsen with more complex data because
they will likely require models with more neurons and encoding layers. Additionally,
other factors, such as sampling rate, can increase sensor node power consumption.
The proposed AAE addresses this computational problem by showing that perfor-
mance improvements are possible even when we keep AE-0’s encoder configuration,
showing that these implementation issues can be mitigated through a different AE
design.

4.3.2 AEs vs. AAEs

Figure 4.3 shows that the AAEs keep the trend of improvement as we increase
the number of layers. Recall that the AAE have the same encoder configuration
as AE-0, meaning that they have the same number of encoding parameters and
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Figure 4.3: Comparison between the mean reconstruction error distribution of the
proposed AAEs against their symmetrical counterparts.

impose the same number of FLOPs shown in Table 4.3. The additional layers
are inserted in the decoder, to be implemented away from the resource-constrained
devices. However, it is noticeable that the advantage of the asymmetric design starts
to appear with AAE-2, model with three decoding layers. Interestingly, this is the
AAE with the same number of NN layers as AE-1 (both have 4 NN layers in total),
and they have comparable performance. This suggests that, at least for this and
similar scenarios, the number of NN plays a more significant role than encoder-
decoder layer disposition. For example, it is noticeable that their medians and
means are less than 0.001 MSE apart. Considering computation demands, AAE-2
is more advantageous for resource-constrained implementations because it requires
5025 FLOPs per data compression, whilst AE-1 takes 12575. This is less than half
the computation needed in the symmetric model.

Moving on to the deeper architectures, the advantages of the proposed AAEs
become more evident. AAE-3 and AAE-4 not only have comparable performance to
AE-2 and deeper configurations but are also capable of outperforming them while
requiring five times fewer parameters and FLOPs, at least. First, they are capable of
delivering a similar performance, evidenced by the observation that AAE-4 and AE-
4 have similar error distributions, with AAE-4 having a slightly better performance.
For instance, the third quartile of AAE-4 (topmost side of the box) is almost equal
to the AE-4 median. Additionally, we can observe that some deeper AAEs are
capable of outperforming most of all trained AEs. Observe in the graph that the
median of both AAE-3 and AAE-4 are below the medians of AE-3 and AE-4. Given
that the AAEs have an encoder with the same size as AE-0, they appear a better
choice for the analysed scenario. Opting for either of the two AAE configurations
instead of AE-3 and AE-4 means that we are saving seven times fewer FLOPs per
compression operation, at least. Thus, AAEs can be a valuable alternative for
resource-constrained devices.
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Figure 4.4: The mean reconstruction error distribution of the proposed CAAEs
compared with the best-performing AEs and AAEs.

4.3.3 Exploiting temporal correlation with CAAEs

Figure 4.4 shows the performance of the CAAEs, comparing them with the best
models so far. These results show the advantages of adding convolutional layers to
the asymmetrical architecture. To illustrate this, notice that the models achieving
the best results among all configurations are constructed with HDC blocks, and that
even the worst-performing CAAE models outperform all AEs and AAEs seen pre-
viously. This is another positive result for the proposed asymmetrical architecture,
emphasizing that we can seek performance improvements by adding new features to
the decoder that absent in the encoder. However, Figure 4.4 shows that the results
obtained with CAAEs have more variance than those obtained with our previous
architectures. For the sake of fair comparison, we adopted the same training param-
eters for all models. Hence, it is possible this variance can be attributed to poorly
defined training parameters, and it is possible to reduce this variance by adopting
more appropriate training parameters.

Analysing solely the CAAEs results, the fact that the models with an HDC block
present the best results highlights the advantages of employing a layer with distinct
dilations. By doing so, we ensure that the kernels learn to extract distinct features
because the HDC kernels are operationally distinct. Moreover, these features are
complementary, given they are obtained in different resolutions. We know that
temporal data have short- and medium-term relations, meaning that a CAAE with
HDC is more suited to extract them than a CAAE that don’t have this convolutional
block.

When comparing CAAE-4.1 and CAAE-4.2, we observe that adding more con-
volutional filters (through the expansion factor) seems unnecessary. This appears
similar to the results in Figure 4.3, when comparing the deeper AEs and AAEs con-
figurations. This suggests a ceiling in performance or indicates the occurrence of an
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Figure 4.5: Comparison between proposed AAEs and AEs reconstruction errors
and encoder FLOPs demands. Performance improvements are possible without
increasing the encoder’s FLOPs, with CAAEs outperforming the deep AEs.

overfitting due to lack of training data. However, as will be seen in our next exper-
iments with noise, this can be attributed to the problem’s relative simplicity rather
than a shortage of training data. For example, increasing the number of kernels is
advantageous when comparing the performances of CAAE-3.1 and CAAE-3.2, which
have convolutional kernels with the same dilation. Compression without denoising
is a more straightforward task, suggesting that having a lot of convolutional kernels
becomes unnecessary when deploying the HDC block, given its improved capacity
to extract distinct and complementary features.

4.3.4 Reconstruction error and encoder requirements

In addition to results shown previously, Figure 4.5 shows the mean reconstruc-
tion error of each AE configuration, considering the number of FLOPs needed for
each data compression. In it, we can see the advantages of opting for the asymmet-
rical approach. By bringing the encoding computation values compiled in Table 4.3,
we can put the reconstruction results in perspective to the encoding demands of
each AE. First, we observe that adding more layers and features to the AAE’s
decoders enhances the model’s performance without incurring more FLOPs. Ad-
ditionally, as the CAAEs results show, we can add new features to the decoder to
improve data reconstruction, allowing us to outperform the symmetric and costly
AE. Overall, combining these results with the ones previously discussed, we can see
that AAEs can offer designers a more compact model capable of rivalling the deep
AE configurations without increasing encoder implementation costs, which can help
its implementations in resource-constrained devices.
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Figure 4.6: Mean reconstruction error for all symmetric AE.

4.4 Dealing with noisy data

Requiring that AEs are also capable of removing noise from data can impose
a challenging scenario for the models to be trained. Not only must all AEs learn
how to perform data compression, but also they must learn how to perform noise
suppression. Our experiments show that this is particularly challenging for NNs with
multiple trainable parameters, which need a lot of data to adjust their parameters.
Hence, in this scenario, data shortage problems, which was an issue when training
models with multiple layers, tend to be aggravated.

4.4.1 Increasing AE depth

Figure 4.6 shows the mean reconstruction error for all symmetric AEs. The
first noticeable result in this figure is AE-0 being outperformed by all other AEs,
and by a considerable margin. For example, even when AE-0 is subject to high
SNR levels, it offers a higher reconstruction error than the AEs deeper than it in
worse noise conditions. All AEs except AE-0 deliver a mean error below 0.185 MSE
under SNR levels equal to 10 db, whereas the base model’s mean error at 80 db
is almost equal to this value. Later, when comparing these symmetric AEs with
AAEs, it becomes clear that the proposed models are fundamental to enabling AEs
with a single encoding layer to match or even surpass the performance of models
with multiple encoding layers.

The second noticeable result is that AE-2 and AE-3 outperform AE-4, which is
the deepest AE configuration. The difference is even more significant when com-
paring AE-3 with AE-4. Figure 4.10 brings a more in-depth analysis of the AE
performance under SNRs equal to 5 db and 40 db, showing that most of the models
constructed with the AE-2 architecture deliver better reconstruction errors than the
deeper symmetrical models. This is particularly pronounced in the scenario with
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(a) Reconstruction error with SNR=5 db.

