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As redes de canais de pagamento (Payment Channel Networks - PCN) são a prin-
cipal solução de escalabilidade para criptomoedas públicas, oferecendo um método
alternativo de pagamento que evita lentos mecanismos de consenso. Em PCNs, a
topologia da rede influencia diretamente o desempenho, o custo e a taxa de sucesso
de pagamentos. Esta dissertação analisa a evolução da topologia da Rede Relâm-
pago (Lightning Network - LN), a principal rede de canais de pagamento, e propõe
uma solução para mitigar a sua tendência de centralização. Primeiro, o grafo da
rede é reconstruído usando dados reais de um conjunto de mensagens coletado entre
janeiro de 2020 e agosto de 2021. A análise usa métricas tradicionais de teoria dos
grafos para avaliar o estado e a evolução da rede. Os resultados mostram uma forte
tendência na Rede Relâmpago para centralização de recursos e conectividade, tendo
apenas 0, 38% dos nós concentrando 50% da capacidade da rede.

Em seguida, propõe-se o ProfitPilot, uma estratégia de posicionamento de nós
que incentiva a criação de ciclos na LN para permitir o rebalanceamento de baixo
custo e reverter a tendência de centralização. Do ponto de vista do usuário, o
ProfitPilot oferece canais lucrativos e rotas de baixo custo, incentivando a adesão
dos usuários. Do ponto de vista da rede, o ProfitPilot cria redundâncias ao forçar a
formação de ciclos, aumentando a robustez da rede. O modelo proposto é comparado
com heurísticas disponíveis na Rede Relâmpago. De todas as heurísticas avaliadas, o
ProfitPilot apresenta o aumento mais rápido na transitividade da rede, diminuindo a
tendência de centralização e reduzindo o impacto de ataques topológicos direcionados
em mais de 17%.
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Payment channel networks (PCNs) are the leading scalability solution for public
cryptocurrencies, offering an alternative payment method that avoids slow consensus
mechanisms. In PCNs, the network topology directly influences the performance,
cost, and payment success rate. This thesis analyzes the evolution of the Lightning
Network (LN) topology, the leading payment channel network, and proposes a so-
lution to mitigate its centralization trend. First, we reconstruct the network graph
using real data from a set of channel announcement messages collected between Jan-
uary 2020 and August 2021. Our analysis uses traditional graph theory metrics to
evaluate the state and evolution of the network. The results show a strong trend in
the Lightning Network for resource and connectivity centralization with only 0.38%
of nodes concentrating 50% of the network capacity.

Then, we design ProfitPilot, a node positioning strategy that encourages cycle
creation in PCNs to reverse the current trend in centralization and enable cheap off-
chain rebalancing. From the user’s point of view, ProfitPilot offers profitable chan-
nels and low-cost routes, encouraging user adoption. From the network’s point of
view, ProfitPilot creates redundancies by forcing the formation of cycles, enhancing
network robustness. We compare our proposed model with some heuristics available
in the Lightning Network. Out of all the heuristics evaluated, ProfitPilot presents
the fastest increase in network transitivity, decreasing the trend in centralization,
and mitigates the impact of targeted topological attacks by over 17%.
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Chapter 1

Introduction

Public cryptocurrencies still suffer from low scalability despite their recent success.
While traditional payment methods, such as credit cards, process over 24, 000 trans-
actions per second [1], the two largest cryptocurrencies, Bitcoin and Ethereum,
achieve a throughput of only 7 and 15 transactions per second, respectively [2].
This issue, commonly referred to as the blockchain scalability problem [3], stems
primarily from the requirement imposed by public blockchains of processing every
transaction through a time-consuming global consensus mechanism [2, 4–6]. The
high transaction confirmation time also leads to block proposers prioritizing trans-
actions with high fees, which makes micropayments infeasible. Overall, the low
scalability of public blockchains hinders the adoption of cryptocurrencies for daily
purchases and financial operations, which require fast transaction confirmation time
and high throughput.

Payment channels are one of the main solutions to the scalability problem of
public cryptocurrencies [6–8]. In payment channels, two users can establish an off-
chain communication channel to issue payments directly to each other, bypassing
the blockchain. These channels can be connected to form a payment channel network
(PCN), which allows users to route payments through intermediaries that forward
them in exchange for fees. This network of channels enables payments between users
who do not share a direct channel with each other. PCNs have been implemented in
the two most popular cryptocurrencies, namely Bitcoin’s Lightning Network (LN) [6]
and Ethereum’s Raiden [9], and have effectively improved transaction throughput
and latency in public blockchain systems. In fact, PCNs have been cited as one of the
reasons for the adoption of Bitcoin as an official payment method in El Salvador [10].

