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A B S T R A C T

Local computation and communication are known challenges for energy-constrained devices that can become
even more complex if we consider data acquisition with noise. Thus, developing systems that address these
problems is fundamental when implementing sensing nodes in IoT networks. Fortunately, sensed data has
intrinsic redundancies that allow compression with little or no information loss, which can even be used to
suppress the collected noise. Many solutions using Neural Networks (NNs) have emerged to address both
issues, resorting to autoencoders to extract these redundancies to reduce data transmissions in IoT networks
and to remove noise from data in general. However, solutions that resort to NNs often rely on increasing the
number of NN layers to achieve performance improvements, which can be tricky when deploying them in
resource-constrained devices. Models with multiple layers require more space to store their parameters and
more computations. To address these problems, we propose Asymmetric Autoencoders (AAEs), a model that
modifies the typical autoencoder, which adopts a symmetric encoder-decoder architecture, in favour of a design
that has fewer NN and other resources in the encoder than in the decoder. Our experiments with single-sensor
temporal-data compression show that our proposed AAEs can offer a similar or smaller reconstruction error
compared to the symmetric AEs while using encoders with fewer parameters and that require fewer floating-
point operations (FLOPs) with each compression operation. For instance, the proposed AAEs can outperform
the best symmetrical implementations by executing five to seven times fewer FLOPs. Given their inherently
IoT-friendly design and positive results, we show that AAEs are a valuable model for NN deployment in sensor
nodes, as they can achieve similar or better performance than symmetric autoencoders while saving sensor
node resources.
1. Introduction

The Internet of Things (IoT) paradigm integrates communication
capacity to electronic devices, exploiting the already available Internet
infrastructure. A typical IoT network comprises sensors and actuators
capable of communicating with each other and the Internet [1]. Hence,
electronic devices ranging from all-purpose sensing nodes to smart
devices, e.g., smartphones and self-driving cars, become components
of the IoT network environment.

Crucial for many IoT applications is data collection. However, a
common problem for sensor devices is energy efficiency [2,3], which
can make data collection particularly challenging. Devices are typically
powered by rechargeable batteries, imposing issues regarding power
consumption and quick energy depletion. Hence, applications that ex-
hibit energy-efficient behaviour are welcome, as they save the trouble
of constantly recharging batteries or even sending people to inhos-
pitable places for battery replacement. In IoT, a well-known source
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of energy consumption is wireless transmissions, compelling many
applications to focus on performing this task efficiently. Because IoT
networks are expected to contain multiple sensing nodes collecting data
from distinct sources, the development of applications that can work
with high volumes of data to minimize information size transferred is
crucial for saving data transmission bandwidth [4]. Since early studies
in Wireless Sensor Networks (WSNs), a common practice is to avoid
redundant data transmissions, even at the expense of local computa-
tion [2]. For instance, sensing nodes monitoring the same phenomena
accumulate measurements that carry space–time correlation, which
can be exploited to reduce the amount of data sent from IoT sensor
nodes [3]. Hence, compression algorithms or general data aggregation
approaches can reduce the amount of data transmitted by exploiting
data redundancy [5].

Besides energy savings, noise poses a significant challenge to IoT ap-
plications. This problem is particularly pronounced in low-cost devices
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with limited resources [6]. Additionally, the deployment environment
and the network density affect the collected noise intensity. Natural
changes in the surroundings can affect the perceived noise, and so can
neighbouring devices, whose operations can interfere with one another.
Therefore, incorporating noise suppression as an additional feature of
the compression system can significantly enhance the effectiveness of
IoT data collection.

With the recent popularization of deep learning, new compres-
sion schemes for WSN (and consequently for IoT devices) have been
proposed using neural networks (NNs) [7–10]. Many phenomena mon-
itored in IoT settings require nonlinear models, where NNs suit well.
NNs can adapt to data distribution, allowing the construction of com-
pression systems that operate with little prior knowledge of the mon-
itored signal. Also, NNs can impose a relatively lightweight compu-
tational cost, as the encoder stored in the sensor node can be the
resulting weight matrix with an activation function (to perform the
nonlinear transformation) [7]. However, many solutions that resort
to NNs usually rely on increasing the number of layers and other
computational resources to improve performance. This approach can
be problematic when deploying NNs in IoT networks, as implementing
more complex models on resource-constrained devices can be more
difficult. Moreover, it will be common for sensing nodes to require
multiple NN models to deal with heterogeneous data [3], meaning
that each model’s requirements can stack up and become a problem
for IoT nodes. We address this issue by relying on a relevant recom-
mendation for designing compression and aggregation strategies for
IoT networks, which is usually neglected or an afterthought on typical
NN architectures: the development of asymmetric schemes. As pointed
out in early discussions in compression schemes for WSNs, the bulk
of computation should be performed at the decoder rather than at
the sensor node [11]. The current literature often uses compression
schemes based on NNs that evenly distribute the compression and
decompression tasks between the sensor and the sink [6,7]. Hence,
this paper investigates new approaches that seek NN depth increase
considering an asymmetrical design, filling an existing gap in the NN
deployment in IoT literature.

This paper proposes Asymmetric Autoencoder (AAE) architectures
for IoT data compression, in which the number of existing layers in the
decoding block is greater than in the encoding part. With the proposed
architecture, one can seek performance improvements by increasing the
number of layers, and other NN features, without imposing additional
resource demands on sensitive devices. We train our proposed AAEs
to perform noise suppression and compression tasks simultaneously,
and show the suitability of the proposed models for compressing IoT
data under different noise levels. Additionally, we benefit from data
temporal correlations to propose AAE architectures that deploy convo-
lutional layers, referred to as Convolutional AAEs (CAAEs), to enhance
the usage of short- and medium-term relations. With these proposed
architectures, we show that one can add additional features to the
decoding layers to exploit data characteristics further. Ultimately, the
main contribution of our proposed models is enabling the development
of compression systems that keep the storage and computational ad-
vantages found in the shallow architecture from previous papers [7],
and achieve performance improvements by increasing the depth and
modifying the decoding block of the autoencoder.