(b) Reconstruction error with SNR=40 db.

Figure 4.7: Reconstruction error for all fully-connected autoencoders.

more noise, as most AE-2 models are among the best-performing symmetric models
(Figure 4.7(a)). Notice that under 5 db SNR, nearly all AE-2 models deliver a lower
reconstruction error than all AE-4 models, and surpass at least half of the AE-3
models, given that they are below AE-3’s median. We can attribute this as being
another limitation of employing deep NN architectures to deal with problems that
have low availability of training data. The scenario at hand here is more challenging
than the previous noiseless experiments because now models must also learn how to
remove noise from the sensed signal. This suggests that more samples are needed
to train deeper models to perform both tasks simultaneously. Because the pro-
posed AAE usually have fewer adjustable parameters than the symmetric models,
the necessity of more training samples is another issue that can be worked around.

4.4.2 AEs vs. AAEs

Figure 4.8 shows the mean reconstruction error for the proposed AAEs (continu-
ous lines) in comparison with their symmetric counterparts (dashed lines). Focusing
solely on the models with 2 hidden decoding layers or less, we can observe that shal-
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Figure 4.8: AAEs mean reconstruction error results compared with the symmetric
counterparts. Models with the same colour scheme have the same decoder layout.

low AAEs do not fall behind their symmetric counterparts. Furthermore, AAE-2
was able to deliver a performance nearly identical to AE-1. Remember that these
models have the same number of layers, which makes the former a more sensible
choice for a resource-constrained implementation. Additionally, unlike observed with
AEs, the deeper models keep the improvement trend seen in the noiseless scenario
as the number of layers increases. The error obtained with a deep AAE is always
below shallower configurations across all SNR levels above 5 db, which was not the
case with the AEs. This is more evident when we observe the boxplots in Fig-
ure 4.7. Moreover, noticing that the median of AAE-4 in both plots is below all
configurations, we observe that the deepest AAE architecture outperforms all AE
models. These results suggest that the proposed AAEs is more robust to training
sample shortage discussed earlier, and that they also fit well in IoT compression
scenarios that need noise suppression. Another result shown in Figure 4.8 is that
for SNR ranging from 20 db to 80 db, the performance of all models is seemingly
the same, that is, there is no significant performance degradation as we increase the
noise levels. Also, the performance drop from 20 db to 10 db is not very eminent, in
comparison with the drop from 10 db to 5 db and from the latter to 2.5 db. Both
results suggests that the proposed training methodology is successful. However, we
expect that the adoption of regularizers to assist the AAEs in learning denoising
can improve results for higher noise levels.

Figure 4.7 shows that the relative performance of all models has minimal changes
when the noise level increases. The overall performance of all AEs and AAEs is
similar in both graphs, and there is also consistency in the variance among AEs
that have the same architecture. This suggests that models that perform well at low
noise levels tend to deliver the smallest reconstruction error in worse noise conditions.
However, as discussed earlier when AE-2 performance at 5 db was compared with
the deeper AE models, the loss in performance is more pronounced with the deeper
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Figure 4.9: CAAEs mean results, in comparison with the AAEs and AEs with
similar decoder depth.

AE architectures. This is not an issue with the AAEs, as the deeper models that
performed well at high SNR levels still outperform the other AAEs when the SNR
levels are lower. This suggests that deeper AAEs are less sensitive to noise than
their symmetrical counterparts. Thus, one can expect that AAEs are well-suited to
concurrently perform the compression and denoising tasks simultaneously. Besides
having an encoder with fewer parameters to store and computations to perform,
the fact that they have fewer layers overall in comparison with the symmetric ones
means that they require fewer training samples to adequately learn complex tasks.

4.4.3 Exploiting temporal correlation with CAAEs

Figure 4.9 shows the mean reconstruction error of the proposed CAAEs in com-
parison with the AEs and AAEs with similar decoder depth, i.e., models with three
or more hidden decoding layers. Note that the CAAEs keep the performance im-
provement trend seen with the other AAEs. Furthermore, combining these results
with those found with the other asymmetric models, and noticing that they all have
the same encoder configuration as AE-0, it is noticeable that the main contribution
of the proposed asymmetric architecture is opening new opportunities for perfor-
mance improvement that don’t rely on more encoding layers. So, by constructing
decoders with enough resources and capable of exploiting the distinctive features of
the phenomenon of interest, one can design AEs with a limited number of encoding
layers that can overcome the lack of encoding layers.

Figure 4.10 presents a detailed analysis of the CAAEs alongside the best-
performing AE seen previously. Similarly to Figure 4.7, the overall dispersion of
the CAAEs under different noise levels is almost unchanged. This is another result
that backs our assumptions that asymmetric autoencoders performing well with low
noise levels tend to be the best models when the level of noise increases. How-
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(a) Reconstruction error with SNR=5 db.

(b) Reconstruction error with SNR=40 db.

Figure 4.10: In-depth look of best-performing autoencoders.

ever, Figure 4.10 brings an additional result when compared with Figure 4.4, which
showed CAAEs performance with noiseless data. Different from the latter, where
adding more kernels seemed irrelevant, CAAE-4.2 benefits from the greater number
of filters. This suggests that one can experiment with adding more kernels to the
convolutional blocks, to assess if more filters can improve the CAAEs performance
in a more complex task. Given that these changes are done to the decoder, the
resource-constrained device where the encoder will be implemented is oblivious to
changes in the CAAEs design.

4.5 Conclusion

An important concern when implementing DL-based solutions in IoT networks
is the burden they may pose to sensing and actuator nodes. Typically, NN models
require significant storing and computational resources that resource-constrained
devices may not provide. Therefore, there is a need to explore alternative NN
architectures. Recently, many solutions that resort to AE have been proposed to
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handle IoT data. Among them, AEs were shown to be useful in data compression
and noise suppression applications. However, the typical AE architecture does not
scale well for IoT deployment, as increasing the number of encoding layers poses a
problem for implementing AE-based solutions in resource-constrained nodes. Hence,
to alleviate NN’s implementation in this and similar scenarios, AAE is proposed as
an AE variation in which the number of layers (and other computational resources)
is greater in the model’s decoder than in the encoder. This offers an alternative that
can shift the bulk of the computation away from IoT nodes.

The results show that the adoption of the proposed AAEs suits well IoT sensing.
These asymmetric models have encoders with fewer parameters and that require
fewer FLOPs per data compression operation. The AAEs are capable of delivering
reconstruction errors that can rival their symmetric counterparts, and can even
outperform them. Additionally, AAEs seem to be more suited for the scarcity of
training samples, a problem that may appear in many IoT settings. This assertion
is based on results that keep the performance improvement with depth increase
in both scenarios analysed, whereas symmetric AEs fail to keep this improvement
trend. Especially when trained to perform denoising together with data compression,
the deeper AE models stopped showing significant improvements, likely due to the
shortage of training samples. Furthermore, the results of the CAAEs show that we
can pursue further performance improvements by modifying the decoders to exploit
the particularities of the phenomenon of interest. Given that the signal used in
the experiments has temporal correlations, the reconstruction error of the recovered
signal was minimized by adding convolutional layers to the decoder. Hence, the main
result presented in this chapter is that one can construct encoders with a limited
number of layers and improve feature extraction by adding more resources to the
decoding block and exploiting prior knowledge about the sensed signal. This offers
an alternative approach that can be helpful when designing AE-based solutions for
resource-constrained devices in IoT networks and other scenarios that share similar
problems.

