
Unlocking Early-Exiting Semantic Segmentation
with Branched Networks

Mateus S. Gilbert1, Roberto G. Pacheco3, Rodrigo S. Couto1,
Marcello L. R. de Campos2, Miguel Elias M. Campista1

1GTA/DEL-POLI/PEE-COPPE - Universidade Federal do Rio de Janeiro (UFRJ) – Rio de Janeiro, Brazil
2SMT/DEL-POLI/PEE-COPPE - Universidade Federal do Rio de Janeiro (UFRJ) – Rio de Janeiro, Brazil

3Universidade Federal de Mato Grosso (UFMT) – Cuiabá, Brazil

Abstract—Early-exit Deep Neural Networks (DNNs) and
DNNs partitioning are valuable options to ease DNN implement-
ation for image classification in resource-constrained devices
and latency-sensitive applications. By inserting side branches
into the usual DNN architecture, the resulting model can
perform early classification attempts, using features extracted
in layers that come before the model’s output. DNN partitioning
spreads DNN layers subsets across devices, the edge, and the
cloud, bringing branches closer to the device. Offloading to
the cloud is limited to hard-to-classify data. Given the success
in image classification, it is natural to try to replicate these
results with semantic segmentation. In this direction, we propose
Branched-DeepLabV3 (BranDeepLabV3) as an early attempt
to bridge the gap between early-exit DNNs and semantic
segmentation. Our results show that, by adding side branches
to a semantic segmentation DNN, we can deliver adequate
outputs without traversing the whole network. Moreover, our
qualitative results show the usefulness of early-exits in semantic
segmentation, as even coarse segmentations can be good enough
to supply time-sensitive applications.

Index Terms—semantic segmentation, early-exiting, DNN
partitioning

I. INTRODUCTION

Recently, many problems in computer vision have been
tackled with the support of Deep Learning (DL). They
take advantage of Deep Neural Networks (DNNs) capacity
to interactively learn the appropriate data transformations
needed to extract relevant features to accomplish the intended
task [1]. When working with images, identifying relevant
features can vary depending on the application, and DNNs
can dismiss the need for manual selection of feature ex-
tractors or expert assistance [2]. In computer vision, areas
such as autonomous driving, smart health, and environmental
monitoring are a few of many that resort to DNN to build
applications that aim to identify objects in an image [3]. Be-
cause DL-based computer vision is a thriving research area,
and the recent abundance of cameras in urban environments,
there is an insurgence of papers proposing computer vision
assisted wireless communication applications [4, 5]. How-
ever, computer vision can become particularly challenging in
applications that require the identification of multiple objects
at low latency.

Semantic segmentation is concerned with identifying ob-
jects in a picture, showing their contour and the area they
occupy. Hence, it goes beyond simple image classification,
aiming to segment the image into multiple classes, presenting
the user with a detailed description of which objects are in
the picture [3]. Given its relative complexity, which involves
pixel-level classification together with clustering [6], many
researchers are leaning towards DL to implement semantic-
segmentation-based applications. Models that are variations
of ResNet, SegNet, and other DNNs are now state-of-the-
art for many semantic segmentation datasets [3, 7, 8]. How-
ever, many state-of-the-art models are built with multiple
layers that require significant computational resources and
energy consumption, hampering DNN adoption in resource-
constrained devices. Moreover, even if these devices are
capable of storing the DNN and running it locally, using non-
state-of-the-art equipment can introduce processing latency,
compromising the intended application.

Researchers are actively exploring alternatives to en-
able general DNN implementation in resource-constrained
devices. These alternatives typically target hardware im-
provements and modifications to the DNN’s architecture
and deployment. Hardware improvements are focused on
constructing more affordable devices that can run DNNs
locally, whereas changes to the DNN model focuses on
adding or replacing features in its architecture, or explor-
ing deployment alternatives, such as edge computing and
model quantization [9]. Among these models’ changes, early
exiting and DNN partitioning show promising results in
addressing resource-constrained implementation issues. Early
exiting consists of adding output layers (i.e., exit branches)
at the early stages of the network architecture to anticipate
classification without traversing the whole network [10].
DNN partitioning, on the other hand, consists of splitting
the network layers so that the early stages are located at the
network edge while the following ones are located at the
cloud [11, 12]. Recent works have shown that combining
both approaches is also viable, yielding positive results for
image classification, as it simultaneously minimizes latency
and resource consumption [12].