The results back our assumptions that AAEs fit well in resource-
constrained devices, which are sensor nodes in typical IoT networks.
We show that our proposed models can offer a similar or smaller re-
construction error when compared to the symmetric AEs using encoders
with fewer parameters and layers, which require fewer floating-point
operations (FLOPs) and storage space. Moreover, the pros of the AAEs
go beyond an IoT-friendly architecture, handling some IoT dataset
inconveniences, such as an insufficient number of training samples.
Additionally, our results show that the trained models can outperform
the symmetrical counterparts and achieve nearly identical reconstruc-
2

tion errors independent of the signal-to-noise ratio (SNR), varying
from 80 db down to 20 db. Specifically, in the case of CAAEs, results
suggest that incorporating computational structures that exploit data
particularities is desirable, as they have achieved the best performance
among all trained models. Overall, all these results highlight the main
contribution of this paper: AAEs are a valuable model for autoencoder
deployment in IoT networks, as their architecture enables the pursuit
of performance gains without requiring a significant increase in sensor
node cost.

The remainder of this paper is organized as follows. First, in Sec-
tion 2, we overview the literature on data compression and denoising
using autoencoders. Next, Section 3 provides background on data com-
pression using autoencoders. Also, in this section, we discuss data
denoising briefly. Section 4 proposes the AAEs, discussing the design
choices for the asymmetrical architectures. In the following, Section 5
details the dataset selected and explains the procedure conducted for
autoencoder training. Then, in Section 6, we present the obtained
results. Finally, we conclude this paper in Section 7.

2. Related work

Usually, when resorting to NN-based solutions, autoencoders are the
model of choice when dealing with dimensionality reduction and data
enhancement problems. Hence, several works considering data com-
pression and noise suppression for IoT networks use autoencoders [6].
Alsheik et al. demonstrate the capabilities of a compression scheme
based on a shallow symmetric autoencoder architecture to deal with
IoT data [7]. The authors employ the proposed model to handle tem-
poral series, showing that their proposal can deliver a lightweight
compression scheme that significantly reduces energy consumption. As
expected, increasing the depth of this symmetric autoencoder yields
better data compression results. These results occur because the more
layers the neural network has, the more complex functions it learns. For
instance, in scenarios related to dimensionality reduction, which shares
similarities with data compression, this trend is also observed [10].
However, increasing the number of layers can be a problem, as more
layers in the encoder portion incur storing more parameters and run-
ning more computations in the sensor. We present an asymmetrical
autoencoder architecture as an alternative to this approach. In our
proposal, the number of layers is the same as in Alsheik et al. but the
decoder can have as many layers as possible. Thus, we show that it
is possible to keep the benefits of a lightweight encoder at the sensor
without affecting performance. In addition, our approach deals with
data corrupted with noise.

Regarding noise suppression, two recent works use Denoising Au-
toencoders (DAEs) to remove noise from data. Laakom et al. [12]
propose a new loss function to help the model learn how to remove
the noise. Even though they consider data compression, they focus on
denoising, showing that autoencoders can deal with both challenges.
Additionally, their model is symmetrical and has multiple encoding
layers, as it does not consider IoT data. In another work, Lee et al. [13]
propose a modification to DAE, which shifts from the traditional ap-
proach of learning how to reconstruct the noiseless signal to extract
the noise, subtracting it from the signal. They show that their approach
outperforms DAE in the evaluated scenario, but differs from ours
by resorting to a symmetrical architecture and not addressing data
compression.

Table 1 summarizes the differences between our work and other
proposals that involve data processing with autoencoders. Overall, our
paper presents multiple AAEs models, showing that one can add multi-
ple layers and features to the decoder to improve performance. Hence,
our key contribution is presenting asymmetrical NN architectures that
can be a valuable alternative when implementing applications that
use autoencoders in IoT networks. Through our experiments, we show
that the AAEs deliver comparable performances to their symmetrical
counterparts, capable of even outperforming them. Hence, in addition

to its architecture suited for resource-constrained devices, we show
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Table 1
Summary of related work resorting to autoencoders for data compression (or dimensionality reduction) and noise removal.
Reference Data

compression &
Dim. reduction

Noise removal Single encoding
layer

Asymmetric
design

[7] ✗ ✗

[10] ✗ partial
[12] partial ✗

[13] ✗

[15] ✗ ✗

This work ✗ ✗ ✗ ✗
that AAEs can be fundamental to NN deployment in IoT. We refer to
Mohammadi et al. [14] and Bochie et al. [6] for other cases where AEs
are used, in which AAEs can be beneficial.

With the popularization of machine learning in recent years, es-
pecially thanks to the recent success of DNNs, a great effort is being
spent in simplifying model requirements to embed them in resource-
constrained devices. Tiny Machine Learning (TinyML) is a paradigm
that emerged recently, focusing on designing ML models for low-
power and low-cost microcontrollers [16]. Among different approaches,
TinyML usually relies on parameter pruning and quantization to offer
more compact and computationally efficient models [16,17]. Although
crucial for implementing DNNs in resource-constrained devices, quan-
tization can lead to performance degradations because 32-bit floating
point parameters are mapped into representations that require fewer
bits, thus losing representation precision. Additionally, the current best
quantization techniques can offer a maximum size reduction of four
times [17], and pruning-like techniques are more effective in over-
parameterized models that have many infinitesimal parameters. This
means that DNNs that are big to begin with naturally take more space
than models that are designed with fewer layers and parameters. An
IoT sensing node is expected to collect data from multiple sources [3],
so it will likely store multiple ML models to treat each one individually
or will require a complex model capable of dealing with this hetero-
geneous data. With our proposal, one can start with a more compact
model, which can downplay the need for parameter quantization and
pruning. Moreover, because our proposal focuses on the architectural
aspect of autoencoders, it can be complementary to the aforementioned
TinyML technics in designing DNNs that require less storage space and
computations, as we can start with a model that is already compact and
energetically efficient in comparison with a more complex symmetric
autoencoder.