4.A Energy Consumption Estimation

According to Alsheikh et al. [15], one clock cycle in an MSP430 microcontroller
accounts for 1.85 nJ . Additionally, each multiplication and addition operation re-
quires 395 and 184 clock cycles, respectively. A matrix multiplication between an
M × N matrix and an N × 1 vector takes M × N multiplications and M × N − 1

additions. Hence, in each encoding layer, we have

(395MN + 184M(N − 1) + 184N) · 1.85 nJ.
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Thus, recalling the encoder configurations in Table 4.1,

• AE-0 consumes approximately 2.65 mJ ;

• AE-1 consumes approximately 6.67 mJ ;

• AE-2 consumes approximately 13.36 mJ .
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Chapter 5

Semantic Segmentation with
Early-Exit DNNs

Usually, a deep DNN is needed to address complex problems. An NN with more
layers and more powerful computing features can extract and construct complex
features. Thanks to mechanisms like residual connections, constructing models with
hundreds of layers is a reality [33], and we can expect that constructing DNNs with
many more layers will be possible in the future thanks to the continuing advances in
NN theory. Advances that can lead to new layers and model configurations, which
themselves can lead to deeper and more complex implementations. However, deep
DNNs can be difficult to implement in resource-constrained and latency-sensitive
scenarios [6, 13, 20]. An alternative to address these issues is to lower implementation
complexity through model compression, quantization, and pruning (see TinyML in
chapter 2) at the expense of reduced inference precision [20]. Another alternative lies
in the fact that simpler data can be classified using features extracted in layers close
to the DNN’s input, making further processing in the remaining layers unnecessary
[12, 20]. Thus, constructing a model that takes this into account can be beneficial.

Early-Exit DNN (EE-DNN) is a multi-output NN implementation that allows
simpler input data to be inferred using features extracted in early layers. Together
with DNN partitioning, these models were shown as a valuable tool to develop image
classification in edge-cloud co-inference [13, 22], where applications resort to cloud
resources only when strictly necessary. Thus, it is only natural to try to replicate this
success in other CV problems. However, inserting early exits in CNNs, backbone
of almost all CV-related DNNs, can be challenging because early layers work with
high-dimensional data [20]. In the case of semantic segmentation, these issues can be
aggravated because DNNs need to extract features in multiple resolutions and pre-
serve localized information. The following experiments show how to construct and
train EE-DNNs to perform semantic segmentation, and how useful these exits can
be to applications like autonomous driving. Moreover, the qualitative results show
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the usefulness of EE-DNNs in semantic segmentation, as even coarse segmentations
can be good enough to supply time-sensitive applications.

5.1 Problem description and proposal

CV is an area that involves designing models for image-like data processing to
perform tasks involving picture captioning, object classification and tracking, image
segmentation, etc. ML models, and in particular DL, are very successful in CV
problems because they can automate the process of selecting feature extractors [25],
making the design CV applications more accessible to non-experts in image process-
ing. Additionally, DNNs are now state-of-the-art in many CV datasets and applica-
tions [1, 25]. Because of these reasons, many areas like autonomous driving, smart
health and environment monitoring resort to DL-based solutions to design their
CV-based applications [1]. Moreover, thanks to the recent abundance of cameras
in urban environments, paradigms like vision-aided wireless communication [7, 44]
aims to incorporate CV-generated data to help urban and infrastructure applica-
tions (in the example, communication applications). Incorporating visual data in
applications where they are now absent or underutilized can enhance information
quality and diversity, leading to better decision-making.

Among CV problems, semantic segmentation is concerned with pixel-level classi-
fication with which we can segment an image into identifiable instances, identifying
which elements are present in an image and determining their respective areas [1].
When compared with image classification, it moves from identifying if a certain class
is present to partitioning an image into regions, each belonging to a class. For exam-
ple, Figure 5.1 shows an example of a semantic segmentation application that has to
identify objects of interest within an image, identifying their position and the area
they occupy. If given the picture seen in Figure 5.1(a), a model trained in semantic
segmentation to identify people and vehicles in the foreground needs to distinguish
between cyclists and their bicycles. Moreover, each pixel should be assigned to a
class of interest so that collectively identify the objects found. Hence, if designed
correctly, the model produces the image seen in Figure 5.1(b).

Because we shift from traditional image classification to pixel-level classification,
training a DNNs for semantic segmentation can be more challenging than the for-
mer for at least two reasons. First, it requires that feature maps carry localized
information [31]. This means that each layer must learn how to extract and pre-
serve information that links each feature to the location it belongs in the image.
In DNNs this is particularly important for information extracted in early layers, as
they can be lost as data moves towards the DNN’s output. Hence, besides learning
which features are relevant and how to extract them at each NN stage, models must
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(a) Original image. (b) Segmented image.

Figure 5.1: Example taken from Pascal VOC 2012 dataset [45] showing how semantic
segmentation works. The goal is to segment the image into the correct classes,
outlining and showing the area they occupy.

learn how to preserve the information of where each component is found in the im-
age. Secondly, objects of interest can appear in distinct resolutions [31], meaning
that a DNN trained for semantic segmentation should be capable of extracting and
combining features coming from multiple resolutions.

EE-DNNs and DNN partitioning

Thanks to advances in hardware and more availability of training data in the
years 2010s, designing and training DNNs with multiple layers became possible [5].
Using models with multiple layers can enhance NN capacity to extract complex fea-
tures because it can fuse information obtained in earlier layers. And with advances
like residual connections [32], stability issues that come with training a DNN with
hundreds of layers or more were mitigated significantly. Thus, many state-of-the-art
DNNs contain a lot of layers and other computational structures, and it is a com-
mon design choice to add more layers and other resources to enhance these models’
performance. Although beneficial when dealing with complex problems, deploying
a DNN with many layers in a resource-constrained and latency-sensitive scenario
can be difficult because the number of computations needed to reach the model’s
output can quickly pile up. Hence, a significant effort in paradigms like TinyML
is being spent trying to simplify these models at the expense of reduced inference
precision [20]. However, in many applications, simpler data can be accurately or sat-
isfactorily classified using simpler features extracted in early layers [12, 20]. In these
cases, traversing the whole DNN is unnecessary, and having a smaller NN would
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(a) Regular DNN.

(b) EE-DNN.

Figure 5.2: Comparison between a DNN and an EE-DNN. In grey, we see the base
DNN, which serves as the backbone of the EE-DNN. In dark cyan, the inserted
early exits. The width of the vi blocks reflects the number of layers.

be desirable. Moreover, researchers observed that sometimes classes that would be
correctly classified in smaller implementations can be misclassified in deep imple-
mentations, in a phenomenon referred to as “over-thinking” [20]. Thus, constructing
a model that enables simpler data to be inferred using fewer layers and that resorts
to all its available capacity only when necessary can offer the best of both worlds.
EE-DNNs is an alternative DNN design that aims to do just that.

An EE-DNN is a multi-output DNN that modifies a regular NN architecture by
inserting additional exits that are connected to intermediate layers [12, 20]. These
additional exits, which are also referred to as side branches, use features extracted
from the connected layers to perform an early inference attempt. If the generated
output has a satisfactory level of confidence, it can be used in time-sensitive appli-
cations as auxiliary data or even as the final inference of an EE-DNN. Additionally,
each exit and the layers of the base DNN (original model without early exits) con-
nected to it make up a smaller NN. Thus, EE-DNNs offer a framework where we
shift from searching from a single efficient NN to process all data to an approach that
aims to construct “multiple NNs” that can minimize computations for the majority
of inputs [20]. Figure 5.2 shows a comparison between an EE-DNN with a regular
DNN. In dark cyan, we can see the early exits that are attached to a base DNN (in
gray), connected to early layers from where they will receive feature maps they will
use in their inference attempts.