This paper proposes Branched-DeepLabV3 (BranDeep-979-8-3503-2687-1/23/$31.00 ©2023 IEEE

LabV3) to perform faster and distributed semantic segment-
ation. The idea is to enable the utilization of semantic seg-
mentation in resource-constrained devices and time-sensitive
applications, based on the positive results found in image
classification with early exiting and DNN partitioning. We
use a pre-trained DeepLabV3 [13], capable of semantic seg-
mentation, and add side branches to perform early classifica-
tion. We propose a DDN that takes advantage of the features
extracted at the layers near the model’s input (to be placed
near the device) to complete the segmentation task, decreas-
ing the interaction with the cloud server. Moreover, the results
show that even when early classification is not an option, the
proposed DNN is capable of delivering coarse segmentation
that can be beneficial to latency-sensitive applications. Hence,
the main contribution of this paper is to attest that semantic
segmentation with an early-exit DNN is possible, and is
a valuable alternative to deliver semantic segmentation to
time-sensitive applications running in resource-constrained
devices.

II. RELATED WORK

Our work focuses manly in extending early-exiting DNNs
for the semantic segmentation paradigm, and proposing a
DNN architecture capable of performing the intended task
in an edge-cloud co-inference environment. Teerapittayanon
et al. showed in image classification, through their proposed
BranchyNets, that features extracted in layers closer to the
network’s input are rich enough to enable the classification of
the simpler samples of a given task, reducing the processing
latency associated with traversing the whole network [10].
Pacheco et al. deployed an early-exit DNN in an edge-cloud
co-inference, where layers connected to side branches are
stored at the network edge, whereas the remaining layers
(connected to the last exit) are stored in the cloud [12].
They showed the latency advantages of early-exit DNNs,
which can make DL-enabled solutions more accessible for
applications in resource-constrained devices and latency-
sensitive applications. Our work builds upon both by pro-
posing a model capable of performing early-exit semantic
segmentation. Furthermore, we extend early exit utilization
beyond halting image classification, showing that we can
assist latency-sensitive applications by delivering crude but
useful segmentation. As far as we know, this is the first
paper that proposes a branched-DNN architecture for early-
exiting semantic segmentation, suited for an edge-cloud co-
inference.

III. SEMANTIC SEGMENTATION AND DNNS

When compared with regular image classification, se-
mantic segmentation involves localizing objects in an image,
instead of simply determining if the object is present in it [3].
Hence, it requires the classification of each individual pixel
as either belonging to a class or not. Consequently, we move
from identifying if the picture contains an object from a class
(e.g., a dog) to outlining the object’s contour and accurately

(a) Original image. (b) Segmentation
Figure 1. Example taken from Pascal VOC 2012 [15].

determining the region it occupies (e.g., where the dog is and
which pixels belong to it).

By shifting from traditional image classification to pixel-
level classification, using DNNs for semantic segmentation
becomes more challenging than regular image classification
for at least two reasons. First, it requires that feature maps
(i.e., outputs of the convolutional layer) carry localized
information [14]. Hence, each layer must learn, besides the
features to extract during each stage of the network, where the
said feature appears in the image. Additionally, the objects
of interest can appear in distinct resolutions [14], meaning
that the whole network should be capable of performing
multiresolution analysis.

Figure 1 shows an example of semantic segmentation that
has to identify and determine the area of the objects of
interest within an image. For instance, if a model is trained
to identify people and vehicles in the foreground, using the
image seen in Figure 1(a), it must recognize and differentiate
cyclists and their bicycles. Moreover, it is desirable that
each instance be assigned to a class of interest, individually
classifying the objects found. Hence, if designed correctly,
the model produces the image seen in Figure 1(b), classifying
each object even when occlusions (i.e., when one object
overlaps another) occur.