Asymmetric autoencoders were previously analysed [15] but with
an encoder containing more layers than the decoder. This architecture
is the opposite required in typical IoT scenarios, as the bulk of computa-
tion would be shifted towards the resource-constrained nodes. Ideally,
in an IoT network, it is desirable to outsource most computation to
a resource-rich central node. Hence, to our knowledge, our paper is
the first to propose an asymmetrical architecture more suited for IoT
deployments.

3. Autoencoders: General features and usage

Autoencoder networks (AE) are central to dimensionality reduction
and data enhancement using NNs. AEs are structured to replicate the
input data in its output layer, extracting relevant features throughout
the intermediate layers. In the scenario analysed, the extracted features
are crucial for generating a compact representation of the input data
that allows reconstruction with noise suppression.

Fig. 1 illustrates a generic feedforward AE. In feedforward AEs, only
neurons in adjacent layers interconnect, and data flows from the input
to the output layers without loops. Another essential characteristic
shown in Fig. 1 is that the AE is undercomplete, meaning that hidden
layers have fewer neurons than the input and output layers [18]. Con-
sequently, the AE architecture naturally forces the learning of a more
3

compact representation, leading to data compression. The autoencoders
Fig. 1. Symmetric Autoencoder: input and output layers have 𝑛 neurons, whereas each
hidden layer 𝑖 has 𝑚𝑖 neurons, 𝑚𝑖 < 𝑛. Also, the number of layers of the encoder and
the decoder are the same.

used in this paper are of this type, with the term undercomplete omitted
(which is usually the case). An autoencoder is typically split into two
symmetrical parts for data compression (encoder) and decompression
(decoder).

Recent data compression efforts in IoT have found AEs particu-
larly useful [6]. Because NNs fall under the representation learning
paradigm, data compression requires little prior knowledge about in-
trinsic data characteristics. NNs learn on the fly the transformations
needed to compress and recover the noiseless data [19]. Moreover,
the presence of nonlinear activation functions at the neurons enables
the models to adapt to a wide range of functions. Hence, AEs are an
attractive tool for problems that involve large amounts of data that
require complex functions to deliver the desired application. AEs can
learn data nuances if constructed correctly and given enough training
samples.

4. Asymmetric autoencoders

The main goal of this paper is to pave the way for the implementa-
tion of asymmetrical compression systems based on autoencoders that
are more suited for IoT scenarios, i.e., that consider the asymmetrical
distribution of computational resources between sensors and cloud or
edge-located servers. To accomplish that, we propose new AE architec-
tures where the number of layers or other structures is greater in the
decoder than in the encoder. So far, almost all AEs proposed lean on the
rule of thumb of constructing AEs where the amount of resources at the
encoder and decoder is roughly the same. In these cases, the decoder
mirrors the encoder, copying the number and the disposition of layers
of the latter. When this is not the case, the additional features tend to
be placed in the AE’s encoder. Contrary to that, we evaluate if keeping
a simple architecture at the encoder while increasing the complexity
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Fig. 2. Proposed Asymmetric AE: unlike typical symmetrical AE, however, the number
of decoding layers is greater than the number of encoding layers.

of the decoder can bring an equivalent or even better reconstruction
rate than in the symmetrical case. If this asymmetrical architecture
delivers low reconstruction error, we confirm that additional computa-
tional complexity and memory utilization from the sensor perspective
is indeed unnecessary.

Fig. 2 illustrates the general picture of the proposed Asymmetric
AE (AAE). Even though the model depicts a fully-connected imple-
mentation, all AAEs follow the same trend, adding their own tweaks.
In the experiments to come, the AAE encoder always has a single
fully-connected layer that transforms an array with 100 samples into a
compressed representation with 25 values. We have opted to construct
all the encoders with this exact strict requirement to facilitate the eval-
uation of results and to emphasize the contributions of our research.
Thus, even though we do not experiment with more complex encoders,
we expect that relaxing this requirement leads to even better results.
On the other hand, the decoder can have as many layers as we need.
Furthermore, as we will discuss, it can incorporate additional struc-
tures, such as convolutional layers. Another advantage of constructing
all AAEs with a single encoding layer is that it produces an encoder that
is a single weight matrix with a bias vector and an activation function.
As discussed by Alsheik et al. this configuration offers a lightweight
compression scheme, requiring the storage of a few parameters at
the sensor node [7]. In this direction, we show that AAEs can retain
the advantages for constrained devices and that modifications at the
autoencoder’s decoder permit performance improvements.

The proposed AAEs are designed for resource-constrained devices
acting as sensing nodes in IoT networks. As can be seen in Fig. 3,
we place the AAE’s encoder at the sensing node, which we assume is
a resource-constrained device, and outsource the resource-demanding
decoder to a resource-rich device (a remote server, for example). As
the results will show, when compared to the symmetrical autoencoders,
the proposed AAE is capable of similar or lower reconstruction error
than its deeper symmetric counterparts, offering an encoder that can
save a significant amount of storage space and computation. All models
are trained offline using historical data collected from the phenomena
of interest. The machine in charge of training could host the decoder,
assuming it has the required computational power, which is a common
practice in DNN deployment in IoT and resource-constrained deploy-
ments in general [6,17]. Thus, the AAE can be trained in the cloud, if
the server has access to the training samples.

AAEs with convolutional layers

We enhanced the AAEs performance by increasing the models’
asymmetry with the addition of convolutional layers to the decoder. By
4

Fig. 3. Layer arrangement of the proposed AAE, where the compact encoder is stored
at the sensing node.

adding these layers to the proposed AAEs, it was possible to improve
the extraction of intrinsic temporal correlations. Convolutional layers
are popular neural network structures that extract similar features
across the input data. Compared with the fully-connected layers used
earlier, the convolutional layers are composed of a small set of weights
that act upon a small neighbouring set of input values. The same
strategy is replicated all across the input data [20]. In practice, these
weights operate as a filter that analyses small portions of data in a
sliding window fashion. In NNs, a kernel usually refers to this set of
weights, while the step in which the kernel slides on data is called
stride. Additionally, using multiple kernels in a single convolutional
layer is a typical approach to extract distinct features in parallel,
which can be complementary to one another. To keep the terminology
different from the layer’s output, one says that the result of each
kernel exits an output channel. We adopt these naming conventions
throughout this paper.