The great success of the Lightning Network and its consolidation as a leading
PCN implementation motivates the analysis of its growth once the performance of
routing and channel balancing proposals depends on the topological characteristics
of the network [11, 12]. Even though the topology of the Lightning Network has
been explored in other works [13–15], few of them analyze the evolution of network
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metrics. Furthermore, due to the rapid growth and high dynamism of the network,
which allows easy opening and closing of channels, some analyses are already lagging
behind the most recent state of the network [13, 14]. Thus, the analysis of network
evolution and trends is essential to assess the feasibility of current and future routing
proposals in PCN.

1.1 Contributions

This thesis starts by evaluating the evolution of the LN’s topological metrics, ana-
lyzing recent trends and implications for the future of the network. Our goal is to
answer the following question: How has LN’s topology changed with its growth and
where is it heading?. Therefore, we make the following contribution:

Contribution 1: Analysis of the LN’s topology evolution. We use real
information collected from gossip messages sent in the network to reconstruct the
complete graph from January 2020 to August 2021. First, we analyze the state of the
network in August 2021, checking the distribution of resources and connectivity. We
also analyze the time series of classical graph theory and complex network metrics
to evaluate the evolution of the network structure.

The analysis shows that the Lightning Network is becoming even more cen-
tralized and that some proposed channel rebalancing techniques are expensive or
infeasible for most nodes in the network. This work yielded two publications:

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Potop-Butucaru, M.,
Amorim, M. D., Campista, M. E. M., Costa, L. H. M. K. - “Análise da Evolução
Topológica da Rede Lightning de Canais de Pagamento”, in XXII Simpósio
Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg
2022), Santa Maria, Brazil, September 2022.

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Potop-Butucaru, M.,
Amorim, M. D., Campista, M. E. M., Costa, L. H. M. K. - “Topological Evo-
lution Analysis of Payment Channels in the Lightning Network”, in 14th IEEE
Latin-American Conference on Communications (LATINCOM 2022) - Rio de
Janeiro, Brazil, November 2022.

The analysis of the Lightning Network topology also showed that, despite off-
chain rebalancing being the most efficient approach for restoring channels [16–18],
Lightning’s current topology restricts such operations to a subset of nodes. More-
over, we demonstrate the impact of cycle scarcity in network centralization and
how it weakens the network against targeted attacks. We simulate the attacks on a
snapshot of the Lightning Network and show their alarming long-term consequences.
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Thus, in the second part of the thesis we aim to answer the following question: Is
it possible to mitigate the centralization tendency of LN while enabling off-chain re-
balancing to nodes? To mitigate this centralization effect, we propose the following
contribution:

Contribution 2: ProfitPilot. ProfitPilot is a node attachment strategy for PCNs
that prioritizes cycle creation, enabling cheap rebalancing and improving network
robustness. ProfitPilot focuses on the creation of cycles in the network. In particular,
the core of our strategy is to encourage the arrangement of 3-node cycles to create
low-cost routes and enhance network robustness. As creating cycles requires users
to open more than one channel, which is costly, ProfitPilot strategically creates
profitable channels to encourage user adoption.

We implement ProfitPilot and compare our proposal to state-of-the-art attach-
ment heuristics available in the Lightning Network. We evaluate our algorithm on
the Lightning Network and two synthetic topologies. ProfitPilot achieves 2× higher
fee collection in all evaluated topologies when compared to other heuristics and ef-
ficiently generates cheaper routes. Moreover, ProfitPilot rapidly increases network
transitivity and mitigates the effect of topological attacks. This work has resulted
in the following publication, which was awarded by the Brazilian Computer Society:

• Camilo, G. F., Rebello, G. A. F., de Souza, L. A. C., Campista, M. E. M.,
Costa, L. H. M. K. - “Posicionamento Lucrativo de Nós e Criação de Rotas
de Baixo Custo na Rede Relâmpago”, in XLI Simpósio Brasileiro de Redes
de Computadores e Sistemas Distribuídos (SBRC 2023), Brasília, DF, Brazil,
May 2023. Best paper runner-up.

The above-cited work is also under submission to an international journal.
Besides these two contributions and the above-cited papers, three other signifi-

cant works on payment channel networks were produced during the period of this
thesis, including a mini-course, a survey, and a PCN simulator. Nevertheless, the
below-cited works do not compose this thesis:

• Camilo, G.F., Rebello, G. A. F., de Souza, L. A. C., Thomaz, G. A., Potop-
Butucaru, M., Amorim, M. D., Campista, M. E. M., Costa, L. M. K. - “Re-
des de Canais de Pagamento: Provendo Escalabilidade para Pagamentos em
Criptomoedas”, in Minicursos do XL Simpósio Brasileiro de Redes de Com-
putadores e Sistemas Distribuídos (SBRC 2022), Fortaleza, Brazil, May 2022.