Storing large DNNs resource-rich servers, such as the cloud, is another common
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approach to execute DNN-based applications on resource-constrained devices. How-
ever, this approach can be problematic with latency-sensitive applications because
communicating with the cloud can add significant delays. Moreover, constantly
transferring high volumes of data can be power-demanding. In an EE-DNN, data
flow to an early exit forms a smaller NN, if we ignore the other exits. DNN parti-
tioning is an NN implementation approach that exploits this characteristic by dis-
tributing layers between edge and cloud instances, bringing parts of a model closer
to end devices [13]. In scenarios where a base DNN is resource-demanding, layers
connected to early exits can be placed in local or edge devices to offer a lightweight
and latency-efficient NN. Now, transferring data to the cloud is restricted solely to
samples that are difficult to classify, cases in which the whole base DNN is needed.
Returning to Figure 5.2(b), when using DNN partitioning, layers that come before
bn can be distributed among different instances close to end devices to offer a com-
putationally efficient and faster inference, whereas the base DNN layers associated
with vn+1 are stored in the cloud.

Early-exit semantic segmentation

Usually, images are high-dimensional data. DNNs that deal with this type of
data tend to require high quantities of computational resources. Additionally, a
common design decision is to increase the number of convolutional filters in layers
close to the model’s exit, enhancing the diversity of extracted features and enabling
more combinations of features from earlier layers. However, in image classification,
data dimensionality tends to decrease, which can prevent these computations from
dramatically increasing. But problems like semantic segmentation may be harmed
by severe dimensionality reduction [10], so they usually work with high-dimensional
data throughout all DNN layers. Hence, it can be hard to employ a DNN trained
for semantic segmentation in resource-constrained devices. Further, delays involved
with transferring images to the cloud can be harmful to latency-sensitive applica-
tions, and running DNNs in non-cutting-edge equipment can introduce processing la-
tency that can compromise these applications. For these reasons, EE-DNN together
with DNN partitioning can be key components when offering semantic segmentation
and other CV problems that share similar problems with resource-constrained and
latency-sensitive applications.

Constructing EE-DNNs from CNNs can be difficult [20]. In these NNs, early
layers usually work with very high-dimensional data, resulting in extremely high-
dimensional classifiers [20]. EE-DNNs are very successful in image classification, as
can be seen in the numerous research results [13, 22]. Thus, it is only natural to try to
replicate this success with other CV problems. In particular, semantic segmentation
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Figure 5.3: Proposed EE-DNN for semantic segmentation, showing early exits’ out-
puts and an illustration of how this DNN can be partitioned. The early exits are
the results of the proposed model, to be seen in the remainder of this chapter.

poses new challenges to EE-DNN design. Different from typical image classification,
preserving localized information is important to semantic segmentation, and so is
the extraction and fusion of features in multiple resolutions. Additionally, the early
exits in EE-DNNs designed for image classification usually use strong dimensionality
reduction procedures such as pooling and other downsampling operations [20]. These
procedures don’t work well with semantic segmentation, as they can cause loss of
feature resolution and destroy localized information [10].

Figure 5.3 brings a sketch of the proposed EE-DNN. The idea is to address the
design difficulties that semantic segmentation imposes, showing that the advantages
of early exits for semantic segmentation can go beyond the production of a faster
“final answer”. Different from image classification, which assign a single or multiple
labels to a whole picture, an EE-DNN trained for semantic segmentation can pro-
duce a crude segmentation that is detailed enough for time-sensitive applications.
Figure 5.3, which brings images generated from the proposed EE-DNN, shows that
early exits are capable of delivering an inference that can show the main elements
of the inserted figure, albeit with a poorer quality in relation to the ground truth.

5.2 An EE-DNN for semantic segmentation

The experiments aim to investigate the feasibility of designing EE-DNNs for
semantic segmentation. Because this CV problem needs the preservation of charac-
teristics that can be different than image classification, some EE-DNN design choices
used in the latter scenario are not suited for semantic segmentation. In the following
experiments, side branches are added to a pre-trained DNN with multiple layers, to

47



emulate a real scenario in which we want to partition a working DNN among different
instances (e.g. edge, cloud). The results show that early-exit semantic segmentation
is possible, showing design choices that should be considered when constructing an
EE-DNN for this CV application. Additionally, they demonstrate the usefulness of
early-exit semantic segmentation for applications that require low-latency responses
and resource-efficient computations, and manners to determine when the inference
process should stop, i.e., when an image can exit on a side branch.

5.2.1 Experiment setup

Experiments are performed using the Pytorch [46] framework and are available
at GitHub [47]. The EE-DNNs were trained using the PASCAL VOC 2012 semantic
segmentation dataset [45], a dataset compiled for a computer vision competition, in
which many DNN-based solutions are state-of-the-art. It consists of 2913 coloured
images with 6929 identifiable objects that belong to 20 distinct labelled classes,
such as people, some groups of animals, vehicles, and indoor objects. These images
are split into two approximately equal-sized sets of images, by the decision of the
dataset administrators. In the experiments, one of these sets is used as the training
set, whereas the other is split into 60% and 40% for testing and validation sets,
respectively. This gives a 50 : 20 : 30 division of samples for training, validation,
and testing, respectively.

All training images are scaled to have a size equal to 256 × 256. To increase
training sample diversity, each training image can be modified in a manner that
its brightness, saturation, contrast, and hue can be altered a. This modification is
applied solely to the original image, and the model has to learn how to deal with
this corruption to generate the correct segmentation. This can aid in training by
generating new data not present in the original dataset while preserving the main
features of images that we want the models to learn. During each training iteration,
the samples are grouped in batches of 10 image and fed into the model’s input layer.

Training uses the Lovász-Softmax loss function to train EE-DNNs, an extension
of the regular Mean Intersection over Union (mIoU) [48]. mIoU is the metric of
choice of most semantic segmentation papers and is defined as

mIoU(Y, Ŷ ) =
1

|C|
∑
c∈C

Yc ∩ Ŷc

Yc ∪ Ŷc

(5.1)

=
1

|C|
∑
c∈C

TPc

TPc + FPc + FNc

, (5.2)

ahttps://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.
html
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where Yc and Ŷc are the images containing the ground-truth and guesses of class c

(TP and FP are the true and false positives, FN is the false negative). Essentially,
it averages out the sum of IoU of each class, meaning that it can penalize models
that are “specialists” in a few classes. Additionally, SGD optimizer is used with
momentum equal to 0.9 and weight decay 5.10−4, and adopt

lrk = lrbase

(
1− k

max_.iter

)p

as LR scheduling, similar to the one adopted in Berman et al. [48]. Parameter
p = 0.9 and k is the epoch’s index. After preliminary analysis, the starting LR of
each EE-DNN components are lrbase = 2.5 · 10−4 for the branches, lrbase = 2.5 · 10−6

for the base DNN, and lrbase = 2.75 · 10−4 for the original output layer. After each
epoch, the trained model is evaluated with the validation set, and the best weight
configuration, i.e., the one that obtained the best results in the validation set, is
saved as the final model. In the following experiments, EE-DNNs by computing the
average of the mIoU of all exits, which includes all side branches and the base DNN
original output layer.