In the proposed Convolutional AAEs (CAAEs), we employ depth-
wise-separable-convolutional layers [21]. In these convolutional layers,
spatial and cross-channel correlations are extracted separately, mean-
ing that these layers split the extraction of features and mix inter-
channel information operations. These layers are shown empirically
as capable of learning richer representations with fewer parameters,
leaning on the assumption that, by splitting these operations, the whole
convolutional layer operation becomes simpler and more efficient [21].
As will be discussed later, a shortage of training samples is a common
problem when training NNs with temporal data [22]. Additionally, in
early experiments, this seemed particularly beneficial for our denoising
models, as we employed a large number of kernels in parallel in our
deep CAAE configurations.

Hybrid Dilated Convolution (HDC) [23] is another convolutional
layer that we employed in our proposed CAAEs. Using the same in-
put data, the HDC layer extracts features at different scales. Dilated
convolution, also referred to as atrous convolution [24], is a variation
that employs kernels that skip some adjacent samples to increase the
receptive field without loss of resolution or coverage [25]. In this di-
rection, the Hybrid Dilated Convolution (HDC) layer employs different
kernels with distinct dilations. For instance, suppose an HDC layer is
constructed with kernels 𝑘1 = (−1, 1,−1), 𝑘2 = (1, 1, 1), and 𝑘3 =
(−2, 0, 2) with dilations equal to 1, 2 and 3, respectively. In practice,
this is similar to a regular convolutional layer with kernels 𝑘′1 = 𝑘1,
𝑘′2 = (1, 0, 1, 0, 1) and 𝑘′3 = (−2, 0, 0, 0, 0, 0, 2). Hence, if we apply this
HDC to an arbitrary sequence 𝑣 = (2, 1,−1, 0, 1, 1,−2,…), the generated
sequences are (0,−2, 0,…), (2, 2,−2,…) and (−8, 0, 0,…), respectively.
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Table 2
AEs and AAEs fully-connected decoder configurations.

Label Layer sizes

AE-0 25 → 100
(A)AE-1 25 → 50 → 100
(A)AE-2 25 → 50 → 75 → 100
(A)AE-3 25 → 45 → 65 → 85 → 100
(A)AE-4 25 → 40 → 55 → 70 → 85 → 100

5. Experiment setup

We analyse our proposal using temperature readings from a wireless
sensor node located at the American River Hydrologic Observatory
(ARHO) [26]. The models are expected to capture temporal correlations
in data to generate compact representations and eliminate the noise
perceived in each sample. In particular, these measurements are from a
sensor near Caples Lake in California, taken from June 2014 to October
2017. Consecutive samples are obtained with regular intervals of 𝑇 =
5 min.

The AE input and output sizes are limited to 100 samples, meaning
hat the sensor node forwards compressed data corresponding to sample
rrays of 𝑠 = 100 temperature readings. Thus, sensor transmissions
lways occur after the fixed-time interval needed to collect these 100
amples. In the case of the dataset adopted in our experiments, because
he samples are collected in intervals of 15 min, one array is composed
f more than 1 day of measurements (𝑇 × 𝑠 = 1500 min = 1 day
nd 1 h). This period of time is not a result of the AEs computation,
ut rather a limitation of the dataset adopted. Hence, if one wants a
aster transmission rate, adopting a shorter period between consecutive
amples is sufficient.

.1. AAE configurations

All networks are designed to reduce the 100 temperature readings
collected to a compressed array of size 25. All hidden layers employ
SeLU as the activation function, whilst the output layer activation
function is the sigmoid function, the latter a common choice for AEs.
All fully-connected decoder configurations have a smooth increase in
the number of neurons per layer toward the output. We use arrows to
highlight the data flow direction for all decoder configurations, as seen
in Table 2.

We label our fully-connected autoencoders using the notation
‘‘Autoencoder-Model-DepthOfTheVaryingBlock’’, adopting the deco-
der’s depth as the identifier for each model. For instance, the first AAE
architecture (AAE-1) contains a single hidden decoding layer between
the decoder’s input (layer with 25 neurons) and output (100 neurons).
The symmetric AEs, against which we compare the proposed AAEs,
have encoders that mirror the configurations seen in Table 2, as in
Fig. 1. In the case of AE-0, it refers to the shallowest symmetrical AE,
which has only two NN layers and no extra decoding layer between
the compressed and output data. This is the base model, the simplest
and starting model for evaluation, which is modified to achieve per-
formance enhancements. Finally, concerning the models’ operability,
because we adopt sigmoid in the output layer, each sample array is
normalized to fall within the sigmoid codomain. Consequently, the
maximum and minimum values of the corresponding batch are also
transmitted with the compressed data for reconstruction.

5.2. CAAE configurations

The intrinsic temporal correlations, an attribute present in the data
used in our experiments, are underutilized in the fully-connected mod-
els. Although AAEs exploit them to perform the task at hand, we
enhance their use by including convolutional layers. Hence, we can
5

modify the decoder to enhance performance by exploiting the prior
knowledge about the sensed signal. These modifications result in the
proposed Convolutional AAEs (CAAEs).

All CAAEs proposed in this paper build upon the third decoder
configuration (AAE-2) seen in Table 2, with the set of convolutional
layers replacing the layer that performs the 75 → 100 transformation.
Another feature of the CAAE is that, before the last convolutional block
(i.e., set of convolutional layers), the data is upsampled with a factor
equal to 2. This means that the convolutional layers employed in our
configurations do not promote upscaling. Finally, all data from the last
convolutional block is fused together using a convolutional layer with
kernels with both size and stride equal to 1. This output layer is the
output of the whole network, using sigmoid as the activation function,
such as in our previous models.