A. Convolutional Layers and Computer Vision

Before introducing the DeepLabV3 network, we quickly
review basic DNNs features and their relation to computer
vision. The convolutional layer is a building block of many
DNNs that deal with image-like data. Convolutional layers
consist of a set of kernels, which are small sets of weights,
that operate on a localized neighborhood within a datum [16].
Considering the input data as an image, these kernels function
as filters that analyze small data portions in a sliding-
window fashion to extract relevant features. Moreover, stack-
ing convolutional layers that promote dimensionality reduc-
tion enriches the quality of the features extracted, allowing
extraction at different image resolutions.

The success of convolutional layers in computer vision
can also be attributed to two architectural conventions. The
first is to employ multiple kernels in the same layer, which
allows it to extract multiple features at the same resolution.
The other convention is to stack multiple convolutional layers
by connecting a layer’s output to another layer’s input to
compose convolutional blocks. These blocks combine the

information extracted from previous layers to enable the ex-
traction of more complex features. Additionally, it is common
to use downsampling layers, such as convolutional layers
with non-unitary strides or pooling layers, to increase the
field of view (FoV) of the layers close to the model’s output.
This strategy enhances the DNN’s capacity to extract features
in low resolution. Even though this is proven helpful in
image classification, since models become more robust to
image variations, it can lead to loss of localized information,
hampering the semantic segmentation task [14].

B. DeepLabV3

DeepLabV3 is a Residual Network (ResNet) [17] variation
for semantic segmentation [13]. The DeepLabV3 model is
obtained by removing the downsampling layers closer to
the network’s output in favor of layers that perform atrous
(or dilated) convolution [13]. The atrous convolution enables
resolution reduction by skipping neighboring samples. Thus,
for each location i in an output y,

y[i] =
∑

k
x[i+ rk]w[k],

where x and w are the input and the convolutional filter,
respectively, and r is the input sampling rate [13]. In essence,
the atrous convolution allows extracting a feature using a
greater FoV, acting analogously to a filter with r − 1 zeros
between two consecutive filter values [13]. By adopting
atrous convolution, the DeepLabV3 does not require con-
secutive dimensionality reductions to extract low-resolution
features in large feature maps, thus preserving the localized
information.

The atrous convolution is inserted in DeepLabV3 through
a structure called Atrous Spatial Pyramid Pooling (ASPP). In
it, four atrous convolutions with distinct rates are applied in
parallel to an input feature map [13]. This enables a single
DNN stage to extract information at multiple resolutions,
which can be complementary. Moreover, it is known that
employing a single atrous rate can be harmful to the overall
DNN, as this can lead to loss of information [8].

IV. EARLY EXIT AND DNN PARTITIONING

Many state-of-the-art models in DL are composed of
numerous DNN layers. These layers may be composed of
a great number of neurons that connect to one another or,
in the case of convolutional layers, may have many kernels
to extract and fuse distinct features. This poses a challenge
when deploying these models in resource-constrained devices
or latency-sensitive applications. Hence, extensive research
is being made into alternatives to mitigate these obstacles.
Among them, our work leans on two recent proposals: early
exiting and DNN partitioning.

Usually, a DNN with a substantial number of layers and
other resources is needed to address complex tasks. However,
in some cases, this depth is unnecessary to deal with the
simpler samples of a given task. For instance, when dealing
with images with elements that are easy to recognize, features

extracted at early stages can be enough to conduct the
intended task [10]. In these cases, data can exit the DNN
before reaching the model’s original output, making the
additional processing of the subsequent layers unnecessary.
The early-exit DNN is constructed over the architecture of
a regular neural network (which we will call base DNN) by
inserting additional exits (side branches) into its intermediate
layers [10]. These exits perform early attempts on classific-
ation, using information extracted in the layers that precede
it. If the side branch is capable of delivering a classification
with a satisfactory level of confidence (e.g., above a certain
threshold) the task can be finalized without using the whole
base DNN.