5.2.2 EE-DNN Models

The base DNN used in the experiments is a pre-trained DeepLabV3, available
with torchvision [49] module. Specifically, it consists of a modified ResNet-101,
which is a backbone of many CV-oriented DNNs that is 101 layers deep [32]. The
inserted branches are similar in structure to the output of the regular DeepLabV3
network, meaning that they also employ ASPP layers, Hence, even at high res-
olutions, we can take advantage of the atrous convolution to extract the needed
low-resolution features. However, layer positioning is not as straightforward as in
the typical image classification because the side branches impact the intermediate
feature maps. For instance, in early experiments, a significant performance loss was
observed at DeepLabV3’s output layer when making its parameters equal to the
pre-trained model. To this, we can attribute the fact that the branches modify the
layers that preceded it to ease the features’ localization, thus impacting the feature
maps of the remainder of the backbone DNN.

Models are constructed with 3, 5, 7 or 9 early exits. As will be seen in the ex-
periment results, the number and the proximity of exits can be crucial for training
EE-DNNs for semantic segmentation, even if some side branches can be removed af-
ter training completion. These exits are inserted at approximately the same distance
in terms of FLOPs. By measuring FLOPs we can have a rough estimate of both
energy consumption and inference time [37]. So, if we can reduce FLOP, we can
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expect these two requirements to decrease. Considering that no branch is stored in
the cloud, which will store the remaining layers leading to the model’s output (see
Figure 5.3), early exits can be split between the local device and the edge based
on the requirements of applications and devices. For example, when dealing with
resource-constrained devices we can add more branches in the edge, whereas we can
opt to place more branches in local devices when dealing with time-sensitive appli-
cations. Additionally, in order to reduce the number of FLOPs of the overall model,
some layers can be discarded after the training is complete. As the results will show,
layers that are close together tend to have similar performance and can be consid-
ered redundant in the proposed EE-DNN. Finally, because DeepLabV3 is used as
base DNN, the models are referred to as Branchy DeepLabV3 (BranDeepLabV3).

5.3 First experiments

The first set of experiments is concerned with checking the viability of construct-
ing an EE-DNN for semantic segmentation, addressing its difficulties and analysing
possible applications. It starts observing how adding and training side branches
impact the base DNN parameters in a manner that can affect the original output.
Next, the mIoU of each exit and the number of FLOPs needed to generate each
segmentation are computed. These values are obtained using 256× 256 images, the
same size used in the training process, These values enable us to assess the trade-
offs between inferring in an early exit or going all the way towards the final output
layer. Finally, a qualitative analysis using some images shows that early exits can
be useful in delivering coarse segmentation that can assist low-latency applications,
even when these exits have low mIoU. These final results show that we can identify
the main features or some classes in these crudely segmented images.

5.3.1 Difficulties in training

As discussed when presenting the LR parameters, the early exits impact the per-
formance of exits that come after it. In earlier experiments, this impacted the per-
formance of the EE-DNN final exit negatively, which was the main reason why it was
decided to adopt a slightly lrbase for this exit. To illustrate this problem, Figure 5.4
shows how the auxiliary exits still impact the original output layer at the beginning
of training, even after this LR changes. Recalling that the BranDeepLabV3 is built
on top of a pre-trained model, we can see a behaviour in which we start with a dip in
the last exit’s performance until it stabilizes (around epoch 5) and starts improving
again. Although fluctuations in performance are expected, this dramatic fall can be
caused by the changes promoted by the early exits. Because semantic segmentation
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(a) Exits of the BranDeepLabV3-3. (b) Exits of the BranDeepLabV3-5.

(c) Exits of the BranDeepLabV3-7. (d) Exits of the BranDeepLabV3-9.

Figure 5.4: Early results on the validation set showing how the additional exits
worsen the original outputs performance at the beginning of the training process.
This suggests that the parameter modifications they promote impact the NN output
layer.

Table 5.1: BranDeepLabV3-3 performance
b1 b2 b3 out

mIoU 0.255 0.527 0.662 0.701
FLOPs (G) 20.49 30.83 51.44 60.60

requires localized information, it is more sensitive to feature map changes. Likely,
significant parameter changes occur at the beginning of the training process, and as
the training progresses these changes become more subtle. For instance, notice in
Figure 5.5 how the output layer’s performance starts improving after epoch 5, when
the early exits exhibit a mIoU difference below 0.02 between consecutive epochs.
These parameter changes impact intermediate feature maps, meaning that layers in
later stages must learn how to adapt their parameters to handle these changes. Once
changes become more subtle, this adaptability process became more simple. How-
ever, although a promising explanation, further investigation is needed to determine
if other factors are producing these phenomena.

5.3.2 mIoU results

The pre-trained DeepLabV3 has mIoU = 0.707 in the test set, before training.
In the experiments, we first explore how varying the number of insertion impacts the
quality of the trained branches and the DeepLabV3 original output performance,
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(a) mIoU progression. (b) mIoU differences.

Figure 5.5: Early results BranDeepLabV3-7 on the validation set. Notice that after
the consecutive epochs exhibit a mIoU difference below 0.02 in all early exits, the
original output’s performance starts improving.

Table 5.2: BranDeepLabV3-5 performance
b1 b2 b3 b4 b5 out

mIoU 0.201 0.340 0.528 0.666 0.686 0.703
FLOPs (G) 17.04 23.94 30.83 51.44 56.02 60.60

given the problems exposed in the previous subsection. Tables 5.1-5.4 show the
mIoU (Equation 5.2) of each exit and the number of FLOPs needed to reach each
output. FLOPs were computed using a 256 × 256 RGB picture, and we ignore
the FLOP computation of the branches that preceded it. This is done because, as
discussed in the model conceptualization, it is assumed that some branches can be
discarded after training.

As anticipated, a progressive improvement of mIoU is observable as we move from
the first early exit towards the BranDeepLabV3 final output. Furthermore, two ad-
ditional conclusions can be drawn from these results. First, regardless of the model’s
number of branches, exits whose positions are close in terms of FLOPs tend to have
the same mIoU. For example, b1 in BranDeepLabV3-3 and b2 in BranDeepLabV3-7
have the same FLOP (approximately 20.49G FLOPs) and nearly identical mIoU,
with the former having mIoUb3 ≈ 0.255 and the latter having mIoUb3 ≈ 0.259.
This suggests that the branch position influences the maximum mIoU achievable.
However, having more branches means that a designer has more freedom to choose
which exits to discard when deploying the trained model. Additionally, mIoU aver-
ages Intersection over Union (IoU) across all classes, meaning that it is possible to
train these branches to specialize in easier or task-sensitive classes (e.g., identifying
people on autonomous driving).