Table 3 brings the configuration of the convolutional blocks of each
CAAE configuration. Similar to Table 2, the first index in the identi-
fier reflects the decoder’s depth. Differently, the second index reflects
the complexity of the convolutional layers, with the higher identifier
reflecting the models with more convolutional kernels. Regarding the
layers’ characteristics, all kernels have a size equal to 3. Additionally,
the convolutional blocks can have an expansion factor of 4 or 8. This
value represents the amount of spatial convolutional kernels applied
at each input channel. Hence, for 𝑛 input channels, if the block has
𝑡 expansion factor, the total number of kernels is 𝑛𝑡. Similarly to the
hidden layers of the previous AAEs, we employ SeLU as the activation
function.

5.3. Dataset generation

All networks are trained following the same methodology. Samples
until June 2016 form the training set, whilst the testing set contains
the remaining samples. This meant that approximately 60% of samples
were used for training, and the remaining 40% for testing. After split-
ting the samples into training and testing sets, arrays of 100 samples
re generated in a sliding window fashion. The goal is to create a
ignificantly large number of distinct training arrays in comparison to
simple training set partition, given that the lack of training data is a

ommon problem with temporal data [22]. In particular, three distinct
trides are selected to increase the number of training arrays together.
e, however, do not conduct any particular analysis to determine the

ptimal stride, using 10, 17, and 23 instead, given that they are mutually
rime. Any duplication is removed to ensure training array uniqueness.

We analyse two main scenarios, one where the models are trained
o perform just data compression, and another where the models must
lso perform data denoising. In the latter, the training data is corrupted
ith Additive White Gaussian noise (AWGN) to enable the models to

earn how to remove the noise. Specifically, each array in the training
ataset can be contaminated with noise at levels ranging from 2.5 to
0 db SNR. After generating the training set, all arrays are shuffled.

.4. Training specifications

All models are trained using the early stopping policy, meaning that
he training process terminates after a given number of epochs without
mprovements. We set the patience to be equal to 15 epochs. Addition-
lly, we employ Nadam [27] as our optimizer, which is a variation of
dam [28] optimizer, a popular optimizer for NN training employing
esterov’s momentum [29]. We adopt decrease on the plateau as the

earning rate (𝐿𝑅) scheduling policy, meaning that after a number of
onsecutive epochs without improvement (we set this value to be equal
o 5) the 𝐿𝑅 multiplied by a factor of 0.75. This process is repeated until
eaching a minimum 𝐿𝑅. In our experiments, the starting and ending
𝑅’s are equal to 3 ⋅10−3 and 5 ⋅10−5, respectively. During training, the

nput of the models were batches of training data formed by 50 arrays.
Unlike most works that employ autoencoders for data denoising [6,

2], we did not include any regularizer and relied on the network’s
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CAAE configurations.
Label 1st Conv. Block 2nd Conv. Block 3rd Conv. Block

nout exp dil nout exp dil nout exp dil

CAAE-3.1 4 4 1 4 4 1 – – –
CAAE-3.2 8 4 1 8 8 1 – – –
CAAE-4.1 4 4 1 [4, 2, 2] [4, 4, 4] [1,2,3] 8 4 1
CAAE-4.2 8 4 1 [4, 2, 2] [8, 8, 8] [1,2,3] 8 8 1
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rchitecture instead. The models learn the adequate compressed rep-
esentation and how to recover the noiseless signal by measuring the
ifference between its output and the uncorrupted original signal. We
onsidered the addition of a regularizer unnecessary for the presenta-
ion of our results. Nonetheless, we expect that the adoption of such
egularizations does not negatively impact the AAE training.

The code used to derive the experimental results is written in
ython, built using the TensorFlow framework [30]. It is made avail-
ble at a GitHub repository [31]. Each model is trained 10 times, using
ifferent initial weights. The performance of each model is evaluated
y computing the average reconstruction error over all testing arrays.
he reconstruction error of each array of samples is measured using the
ean Square Error (MSE). Finally, in the case of the models trained

o perform noise suppression, we assess their robustness to noise by
dding AWGN to the test dataset.

. Experimental results

The experiments in both scenarios (compression with and without
enoising) are divided into three. The first evaluates the symmetric
Es, analysing how increasing the model’s depth affects reconstruction
rror. Also, we show the space and computational costs of resorting to
he symmetrical approach, as both the number of encoding parameters
nd floating-point operations (FLOPs) increase when we add more lay-
rs to the AE’s encoder. The second compares the performance of AEs
nd AAEs, comparing the proposed AAEs with the symmetrical ones we
ant to replace. We show the advantages of seeking NN-depth increase
ithout incurring more encoding layers, as they have similar perfor-
ance while requiring fewer parameters and FLOPs. Finally, the third

xperiment evaluates how one can exploit data temporal correlation
sing CAAEs to achieve additional performance gains. These models
how that, in addition to increasing decoder depth, we can pursue
erformance enhancements by adding features that were absent in the
ncoder. Moreover, by varying the number of kernels per convolutional
ayer, we can reduce the reconstruction error by implementing other
odifications without solely resorting to additional NN layers. Finally,

pecifically to the results shown here, the testing arrays are constructed
sing strides equal to 33 and 50, which are respectively roughly a third
nd half the size of the arrays of samples. As in the case of the training
rrays, duplicated testing arrays are discarded.