Figure 2 shows an example of an early-exit DNN, stored
at the edge. The side branches (in dark cyan) sticking out of
the base DNN (grayish blocks) are responsible for the early-
exiting attempts. In latency sensitive applications, these side
branches can deliver an early guess of the correct answer that
can be aggregated with further information, or used as the
actual DNN’s answer. Additionally, we can trace a smaller
DNN following the data flow from the model’s input layer
to each early exit, if we ignore the layers that come after it.
This is a feature that can be exploited by DNN partitioning.

The idea behind DNN partitioning is splitting the DNN
among the cloud and instances close to the device, relying
on low-cost local computations and edge computing. As can
be seen in Figure 2, the early-exit DNN is split among the
edge and the cloud, allowing for the early-exit estimates to be
performed closer to the device, whilst the remaining layers
are stored in the cloud (represented by the computational
block vn+1). With this approach, it is possible to minimize
the classification latency by exploiting not only the early-exit
DNN architecture but also the first layers’ proximity to the
device. As pointed out by Pacheco et al., the data transfer to
the server, which is time-demanding, will happen only when
the branches fail to perform an early classification [12]. In
this approach, the device resorts to the complex resource-
demanding layers stored in the cloud only when necessary.
Hence, the iteration with the cloud can be reduced, minimiz-
ing energy expenses and communication latency. Moreover,
it no longer transfers the raw data to the cloud, which is also
time and energetic demanding, shifting to sending the feature
maps of the layer that precedes the split (in Figure 2, this
would be node vn).

Figure 2. Sketch of the proposed BranDeepLabV3. The convolutional
blocks of the base DNN (in gray) width reflects the number of layers.

V. BRANCHED-DEEPLABV3

We propose an early-exit DNN implementation that is
suited for semantic segmentation. Much like in the case
with the models constructed for image classification, the
idea is to exploit the features extracted in early layers to
classify pixels as belonging to a class, allowing simpler data
to exit the DNN earlier. Additionally, our proposed DNN
can deliver coarse segmentation that can be helpful to time-
sensitive applications. For instance, even if an early exit is
unable to outline an object in the image, it can deliver a
“blob” that indicates that there is something and where in the
picture it is. Thus, it can enable time-sensitive applications
to identify objects faster than if it waited for the whole DNN
processing, like obstacles in the line of sight of antennas [5],
or vulnerable road users in autonomous driving.

The Branched-DeepLabV3 (BranDeepLabV3) is construc-
ted on top of a pretrained DeepLabV3, available with torch-
vision module, which will function as the backbone of
our proposed model. Specifically, it consists of a modified
ResNet-101, in which we insert side branches that are equally
spaced from one another in terms of floating-point operations
(FLOPs). By measuring FLOPs we can have a rough estimate
of both energy consumption and inference time [18]. So, if
we can reduce FLOPs, we can expect these two requirements
to decrease. The inserted layers are similar in structure to the
output of the regular DeepLabV3 network, meaning that we
also employ ASPP layers in the side branches to generate
the early attempts on semantic segmentation. Hence, even
at higher resolutions, we can take advantage of the atrous
convolution to extract the needed low-resolution features.
However, layer positioning is not as straightforward as in
the typical image classification because the side branches
impact the intermediate feature maps. For instance, in early
experiments, it was observed a significant loss in performance
at DeepLabV3’s output layer when we made its parameters
to be equal to the pretrained model. To this, we can attribute
the fact that the branches modify the layers that preceded it
to ease the features’ localization, thus impacting the feature
maps of the remainder of the backbone DNN.