Another result is that it seems that adding more branches to the base model
improves both the performance of the original output and the performance of the
branches closer to it. Notice that mIoUout progressively improves as the number of
early exits increases. Moreover, this performance improvement is more pronounced
with the branch inserted at around 51.44G FLOPs, which starts with a mIoU score
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Table 5.3: BranDeepLabV3-7 performance
b1 b2 b3 b4

mIoU 0.193 0.259 0.420 0.528
FLOPs (G) 14.74 20.49 26.24 30.83

b5 b6 b7 out
mIoU 0.631 0.674 0.689 0.705

FLOPs (G) 36.58 51.44 56.02 60.60

Table 5.4: BranDeepLabV3-9 performance
b1 b2 b3 b4 b5

mIoU 0.176 0.206 0.290 0.398 0.514
FLOPs (G) 13.59 17.04 21.64 25.09 29.68

b6 b7 b8 b9 out
mIoU 0.562 0.655 0.674 0.688 0.707

FLOPs (G) 33.13 37.73 51.44 56.02 60.60

of 0.662 in BranDeepLabV3-3 but can reach an mIoU of 0.674 in BranDeepLabV3-9
inserted branches. As was discussed previously, each early exit needs the feature
maps it receives from the base DNN to carry positional information. Hence, any
modifications that occur in the layers that precede it during the training process can
impact the next branches (and the base model’s output) negatively. These results,
specifically the ones found with the deepest implementations, suggest that adjacent
exits can help one another during training. However, further investigation is needed
to reach a definitive conclusion.

5.3.3 Qualitative Results

Figure 5.6 shows some output images generated by BranDeepLabV3-7. Even
though the segmentations in the early stages are crude, for some applications they
can be detailed enough. For example, in autonomous driving, b2 or b3 outputs
(Figures5.6(b) and 5.6(c)) might be good enough to identify a cyclist, enabling the
agent to take a quick response. Hence, even if it would be beneficial to have a finer
segmentation (produced at a cloud, for example), the cruder early exit can be used
in latency-sensitive applications to initiate an action. Differently, to identify the
biker in Figure 5.6(p) on a similar application, b5 output seems more appropriate.
However, if we are interested in the region occupied by an object, Figure 5.6(r) can be
useful. Altogether, these images show how the quality of generated segmentations
can vary from picture to picture, showing how the mIoU results should not be
considered alone. Additionally, there is the possibility of fine-tuning early exit to
identify sensitive classes. Again, returning to the autonomous driving example, to
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Input b2 b3 b5 out

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 5.6: Segmented images from BranDeepLabV3-7. Colour coding can be found
in Appendix 5.A.

minimize collisions with humans, we can perform training that encourages the side
branches to identify vulnerable road users. Differently, in other applications, early
exists can be trained to differentiate end users from possible obstacles, assisting
time-sensitive proactive applications in computer-vision assisted communication [7].

Another result brought by Figure 5.6 is how outputs can vary between different
exits. For instance, exits closer to the input, such as b2 and b3, can oversize some
classes, as evidenced by the contours of people in segmentations generated from Fig-
ures 5.6(a) and 5.6(f). However, these early exits may also misclassify objects, even
if the object shape is correctly identified, as seen in Figure 5.6(p), or fail to pro-
vide any meaningful information, as in Figure 5.6(l). Comparing these results with
segmentations generated by b5 and out, we can observe a refinement of segmented
information, with cluster size reduced in cases of oversizing and the removal of non-
existent classes. As will be discussed later, these behaviours should be considered
when devising metrics to measure if data can exit the EE-DNN.

Figure 5.7 brings the relationship between image size and the number of FLOP
needed to reach each exit of BranDeepLabV3-7, showing in black the number of
FLOP needed to produce each exit in Figure 5.6(b)-5.6(e). Images can appear in
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Figure 5.7: Number of FLOPs of each exit of the BranDeepLabV3 with 7 early exits.

many shapes, meaning the number of computations and expended energy can vary
a lot from image to image. It is noticeable that the size of the image is an issue that
can worsen both latency response and energy consumption, as the later layers are the
ones where the increase of FLOP is more pronounced. Thus, it is evident that early
exits are a valuable tool for time-sensitive and resource-constrained implementations.

5.4 When should inference stop?

Determining when to stop the inference process in a semantic segmentation ap-
plication can be challenging because a DNN produces images as output. When
working with image classification, many works resort to the output probabilities
generated at each exit, and the inference process stops whenever a probability ex-
ceeds a threshold value [13, 22]. In semantic segmentation, we deal with pixel-level
classification, thus using this approach can be intractable, especially when working
with high-dimensional pictures. Additionally, this CV problem also involves clus-
tering, meaning that analysing each pixel separately can lead to poor performance.
Hence, the success of EE-DNN in multi-stage inference scenarios in which we want
to avoid traversing all the base DNN layers rely on devising a good exit criterion
that takes all this into account.

A possible exit criterion is comparing the exits of two consecutive side branches
to check if there are any significant changes. For example, consider Ŷi and Ŷi+1

as output images of the i-th and i + 1-th early exits. If Ŷi is close to the true
segmentation, then Ŷi+1 will likely have the same segmentations, albeit with a better
quality. To do this, we can use a metric to compare the difference between these two
segmented images and, much like in the image classification case, stop the inference
process if it overcomes a predefined threshold. If the two images are similar, we can
consider Ŷi+1 as the EE-DNN inferred segmentation.
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The following experiments investigates Variation of Information (VI) [50] as a
possible exit metric. VI measures the information exchange when we change clusters,
being a criterion for comparing partitions [50]. Supposing that X and Y represent
two images we want to compare,

V I(X, Y ) = H[X|Y ] +H[Y |X], (5.3)

meaning that VI is a sum of the conditional entropies of X given Y and Y given X.
In the proposed implementation, when we want to check if a Ŷi can be the EE-DNN
exit, we have X = Ŷi−1 and Y = Ŷi. Additionally, each conditional entropy is
capturing different segmentation errors. If the segmented region is correct but X

contains some inexistent classes, H[X|Y ] can be seen as measuring if Y removed or
reduced any wrong class from the segmentation generated in X. On the other hand,
H[Y |X] can indicate if the area occupied by the correct classes started reflecting the
correct segmentation b. Hence, there is an opportunity to exploit them according
to the nature of errors generated by each early exit. To investigate this, the last
experiments of this section make a preliminary study on the importance of these
entropies individually.

In the experiments, the threshold value (τ) can vary between 3 and 0.25, rep-
resenting scenarios where exiting the EE-DNN is either easier or more stringent.
Additionally, the conditional entropies are measured ignoring the background class,
meaning that the following results (and the analysis in Appendix 5.B) use this as-
sumption. The experiments utilize BranDeepLabV3s with 7 and 9 early exits trained
in previous experiments. When an image comparison surpasses the threshold value,
indicating successful early segmentation, the deviation from the ground truth is
measured. Ultimately, we obtain an mIoU for each exit, a global mIoU reflecting
the overall model performance, and the percentage of output generation.

5.4.1 VI results

Figure 5.8 brings the results using VI as the exit metric. Both Figure 5.8(c) and
5.8(d) show that when τ = 3 about 83% images are segmented in the two first early
exits of BranDeepLabV3-7, and about 86% on or before b4 in BranDeepLabV3-9.
This is non-ideal, as these exits aren’t suited to classify every image, given that none
has a mIoU ≥ 0.45 (as can be seen in Tables 5.3 and 5.4). This compromised the
performance of the model as a whole, as both BranDeepLabV3-7 and 9 wasn’t able to
reach mIoU = 0.4. Things start to improve when τ = 1.5. In the case of the model
with 7 early exits, global mIoU ≈ 0.55 with about 0.45% images being segmented

bFor more details on how we can leverage these two conditional entropies in the following
experiments see Appendix 5.B
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(a) mIoU of BranDeepLabV3-7. (b) mIoU of BranDeepLabV3-9.

(c) Percentage of images that came out
through each exit of BranDeepLabV3-7.

(d) Percentage of images that came out
through each exit of BranDeepLabV3-9.