.1. Data compression

.1.1. Increasing AE depth
Fig. 4 brings a boxplot showing the distribution and the mean

econstruction error for all analysed symmetric AEs. It clearly shows the
dvantages of increasing the number of layers, especially compared to
E-0. Apart from a single model that delivered a mean reconstruction
rror close to 0.176 MSE, all AE-0 models were unable to outperform
ny of the deeper AEs. Moreover, the models that delivered the lowest
econstruction error are those with more NN layers (AE-2 and deeper
onfigurations). However, when observing the median (red horizon-
al line segment) and the mean (dark red diamonds) of the models
ith two or more hidden decoding layers, we notice that there is no

ignificant gain when opting for a model with more than two hidden
ecoding (and encoding) layers. Notice that, by increasing the number
f layers symmetrically, we are adding two more layers compared to
6

a

Table 4
Number of parameters and FLOPs needed for each
compression in each AE encoders.
Conf. Numb. Params. FLOPs

AE-0 2525 5025
AE-1 6325 12 575
AE-2 12 650 25 150
AE-3 18 295 36 370
AE-4 21 775 43 275

Fig. 4. Mean reconstruction error for all symmetric AEs.

he previous configuration, given that we are adding one layer at the
ncoder and another at the decoder. Hence, the deeper models have
significant amount of parameters to adjust, requiring more data to

rain. This is another problem that may occur when deploying deep-
ymmetrical-AE architectures in IoT networks, as the amount of data
n a particular phenomenon can be limited. As will be seen later with
ur proposed models, this issue is minimized significantly.

Before moving on to the AAEs, it is important to quantify the
ncrease in size of the encoders. Table 4 brings the number of trainable
arameters (weights and biases) in the encoder of each AE configu-
ation. The number of parameters grows considerably as the number
f layers increases. For instance, to achieve the performance gains in
ig. 4, the number of encoding parameters more than doubles from AE-
to AE-1, and doubles going from AE-1 to AE-2. Moreover, this issue

ends to worsen when dealing with more complex data, which requires
ore layers and neurons. The proposed AAEs are an alternative to
inimize these problems. Even if quantization is adopted later, starting
ith a model that is already more compact can lead to even more space

onservation. For instance, this can be beneficial when envisioning that
ultiple models can be stored in a sensing node to deal with data

ollected from multiple phenomena [3].
Another issue with increasing encoder size is the increase in en-

oding computations. Table 4 brings an approximation of FLOPs for
ach encoder (ignoring the FLOPs that SeLU may impose), which gives
good estimate of the number of computations needed to generate

ne compressed array. For instance, when opting for AE-1, the amount
f FLOPs more than doubles in comparison with AE-0. Moreover, if
e opt for AE-2, the resulting encoder imposes FLOPs that are more

han five times higher than those of AE-0. Adopting a similar analysis
s Alsheikh et al. [7], which computed the power consumption in
n MSP430 microcontroller, these increase in FLOPs leads to about
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Fig. 5. Comparison between the mean reconstruction error distribution of the proposed
AAEs against their symmetrical counterparts.

4.02 mJ and 10.71 mJ more energy spent in each data compression
Appendix. AE-0 spends 2.65 mJ per compression. Thus, opting for AE-
1 nearly triples power consumption, and AE-2 spends more than five
times more energy. This trend tends to worsen with more complex data
because they will likely require more complex models. Additionally,
other factors, such as sampling rate, can increase sensor node power
consumption. We address this computational problem by showing that
performance improvements are possible even when we keep AE-0’s
encoder configuration, thus showing that these implementation issues
can be mitigated through a different autoencoder design.

6.1.2. AEs vs. AAEs
Fig. 5 shows that the AAEs keep the trend of improvement as

we increase the number of layers. Recall that the AAEs have the
same encoder configuration as AE-0, meaning that they have the same
number of encoding parameters and impose the same number of FLOPs
shown in Table 4. The additional layers are inserted in the decoder, to
be implemented away from the resource-constrained devices. However,
it is noticeable that the advantage of the asymmetric design starts to
appear with AAE-2, when two layers are added to the decoder. Interest-
ingly, this is the AAE with the same number of NN layers as AE-1 (both
have 5 NN layers in total), and they have comparable performance.
For example, it is noticeable that their medians and means are less
than 0.001 MSE apart. Considering computation demands, AAE-2 is
more advantageous for resource-constrained implementations because
it requires 5025 FLOPs per data compression, whilst AE-1 takes 12575.

Moving on to the deeper architectures, the advantages of the pro-
posed AAEs become more evident. AAE-3 and AAE-4 not only have
comparable performance to AE-2 and deeper configurations but are
also capable of outperforming them while requiring five times fewer
parameters and FLOPs, at least. First, they are capable of delivering a
similar performance, evidenced by the observation that AAE-4 and AE-
4 have similar error distributions, with AAE-4 having a slightly better
performance. For instance, the third quartile of AAE-4 (topmost side
of the box) is almost equal to the AE-4 median. Additionally, we can
observe that some deeper AAEs are capable of outperforming most of
all trained AEs. Observer in the graph that the median of both AAE-3
and AAE-4 are below the medians of AE-3 and AE-4. Given that the
AAEs have an encoder with the same size as AE-0, they appear a better
choice for the analysed scenario. Opting for either of the two AAE
configurations instead of AE-3 and AE-4 means that we are saving seven
times fewer FLOPs per compression operation, at least. Thus, AAEs can
be a valuable alternative for resource-constrained devices.

6.1.3. Exploiting temporal correlation with CAAEs
Fig. 6 shows the performance of the CAAEs, comparing them with

the best models so far. These results show the advantages of adding con-
volutional layers to the asymmetrical architecture. To illustrate this, no-
tice that the models achieving the best results among all configurations
7

Fig. 6. The mean reconstruction error distribution of the proposed CAAEs compared
with the best-performing AEs and AAEs.

are constructed with HDC blocks, and that even the worst-performing
CAAE models outperform all AEs and AAEs seen previously. This is
another positive result for the proposed asymmetrical architecture,
emphasizing that we can seek performance improvements by adding
new features to the decoder that were not present in the encoder.
However, Fig. 6 shows that the results obtained with CAAEs have
more variance than those obtained with our previous architectures. For
the sake of fair comparison, we adopted the same training parameters
to train all models. Hence, it is possible to minimize this variance
by adopting more appropriate training parameters to exclusively train
CAAEs.