Once trained, the resulting model can be split among local
device, edge and cloud. Figure 2 brings a sketch of the
proposed model, showing layer disposition. Branches can be
inserted after any layer in the base DNN, even at higher
resolutions (after blocks v1 to v3). Here, we take advantage
of the ASPP layer that is suitable to extract low-resolution
features at high resolutions. Considering that no branch is
stored in the cloud, which will store the remaining layers
leading to the model’s output (see Figure 2), branches can
be split between the local device and the edge based on
the requirements of applications and devices. For example,
when dealing with resource-constrained devices we can add
more branches in the edge, whereas we can opt to place
more branches in local devices when dealing with time
sensitive applications. Additionally, in order to reduce the
number of FLOPs of the overall model, some layers can

be discarded after the training is complete. As the results
will show, layers that are close together tend to have similar
performance, hence can be considered redundant in our
proposed implementation.

VI. EXPERIMENTAL SETUP

Our experiments are performed using the Pytorch frame-
work and are available at GitHub1 . The models were
trained using the PASCAL VOC 2012 semantic segmentation
dataset [15]. This dataset was compiled for a computer vision
competition, in which many DNN-based solutions are state-
of-the-art. It consists of 2, 913 colored images with 6, 929
identifiable objects. These images contain 20 distinct labeled
classes, such as people, some groups of animals, vehicles, and
indoor objects. The dataset administrators split all training
images into two sets containing half the images. We used
one of these sets as the training set, whereas the other
was split into 60% and 40% for testing and validation sets,
respectively. This gives a 50 : 20 : 30 division of samples for
training, validation, and test, respectively.

All images are scaled to have a size equal to 256 × 256.
To increase the training sample diversity, each training image
can be modified in a manner that its brightness, saturation,
contrast, and hue can be altered. This modification is applied
solely to the original image, and the model has to learn how
to deal with this corruption in order to generate the correct
segmentation. This is advantageous because we generate new
data that wasn’t present in the original dataset, and preserve
the main images’ features that we want the model to learn.
During each training iteration, the samples are grouped in
batches of 10 image samples that are fed into the model’s
input layer.

We use the Lovász-Softmax loss function to train our
models, which is an extension of the regular mean-insertion-
over-union (mIoU) [19]. mIoU is the metric of choice of most
semantic segmentation papers and is computed by

mIoU(Y, Ŷ) =
1

|C|
∑
c∈C

Yc ∩ Ŷc

Yc ∪ Ŷc

(1)

=
1

|C|
∑
c∈C

TPc

TPc + FPc + FNc
, (2)

where Yc and Ŷc are the images containing the ground-
truth and guesses of class c (TP and FP are the true
and false positives, FN is the false negative). Essentially, it
averages out the IoU of each class, meaning that it penalizes
models that are “specialists” in a few classes. Additionally,
we employ Stochastic Gradient Descent and follow the same
learning rate scheduling defined in Berman et al. [19]. After
preliminary analysis, we’ve opted to set lrbase = 2.5 · 10−4

for the branches, lrbase = 2.5 · 10−6 for the base DNN,
and lrbase = 2.75 · 10−4 for the original output layer. After
each epoch, the trained model is evaluated with the validation
set, and the best weight configuration, i.e., the one that

1https://github.com/MateusGilbert/brandeeplabv3

obtained the best results in the validation set, is saved as
the final model. In our experiments, we evaluate the DNNs
by computing the average of the mIoU for each exit, which
includes all side branches and the DeepV3Lab original output
layer.

VII. EXPERIMENTAL RESULTS

In our experiments, we start with a pre-trained DeepLabV3
with mIoU = 0.707 in the test set, and analyse configura-
tions with 3, 5, 7 and 9 side branches. We explore how this
insertion impacts the quality of the trained branches and how
they impact the DeepLabV3 original output performance,
given the problems exposed in Section V. Tables I to IV show
the mIoU (Equation 2) of each early exit and the number of
FLOPs needed to reach each output. FLOPs were computed
using a 256 × 256 RGB picture, and we ignore the FLOP
computation of the branches that preceded it. We have opted
to do so because, as discussed in Section V, we assume that
some branches can be discarded after training.