Figure 5.8: VI-based exit criterion results. Notice that when τ = 1.0,
BranDeepLabV3-7 can reach a global mIoU ≈ 0.6 with more than 60% of im-
ages exiting on and before b5. Similarly, for the same τ , BranDeepLabV3-9 has
about 60% exits occurring before b6, with global mIoU slightly smaller than 0.6.

in b4 or earlier branches. Remembering that mIoUout = 0.705, this indicates that
at τ = 1.5 it was possible to reach 80% of the last output’s performance. However,
notice that this τ is still too loose to force the hardest images (that can be classified
by DeepLabV3) to reach the last exit, as less than 5% reached it. As can be seen in
Figure 5.8(a), notice that we can exploit b3 and b4 to the fullest as mIoUb3 ≈ 0.53

and mIoUb4 ≈ 0.62, whereas mIoUout = 0. A similar pattern can be seen with
BranDeepLabV3-9, with mIoUout ≈ 0.53, mIoUb4 ≈ 0.45, mIoUb5 ≈ 0.58, and 65%

of inference occurring on and before b5.
When τ = 1, BranDeepLabV3-7 is able to reach mIoU ≈ 0.6, reaching about

85% of mIoUout (Table 5.3), with approximately 46% exits occurring on of before b4

and 66% occurring on or before b5. Notice that at this mIoUb3 ≈ 0.55, mIoUb4 ≈
0.66, and mIoU5 ≈ 0.67. In the case of BranDeepLabV3-9, mIoUglobal > 0.6 is
reached after τ = 0.75. This is likely due to the higher number and density of early
exits. We can suppose that there are small changes between consecutive exits, so
we need a small τ to account for this. As discussed in the previous section, some
branches can be discarded after training. As seen in Table 5.4, close exits had similar
mIoU , which means they likely generate similar segmentations.
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(a) mIoU of BranDeepLabV3-7. (b) mIoU of BranDeepLabV3-9.

(c) Percentage of images that came out
through each exit of BranDeepLabV3-7.

(d) Percentage of images that came out
through each exit of BranDeepLabV3-9.

Figure 5.9: Using H[X|Y ] as exit criterion. Because we don’t have the influence
of H[Y |X], more than 50% of the images exit both EE-DNNs in the earlier layers
when τ ≥ 1. Additionally, mIoU ≤ 0.6 in almost all cases.

5.4.2 Measuring H[X|Y ]

Recalling equation 5.3, V (X, Y ) is given as a sum of two conditional entropies
that measure the clustering differences between two images. Remembering that
X = Ŷi−1 and Y = Ŷi in the proposed implementation, H[Ŷi−1|Ŷi] measures if Ŷi

has the correct cluster regions and if it removed any non-existant class. When this
entropy is small, we can assume that the classes are starting to appear in the correct
regions. The results in Figure 5.9 show that this metric encourages more exits in
early branches, with more than 50% of the images exiting both EE-DNNs in the
earlier layers when τ ≥ 1. However, when focusing on performance, in all situations
except BranDeepLabV3-7 when τ = 0.25 mIoUglobal < 0.6. This suggests that, at
least for the first early exits, we have to take into consideration if the shapes of the
regions of interest (which are better captured by H[Y |X]) are correct.

5.4.3 Measuring H[Y |X]

Different from the previous case, when we compute H[Ŷi|Ŷi−1] we assume that
we have the correct classes and are checking if Ŷi is closer to the appropriate
shape c). When compared with H[X|Y ], H[Y |X] seems to play a more significant
role when comparing the outputs of the first early exits, as can be seen with their

cSee Appendix 5.B
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(a) mIoU of BranDeepLabV3-7. (b) mIoU of BranDeepLabV3-9.

(c) Percentage of images that came out
through each exit of BranDeepLabV3-7.

(d) Percentage of images that came out
through each exit of BranDeepLabV3-9.

Figure 5.10: Using H[Y |X] as exit criterion. Compared to the H[X|Y ], this con-
ditional entropy seems more appropriate for the first, given that it has mIoUglobal

better results.

results in the two stricter cases (τ = 0.25 and τ = 0.5). For example, analysing
BranDeepLabV3-7 when τ = 0.5, approximately 15% images are segmented in b3,
but mIoUb3,H[X|Y ] ≈ 0.48 and mIoUb3,H[Y |X] ≈ 0.58. Similarly, in BranDeepLabV3-9
(for the same τ), mIoUb4,H[X|Y ] ≈ 0.43 with approximately 18% of images segmented,
and mIoUb4,H[Y |X] ≈ 0.52 with approximately 14% of images segmented. Remem-
bering the qualitative analysis, the first segmentations can have fewer clusterings
than the ones generated in later exits, which can explain why we need a metric that
can measure new “additions”. Moreover, when the classes are close to their correct
position, they usually have the wrong size. However, we must take into considera-
tion that different types of segmentation errors can occur in different parts of the
EE-DNN, so learning how to balance the importance of these two components of
VI to reflect when one condition is more predominant than the other can be key for
future performance improvements.

5.5 Conclusion

Given the success of EE-DNNs in image classification, it is only natural to try to
replicate it in other CV problems, like semantic segmentation. Many time-sensitive
applications that require semantic segmentation can benefit from early attempts at
segmentation. Additionally, when we combine these multi-exit models with DNN
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partitioning, we can offer smaller and resource-efficient NNs that can be placed in
resource-constrained devices and that can infer the majority of input data. The first
experiments present a new implementation suited for early-exit semantic segmenta-
tion, showing the usefulness of the approach. The results show that the earlier exits’
FLOPs, which allows us to estimate latency and energy consumption, increase at
a slower pace than the later stages, and that they are capable of delivering coarse
segmentations that can outline relevant features. For instance, we show that in
earlier stages, where mIoU is below 0.4, the early exits are capable of delivering
a segmentation displaying relevant features. This result, in particular, indicates an
opportunity to train the early exits to distinguish sensitive classes, to be investigated
in future research.

The second set of experiments investigates VI as a possible exit metric, and
provides an initial analysis on its components as a mean to capture distinct segmen-
tation errors. The results showed that VI can be a valuable metric to determine
when a segmented image can leave the EE-DNN. When using VI, which gives equal
importance to the two conditional entropies that make up this metric, we see that
the proposed EE-DNN can achieve 85% of mIoUout performance (Table 5.3) with
60% of images exiting on or before the fifth early exit. Additionally, although the
results measuring the importance of the conditional entropies are preliminary, they
can be a first step in understanding how we can modify VI so it can reflect the
type of errors occurring in different parts of the EE-DNN. In the future, further
experiments to broaden our understanding on the nature of the segmentation errors
and in which parts of the EE-DNN they occur can help us modify VI to improve
exit evaluation. Moereover, it is also interesting to evaluate if removing early exits
and changing the reference side branch (fixed to b1 in these experiments) can also
improve performance.

5.A Pascal Voc colour scheme

Figure 5.11: Labelled classes of Pascal Voc, along with their respective colour coding.
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5.B A visual interpretation of VI *

(a) X1 (b) X2 (c) Y

Figure 5.12: Visual interpretation of VI in the studied scenario. Going from X1 to
Y illustrates a situation where classes are removed and X2 to Y a situation where
the area of a segmented regions are corrected. Figures have size 8× 8 pixels.