Analysing solely the CAAEs results, the fact that the models with
an HDC block present the best results highlights the advantages of
employing a layer with distinct dilations. By doing so, we ensure that
the kernels learn to extract distinct features, because the kernels are
operationally distinct. Moreover, these features are complementary,
given they are obtained in different resolutions. We know that temporal
data have short- and medium-term relations, meaning that a CAAE
with HDC is more suited to extract them than a CAAE without this
convolutional block.

When comparing CAAE-4.1 and CAAE-4.2, we observe that adding
more layers (through the expansion factor) seems unnecessary. This
appears similar to the results in Fig. 5, when comparing the deeper
AEs and AAEs configurations. However, as will be seen in our next
experiments with noise, this can be attributed to the problem’s rela-
tive simplicity rather than a shortage of training data. For example,
increasing the number of kernels is advantageous when comparing the
performances of CAAE-3.1 and CAAE-3.2, which have convolutional
kernels with the same dilation. Compression without denoising is a
more straightforward task, suggesting that having a lot of convolutional
kernels becomes unnecessary when deploying the HDC block, given its
improved capacity to extract distinct and complementary features.

6.1.4. Reconstruction error and encoder requirements
In addition to our previous results, Fig. 7 shows the mean re-

construction error of each autoencoder configuration considering the
number of FLOPs needed for each data compression. In it, we can
see the advantages of opting for the asymmetrical approach. First, we
observe that adding more layers and features to the AAE’s decoders
enhances the model’s performance without incurring more FLOPs. Ad-
ditionally, as the CAAEs results show, we can add new features to the
decoder to improve data reconstruction, allowing us to outperform the
symmetric and costly AEs. Overall, combining these results with the
ones previously discussed, we can see that AAEs can offer designers
a more compact model capable of rivalling the deep autoencoder
configurations without increasing the encoder implementation costs,
which can help its implementations in resource-constrained devices.
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Fig. 7. Comparison between proposed AAEs and AEs reconstruction error and en-
coder FLOPs demands. Performance improvements are possible without increasing the
encoder’s FLOPs, with CAAEs outperforming the deep AEs.

Fig. 8. Mean reconstruction error for all symmetric AEs.

6.2. Data compression with denoising

Requiring models to also learn how to perform data denoising
presents a more challenging training scenario. In addition to learning
how to compress data, all models need to learn how to remove noise
from that data. Our experiments show that this is particularly chal-
lenging for the models with multiple trainable parameters, which need
a lot of data to adjust their parameters. Hence, in this scenario, data
shortage problems, previously seen as an issue when training models
with multiple layers, tend to be aggravated.

6.2.1. Increasing AE depth
Fig. 8 shows the mean reconstruction error for all symmetric AEs.

The first noticeable result in this figure consists of all deep architectures
outperforming AE-0 across all SNRs by a considerable margin. For
example, even when AE-0 is subject to high SNR levels, it offers a
higher reconstruction error than the AEs deeper than it in worse noise
conditions. All AEs except AE-0 deliver a mean error below 0.185 MSE
under SNR levels equal to 10 db, whereas the base model’s mean error
at 80 db is almost equal to this value. Later, when comparing AEs with
AAEs, it becomes clear that our proposed models are fundamental to
enabling autoencoders with a single encoding layer to match or even
surpass the performance of those with multiple encoding layers.

The second noticeable result is that AE-2 and AE-3 outperform
AE-4, which is the deepest AE configuration. The difference is even
more significant when comparing AE-3 with AE-4. A more in-depth
analysis of the AEs performance under SNR equal to 5 db and 40 db,
seen in Fig. 12, shows that most of the models constructed with the
AE-2 architecture deliver better reconstruction errors than the deeper
symmetrical models. This is particularly pronounced in the scenario
with more noise, as most AE-2 models are among the best-performing
symmetric models (Fig. 9(a)). For instance, under 5 db SNR, nearly
8

Fig. 9. Reconstruction error for all fully-connected autoencoders.

Fig. 10. AAEs mean reconstruction error results compared with the symmetric
counterparts. Models with the same colour scheme have the same decoder layout.

all AE-2 models deliver a lower reconstruction error than all AE-4
models, and surpass at least half of the AE-3 models, given that they
are below AE-3’s median. This shows another limitation of employing
deep NN architectures to deal with problems with low availability of
training data. As highlighted earlier, the scenario at hand here is more
challenging, requiring that the models also learn how to remove noise
from the sensed signal. This suggests that more samples are needed to
train deeper models to perform both tasks simultaneously. Again, we
highlight that the necessity of more training samples is another issue
that can be worked around with our proposed models, as they have
fewer adjustable parameters than the symmetric models.

6.2.2. AEs vs. AAEs
Fig. 10 shows the mean reconstruction error for the proposed AAEs

(continuous lines), comparing them with their symmetric counterparts
(dashed lines). Focusing solely on the models with 2 hidden decoding
layers or less, we can observe that shallow AAEs do not fall behind
their symmetric counterparts. Furthermore, AAE-2 was able to deliver
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Fig. 11. CAAEs mean results, in comparison with the AAEs and AEs with similar
decoder depth.

a performance nearly identical to AE-1. Additionally, unlike observed
with AEs, the deeper models keep the improvement trend as the num-
ber of layers increases, observable in the noiseless scenario. The error
obtained with a deep AAE is always below shallower configurations
across all SNR levels above 5 db, which was not the case with the AEs.
This is more evident when we observe the boxplots in Fig. 9. Moreover,
noticing that the median of AAE-4 in both plots is below all configu-
rations, we observe that the deepest AAE architecture outperforms all
AEs models. These results suggest that the training issues discussed in
the previous subsection are minimized by the proposed AAEs. These
findings show that AAEs fit also well to IoT compression scenarios that
need noise suppression. Another result shown in Fig. 10 is that for
SNR ranging from 20 db to 80 db, the performance of all models is
seemingly the same. Also, the performance drop from 20 db to 10 db
is not very eminent, in comparison with the drop from 10 db to 5 db
and from the latter to 2.5 db. Both results indicate the success of the
proposed training methodology. However, we expect that the adoption
of regularizers to assist the AAEs in learning denoising can improve the
results for higher noise levels.