As anticipated, it is observable a progressive improvement
of mIoU as we move toward the BranDeepLabV3 output.
Furthermore, two additional conclusions can be drawn from
these results. The first, regardless of the model’s number
of branches, exits whose positions are close in terms of
FLOPs tend to have the same mIoU. For instance, b1 in
Table I and b2 in Table III (implementations with 3 and
7 side branches, respectively) have nearly identical mIoU
with the same FLOPs. This suggests that the branch position
influences the maximum mIoU achievable. However, having

Table I
PERFORMANCE OF BRANDEEPLABV3 WITH 3 SIDE BRANCHES

b1 b2 b3 out
mIoU 0.255 0.527 0.662 0.701

FLOPs (G) 20.49 30.83 51.44 60.60

Table II
PERFORMANCE OF BRANDEEPLABV3 WITH 5 SIDE BRANCHES

b1 b2 b3 b4 b5 out
mIoU 0.201 0.340 0.528 0.666 0.686 0.703

FLOPs (G) 17.04 23.94 30.83 51.44 56.02 60.60

Table III
PERFORMANCE OF BRANDEEPLABV3 WITH 7 SIDE BRANCHES

b1 b2 b3 b4
mIoU 0.193 0.259 0.420 0.528

FLOPs (G) 14.74 20.49 26.24 30.83

b5 b6 b7 out
mIoU 0.631 0.674 0.689 0.705

FLOPs (G) 36.58 51.44 56.02 60.60

Table IV
PERFORMANCE OF BRANDEEPLABV3 WITH 9 SIDE BRANCHES

b1 b2 b3 b4 b5
mIoU 0.176 0.206 0.290 0.398 0.514

FLOPs (G) 13.59 17.04 21.64 25.09 29.68

b6 b7 b8 b9 out
mIoU 0.562 0.655 0.674 0.688 0.707

FLOPs (G) 33.13 37.73 51.44 56.02 60.60

more branches means that a designer has more freedom to
choose which exits to discard when deploying the trained
model. Additionally, mIoU averages IoU across all classes,
meaning that it is possible to train these branches to specialize
in easier or task-sensitive classes (e.g., identifying people on
autonomous driving). The last result is that the more branches
we insert to the base model, the better the performance of the
original output and of the branches closer to it. For instance,
the original output (out in the tables) has a progressive im-
provement as the number of early exits increases. Moreover,
this performance improvement is more pronounced with the
branch inserted at around 51.44 FLOPs, which starts with a
mIoU score of 0.662 in the model with 3 early exits, but can
reach an mIoU of 0.674 in a model with 9 inserted branches.
As was discussed in Section III, each early exit needs the
feature maps that enter it to carry positional information.
Hence, during the training process, modifications it promotes
on the layers that precede it can impact the next branches
(and the base model’s output) negatively. The results suggest
that adjacent exits can help one another during training.
However, further investigation is needed to reach a definitive
conclusion.

Figure 3 shows some output images from BranDeepLabV3
with 7 side branches, along with the ground truth (Fig-
ure 3(f)). Even though the segmentations in the early stages
are crude, for some applications they can be detailed enough.
For instance, in autonomous driving, b2 or b3 outputs
(Figures3(b) and 3(c)) might be good enough to identify a
cyclist, enabling the agent to take a quick response. Hence,
even if it would be beneficial to have a finer segmentation
(produced at a cloud, for example), the cruder early exit
can be used in latency-sensitive applications to initiate an
action. Additionally, it is possible to fine-tune the early exit to
identify sensitive classes. Again, returning to the autonomous
driving example, to minimize collisions with humans, we can
perform training that encourages the side branches to identify
vulnerable road users. Differently, in other applications, early
exists can be trained to differentiate end users from possible
obstacles, assisting time-sensitive proactive applications in
computer-vision assisted communication [5].

Figure 4 brings the relationship between image size and
the number of FLOPs needed to reach each exit of the 7-
branched BranDeepLabV3, showing in black the number of
FLOPs needed to produce each exit in Figure 3. Images can
appear in many shapes, meaning the number of computations
and expended energy can vary a lot from image to image.
It is noticeable that the size of the image is an issue that
can worsen both latency response and energy consumption,
as the later layers are the ones where the increase of FLOPs
is more pronounced. Thus, it is evident that early exits are
a valuable tool for time-sensitive and resource-constrained
implementations.