• Rebello, G. A. F., Camilo, G.F., de Souza, L. A. C., Thomaz, G. A., Potop-
Butucaru, M., Amorim, M. D., Campista, M. E. M., Costa, L. M. K. - “A
Survey on Layer-Two Protocols for Blockchains”, submitted to IEEE Commu-
nications Surveys and Tutorials.
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• Rebello, G. A. F., Camilo, G. F., Potop-Butucaru, M., Campista, M. E. M.,
Amorim, M. D., Costa, L. H. M. K. - "PCNsim: A Flexible and Modular
Simulator for Payment Channel Networks", IEEE International Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Virtual
Conference, May 2022.

Several other papers have been published during the writing of this master thesis.
We refer to Append C for the complete list of publications.

1.2 Thesis Outline

The thesis contains two main parts. In the first part, we present some background in
blockchain technology and its scalability problem in Chapter 2. We also introduce
Contribution 1 in Chapter 3 by analyzing the Lightning Network topology and
discussing its trends.

After analyzing the Lightning Network, we move to the second part of the the-
sis, which aims to solve one of the problems found during the first analysis of the
network topology. Thus, we propose our node attachment strategy as introduced
in Contribution 2 in Chapter 4. We evaluate the proposed strategy and display the
results in Chapter 5. We discuss the state-of-the-art research in PCNs in Section 6.
Finally, we conclude our thesis in Section 7, demonstrating possible directions for
future work.

4



Chapter 2

Blockchain and Payment Channel
Networks

This chapter introduces the background and concepts used throughout this thesis.
We first introduce the blockchain technology data structure and the scalability prob-
lem of public blockchains. Then, we present the payment channel networks, one of
the most popular scalability solutions for public blockchains.

2.1 The Blockchain Technology

Blockchain is a disruptive technology first proposed by Satoshi Nakamoto in 2008 to
solve the double-spending problem and allow money transfers through the Internet
without the need for intermediaries [19, 20]. The double spending problem occurs
when the same asset is used more than once. Double spending is more challenging
to prevent in digital settings, given that bits can be easily replicated by a computer.
Blockchain technology solves the double-spending problem by offering a data struc-
ture based on an immutable and distributed ledger to log the transaction history
and keep track of all asset operations in a financial environment.

Figure 2.1: Blockchain data structure. The H(•) operator represents the hash func-
tion. The hash chain guarantees the integrity of the whole blockchain.

Figure 2.1 depicts the blockchain data structure, which is replicated in every
participant of a blockchain network. The transactions are organized in blocks that
are chained using cryptographic hash functions. Each block, except the first one
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(genesis block), contains its hash and a field that “points” to the hash of the previous
block. Modifying a single bit in any block of the blockchain alters the block hash and
breaks the hash chain and the chain integrity. Because the blockchain is replicated
in each consensus participants, malicious acts that might compromise its integrity
can be easily detected by any participant. Each block also contains digitally signed
transactions of asset operations in the network, such as payments and purchases,
guaranteeing the non-repudiation of transactions.

To assert chain consistency, network participants must agree on the block se-
quence through a distributed consensus mechanism [19]. In distributed systems,
consensus is defined as the process by which a set of independent participants reach
a common decision [21, 22]. These participants exchange messages through the
network or use shared memories to reach this common decision [23]. In blockchain-
based systems, network participants interested in receiving fees propose blocks to
be appended to the blockchain. The proposed blocks are broadcast through the
network, which decides to either accept or reject it based on the correctness of the
block [20].

2.1.1 The Blockchain Scalability Problem

Although blockchain technology has revolutionized distributed digital transfers, pub-
lic cryptocurrencies, the main blockchain application, still suffer from scalability
problems [2]. It is worth noting that, unlike the usual notion of scalability in
distributed systems that indicates a system’s ability to maintain its performance
with an increasing number of participants, scalability here refers to the blockchain
(in)ability to process a high amount of transactions per second. Public cryptocur-
rencies pale in comparison to traditional payment methods, which discourages the
everyday use of this disruptive technology. While credit cards achieve over 24, 000

transactions per second and take seconds to confirm a payment, Bitcoin, the biggest
cryptocurrency in market capitalization, achieves only 7 transactions per second
and takes on average one hour to confirm a transaction [2]. The low throughput
of cryptocurrencies also results in high fees, as some participants are willing to pay
more to get their transactions prioritized. Thus, while credit cards process trans-
actions with little to no fees, Bitcoin’s average fee reached over U$ 60 in April of
2021 [24], making micropayments infeasible. This scalability problem happens be-
cause every transaction and block on the blockchain must go through a slow and
global consensus.