Fig. 9 shows that the relative performance of all models has minimal
changes when the noise level increases. The overall performance of all
AEs and AAEs is similar in both graphs, and there is also consistency
in the variance among autoencoders that have the same architecture.
This suggests that models that perform well at low noise levels tend
to deliver the smallest reconstruction error in worse noise conditions.
However, as discussed earlier when AE-2 performance at 5𝑑𝑏 was
compared with the deeper AE models, the loss in performance is more
pronounced with the deeper AE architectures. This is not an issue with
the AAEs, as the deeper models that performed well at high SNR levels
still outperform the other AAEs when the SNR levels are lower. This
suggests that the deeper AAEs are less sensitive to noise than their
symmetrical counterparts. Thus, one can expect that the AAEs are well-
suited to concurrently perform the compression and denoising tasks
simultaneously. Besides having an encoder with fewer parameters to
store and computations to perform, the fact that they have fewer layers
overall in comparison with the symmetric ones means that they require
fewer training samples to adequately learn complex tasks.

6.2.3. Exploiting temporal correlation with CAAEs
Fig. 11 shows the mean reconstruction error of the proposed CAAEs

in comparison with the AEs and AAEs with similar decoder depth,
i.e., models with three or more hidden decoding layers. Note that the
CAAEs continue the trend of performance improvement of the proposed
asymmetrical architectures. Furthermore, combining these results with
those found with the other AAE models, and noticing that all the pro-
posed asymmetrical architectures have the same encoder configuration
as AE-0, we call attention to the fact that the main contribution of
our proposed asymmetric architecture is opening new opportunities for
performance improvement without relying on more encoding layers.
9

Fig. 12. In-depth look of best-performing autoencoders.

So, by constructing decoders with enough resources and capable of
exploiting the distinctive features of the phenomenon of interest, one
can design autoencoders that can overcome the lack of encoding layers.

Fig. 12 presents a detailed analysis of the CAAEs alongside the
best-performing autoencoders seen previously. Similarly to Fig. 9, the
overall dispersion of the CAAEs under different noise levels is almost
unchanged. This is another result that backs our assumptions that
asymmetric autoencoders performing well with low noise levels tend
to be the best models when the level of noise increases. However,
Fig. 12 brings an additional result when compared with Fig. 6. Different
from the latter, where adding more kernels seemed irrelevant, CAAE-
4.2 benefits from the greater number of filters to extract the needed
features to succeed in the denoising task. This suggests that one can
experiment with adding more kernels to the convolutional blocks, in
order to assess if more filters can improve the CAAEs performance in a
more complex task. Given that these changes are done to the decoder,
the resource-constrained device where the encoder will be implemented
is oblivious to changes in the CAAEs architecture.

7. Conclusion

An important concern when implementing deep-learning-based so-
lutions in IoT networks is the burden they may pose to the sensing
nodes. Typically, neural network (NN) models require significant stor-
ing and computational resources that resource-constrained devices may
not provide. Therefore, there is a need to explore alternative NN
architectures. Recently, many solutions that resort to autoencoders
are being proposed to handle IoT data. Among them, autoencoders
were shown to be useful in data compression and noise suppression
applications. However, the typical autoencoder (AE) architecture does
not scale well for IoT deployment, as increasing the number of layers
in the encoder poses a problem for implementing them in sensor nodes.
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Hence, to alleviate NN’s implementation in this scenario, we propose
the Asymmetric Autoencoder (AAE), an autoencoder variation in which
the number of layers (and other computational resources) is greater in
the decoding block of the model than in the encoding block, offering an
alternative that can shift the bulk of the computation away from sensor
nodes.

The results show that the adoption of the proposed AAEs suits
well IoT sensing. These asymmetric models have encoders with fewer
parameters and that require fewer FLOPs per data compression oper-
ation. The AAEs are capable of delivering reconstruction errors that
can rival their symmetric counterparts, and can even outperform them.
Additionally, the AAEs seem to be more suited for the scarcity of
training samples, a problem that may appear in many IoT settings.
This assertion is based on results that show that the deeper AAEs keep
the performance improvement with depth increase in both scenarios
analysed, whereas symmetric AEs fail to keep this improvement trend.
Especially when trained to perform denoising together with compres-
sion, the deeper AE models stopped showing significant improvements,
likely due to the shortage of training samples. Furthermore, the results
of the Convolutional AAEs (CAAEs) show that we can pursue further
performance improvements by modifying the decoders to exploit the
particularities of the phenomenon of interest. Given that the signal we
used in our experiments has temporal correlations, we minimized the
reconstruction error of the recovered signal by adding convolutional
layers to the decoder. Hence, the main result presented in this paper
is that one can improve feature extraction, overcoming the lack of
encoding layers, by adding more resources to the decoding block and
exploiting prior knowledge about the sensed signal. This offers an
alternative approach that can be helpful when designing AE-based
solutions for resource-constrained devices in IoT networks.
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Appendix. Energy consumption estimation

According to Alsheikh et al. [7], one clock cycle in an MSP430
microcontroller accounts for 1.85 nJ. Additionally, each multiplication
and addition operation requires 395 and 184 clock cycles, respectively.
A matrix multiplication between an 𝑀 ×𝑁 matrix and an 𝑁 ×1 vector
akes 𝑀 ×𝑁 multiplications and 𝑀 ×𝑁 − 1 additions. Hence, in each
ncoding layer, we have

395𝑀𝑁 + 184𝑀(𝑁 − 1) + 184𝑁) ⋅ 1.85 nJ.

hus, recalling the encoder configurations in Table 2,

• AE-0 consumes approximately 2.65 mJ;
• AE-1 consumes approximately 6.67 mJ;
• AE-2 consumes approximately 13.36 mJ.
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