VIII. CONCLUSION

Given the success of early-exit DNNs in image classi-
fication, it is only natural to try to replicate it in semantic

(a) Input image. (b) b2 output. (c) b3 output.

(d) b5 output. (e) out output. (f) Ground truth.
Figure 3. Segmented images from BranDeepLabV3 with 7 side branches.

Figure 4. Number of FLOPs of each exit of the BranDeepLabV3 with 7
early exits.

segmentation. Additionally, many time-sensitive applications
that require semantic segmentation can benefit from early
attempts of segmentation. In this paper, we present a new
implementation suited for early-exit semantic segmentation,
showing the usefulness of the approach. The results show
that the earlier exits’ FLOPs, which allows us to estimate
latency and energy consumption, increase at a slower pace
than the later stages, and that they are capable of delivering
coarse segmentations that can outline relevant features. For
instance, we show that in earlier stages, where mIoU is below
0.4, the early exits are capable of delivering a segmentation
displaying relevant features. This result, in particular, indic-
ates an opportunity of training the early exits to distinguish
sensitive classes, to be investigated in future research.

ACKNOWLEDGMENT

This work was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Bra-
sil (CAPES) - Finance Code 001. It was also suppor-
ted by CNPq, FAPERJ Grants E-26/211.144/2019 and E-
26/202.689/2018, and FAPESP Grant 15/24494-8.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[2] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V.
Hernandez, L. Krpalkova, D. Riordan, and J. Walsh, “Deep learning
vs. traditional computer vision,” in Advances in Computer Vision:
Proceedings of the 2019 Computer Vision Conference (CVC), Volume
1 1. Springer, 2020, pp. 128–144.

[3] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,
P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on deep
learning techniques for image and video semantic segmentation,”
Applied Soft Computing, vol. 70, pp. 41–65, 2018.

[4] V. M. De Pinho, M. L. R. De Campos, L. U. Garcia, and D. Popescu,
“Vision-aided radio: User identity match in radio and video domains
using machine learning,” IEEE Access, vol. 8, pp. 209 619–209 629,
2020.

[5] T. Nishio, Y. Koda, J. Park, M. Bennis, and K. Doppler, “When
wireless communications meet computer vision in beyond 5g,” IEEE
Communications Standards Magazine, vol. 5, no. 2, pp. 76–83, 2021.

[6] M. Thoma, “A survey of semantic segmentation,” arXiv preprint
arXiv:1602.06541, 2016.

[7] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 801–818.

[8] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell,
“Understanding convolution for semantic segmentation,” in 2018 IEEE
winter conference on applications of computer vision (WACV). Ieee,
2018, pp. 1451–1460.

[9] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for iot big data and streaming analytics: A survey,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2923–2960,
2018.

[10] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
international conference on pattern recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[11] R. G. Pacheco and R. S. Couto, “Inference time optimization using
branchynet partitioning,” in 2020 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 2020, pp. 1–6.

[12] R. G. Pacheco, K. Bochie, M. S. Gilbert, R. S. Couto, and M. E. M.
Campista, “Towards edge computing using early-exit convolutional
neural networks,” Information, vol. 12, no. 10, p. 431, 2021.

[13] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” 2017.

[14] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–
848, 2017.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL Visual Object Classes Challenge 2012
(VOC2012) Results,” http://host.robots.ox.ac.uk/pascal/VOC/voc2012/.

[16] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2015.

[18] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “Spinn: synergistic progressive inference of neural networks over
device and cloud,” in Proceedings of the 26th annual international
conference on mobile computing and networking, 2020, pp. 1–15.

[19] M. Berman, A. R. Triki, and M. B. Blaschko, “The lovász-softmax
loss: A tractable surrogate for the optimization of the intersection-
over-union measure in neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp.
4413–4421.