In the experiments we use VI as a metric to decide when a segmented image can
exit the EE-DNN. Recaling equation 5.3, it is assumed that X = Ŷi−1 and Y = Ŷi,
i.e., Y is the output of the early exit we are computing VI and X the output of
the previous exit. If we suppose that the previous output is Figure 5.12(a) and the
current output is Figure 5.12(c), we can see that some segmented regions where
removed. According to VI definition, H[Y |X1] = 0 given that the clusters in Y can
be obtained by merging the clusters in X1 [50]. Indeed this is the case, as

H[X1|Y ] ≈ 1.00 and H[Y |X1] = 0,

meaning that H[X|Y ] can capture when inesistent classes, i.e., wrong guesses from
early exits stop appearing. Conversily, in situations that segmented regions are
correct but have the wrong size, like when we compare Figure 5.12(b) with Fig-
ure 5.12(c), the second conditional entropy can be more significant. For instance, in
this example,

H[X2|Y ] = 0 and H[Y |X2] ≈ 0.73.

Hence, these two conditional entropies individually measure each of these seg-
mentation errors occuring between consecutive exits. Moreover, we can leverage
the likelihood of each error occurring in different parts of the EE-DNN to assign
different weights to them, thereby improving performance.

*The results in this section were computed ignoring background class (as in the previous exper-
iments). See https://scikit-image.org/docs/stable/api/skimage.metrics.html#skimage.
metrics.variation_of_information for details.
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Chapter 6

Conclusion

This thesis goal is to engage in the discussion of efficient implementation of DNNs
in resource-constrained and latency-sensitive scenarios. DNNs can be extremely
resource-demanding and require a lot of computation steps, especially configurations
with multiple layers. As problems become more complex, and training DNNs with
huge numbers of layers becomes more feasible, state-of-the-art models become hard
to implement in the aforementioned scenarios. Even though hardware advances can
ease implementation issues, costs can play a key role, and so the fact that with
more resources the greater are the opportunities to design newer and more costly
DNNs. Hence, having alternative NN designs whose goal is to reduce the amount of
parameters to be stored in resource-constrained devices and instances that require
low-latency responses is greatly appreciated. For instance, TinyML is an active
research area that seeks this goal.

This thesis discusses two DNN implementation scenarios. The first, in chapter 4,
discussed the problems with seeking performance improvements through the increase
of DNN depth. Specifically, it analyses how AEs are useful in IoT problems, which
usually involve resource-constrained devices. In this and similar scenarios, deploying
a deep AE can be difficult. The proposed AAE aims to address this problem,
offering an alternative design in which performance improvements through DNN
depth increase can be sought without imposing more layers to be stored in IoT
sensor and actuator nodes. The second, in chapter 5, discusses the need for and the
usefulness of multi-output DNNs in implementing CV applications that offer fast-
and resource-efficient responses. Together with DNN partitioning, these DNNs can
be spread between edge and cloud instances, offering a multistage inference scenario
in which only hard-to-treat data are outsourced to the cloud. In this chapter, the
design of an EE-DNN capable of semantic segmentation is proposed, discussing its
usefulness to applications like autonomous driving, and the feasibility of such DNN.
Overall, both scenarios show how NN design can be modified to include training
restriction and model features that can assist DNN implementation in scenarios
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where deep multi-layered models are hard to implement.

6.1 Summary of thesis’ results

The main results are summarised as follows. Many applications that involve data
sensing and transmission in IoT networks employ AEs and usually need to store the
encoding layers of these models in resource-constrained devices. The proposed AAE
offers these devices an alternative AE design that can limit the number of encoding
layers without significant performance losses and is even capable of outperforming
its symmetric counterpart. In a one-dimensional temporal-data transmission sce-
nario, the results in chapter 4 show that AAEs encoders require significantly fewer
parameters and FLOPs per data compression than symmetric AEs with similar de-
coding configuration. Additionally, thanks to this smaller number of parameters,
deep AAEs are shown to be easier to train, especially in experiments with noisy
data. In many scenarios, the number of training examples can be limited, which can
make it difficult to train deep NN configurations. Finally, CAAEs results, which
were the best-performing models, showed that we can pursue further performance
improvements by modifying the decoders to exploit the particularities of the phe-
nomenon of interest. Overall, these results show that we can move away from the
traditional approach of a mirrored encoder-decoder design by constructing an AE
architecture that reflects our needs. In this case, a lightweight and compact en-
coder coupled with a more powerful decoder that can address the shortcomings of
designing an AE with fewer encoding layers.

EE-DNN, together with DNN partitioning, are known to be capable of offering
multi-stage image classification that can classify simpler data faster and energeti-
cally efficient. Given this success, it is only natural to try to replicate it in other
CV problems. In chapter 5, an EE-DNN for semantic segmentation is constructed,
showing how its design and training differs from EE-DNN designed for image classi-
fication. Additionally, the results show how these multi-output DNNs can be useful
for latency-sensitive applications, as early exits can deliver coarsely segmented im-
ages that can identify the main features in an image while requiring fewer FLOPs.
Finally, the last experiments show the difficulties of devising an exit strategy and
the importance of similarity metrics. In it, a first look on the importance of measur-
ing the conditional entropies between segmented images was discussed, and how we
exploit them in different branches according to the nature of updates between con-
secutive exits. Altogether, these pioneering experiments on early-exit semantic seg-
mentation show the importance of EE-DNN in time-sensitive and resource-efficient
implementations, giving directions on how to overcome some design obstacles.
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6.2 DNNs continuously becoming more ubiquitous

Thanks to its data-driven approach and recent advances in NN theory, DNNs are
continuously being widespread in many research and industrial paradigms. DNNs
are now state-of-the-art in many CV and NLP applications, and are being used to
tackle a wide range of problems that involve complex and large volumes of data. For
example, CV assisted communication [7] is an emerging paradigm whose objective is
to incorporate CV applications into communication systems and protocols to enrich
data quality and decision-making. In summary, many distinct applications will seek
DNNs, each with its own restrictions and requirements. This presents an extremely
heterogeneous future, and having different DNN architectures to meet each situation
will be necessary.

Having DNNs that require fewer layers or that can compute the majority of
data with fewer resources are fundamental to local implementations in resource-
constrained scenarios and edge implementations, which aim to bring DNNs close to
end-users. The design choices discussed in this thesis, together with paradigms like
TinyML, can offer researchers and developers computationally efficient NNs, which
can contribute to an even greater diffusion of DNN-based systems and applications
in scenarios where these models are not easily accessible.

6.3 Future prospects

In addition to future works discussed briefly at the end of chapters 4 and 5,
AAEs and early-exit semantic segmentation can be helpful to other applications.
For instance, the asymmetrical design discussed with AAEs can help other DNN
implementations that employ encoder-decoder architecture, like Generative Adver-
sarial Networks (GANs) [51] and U-Nets [52]. Additionally, paradigms like knowl-
edge distillation [24] can employ AAEs to assist techniques that aim to replace a set
of layers with a smaller number, and knowledge distillation, in turn, can help train
and design EE-DNNs. Furthermore, specifically concerning AE-based implementa-
tions in IoT, designing AAEs to work with multi-source data is important [23]. Now,
regarding EE-DNN, many applications that seek semantic segmentation to deal with
video data can combine data generated in edge and cloud instances to deliver faster
and more reliable inferences at early exits. Additionally, other CV problems (and
possibly other types of data) need preservation of localized and structural infor-
mation, thus can work with strong downsampling and pooling operations found in
traditional EE-DNNs. Hence, the observations found in the EE-DNN design for
semantic segmentation can be helpful to open another direction in the multi-exit
DNN design.
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