Vitalik Buterin, Ethereum ’s [25] co-founder, formalized the blockchain scala-
bility problem with the concept of the blockchain scalability trilemma [26]. This
concept states that a blockchain-based system can only achieve two out of the three
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following properties:

1. Decentralization: The capacity of the blockchain to run without relying on
a small group of large centralized actors.

2. Security: The capacity of the blockchain to resist collusion attacks. Ideally,
the blockchain should resist up to 50% of nodes attacking it.

3. Scalability: The capacity of the blockchain to process transactions faster
than a single node can verify.

Traditional blockchain systems, such as Bitcoin, rely on a large number of
participants verifying every transaction and block through the consensus mecha-
nism. Hence, these systems achieve decentralization and security properties of the
blockchain trilemma but fail to achieve scalability.

Several solutions were proposed to improve consensus throughput in public
blockchains [5, 27–30]. These proposals usually delegate consensus to a small group
of participants to reduce the number of transmitted messages and accelerate consen-
sus. Thus, they usually achieve security and scalability but neglect decentralization.
Other proposals focus on altering the network or blockchain data structure, such as
using directed acyclic graphs (DAG) [31–33], appendable blockchains [34–36], and
sharding [37–40]. Despite the success of these proposals, they are hard to imple-
ment in existing public blockchains. This happens because most proposals require
significant changes to the blockchain structure, which may lead to hard-forks1.

2.2 Payment Channel Networks

This thesis is based on another popular blockchain scalability solution called pay-
ment channels [6, 7]. Unlike previously cited solutions, payment channels operate
off-chain, meaning that payment channels do not usually require significant changes
to the blockchain structures. Payment channels were first implemented in 2013 as
micropayment channels, a mechanism in Bitcoinj, Bitcoin’s Java implementation, to
allow sending and receiving small payment amounts in a trustless setting without
using the blockchain [41–43].

Payment channels are a blockchain-based technology that allows two users to
pay each other privately and in real-time. The main premise of this technology
is that the consensus protocol, despite being the main mechanism that guarantees
blockchain security, is also the main cause of delays and excessive fees. Figure 2.2
shows the regular operation of opening and closing a payment channel. Users who are

1Hard forks are backward-incompatible modifications to the blockchain that force all nodes to
update their software.
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interested in transacting create a payment channel by issuing a funding transaction
on the blockchain, allocating part of their funds to an “off-chain” channel. The
allocated funds are locked on a 2-of-2 multi-sig address, meaning they can only be
used in the channel and with the signatures of both parties. In this channel, users
can transact freely and securely through signed cryptographic messages that can
be published in the blockchain for resolution in case of a dispute. Thus, payment
channels allow the maximum possible number of transactions to be carried out
directly between the parties involved, without being published in a block, and to
use the consensus protocol only when necessary. Off-chain transactions only require
a signature from each party involved [6].

Blockchain

Fund. Tx Clos. Tx

Funding Transaction

Balance: A = 5, B = 5

Commit. Transaction

Balance: A = 2, B = 8

Commit. Transaction

Balance: A = 4, B = 6

Closing Transaction

Balance: A = 4, B = 6

A B A B
Channel creation

A B
Channel closingChannel establishment

10

(last commit. transaction)

Figure 2.2: Opening and closing a payment channel. In the figure, users A and
B contribute 5 coins each and issue the funding transaction to create a payment
channel. The value 10 in the rectangle between the two users shows the maximum
capacity of the channel, which represents the maximum amount of coins that can
be transacted on the channel. After the channel is created, A and B can make
payments without issuing blockchain transactions. Thus, A issues a payment of 3
coins and, shortly afterward, B makes a payment of 2 coins. To close the channel,
all it takes is for one of the users to issue the last transaction in the blockchain with
the most up-to-date balance.

In payment channel networks, users use established channels to route payments
through intermediaries in exchange for a small fee. The set of payment channels
established between system users forms a network of payment channels, as shown
in Figure 2.3. Each link has a capacity, shown inside the rectangle in the figure,
which indicates the total tokens reserved by the parties on that channel. This
information is accessible and stored in the funding transaction, which is issued in
the blockchain to create the payment channel. The balances of each party of the
channel, represented by the numbers at each end of the edge, indicate the current
state of the link, i.e., how much each participant has to transact. The balances of a
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two-party channel are private to the rest of the network for security, since payments
could be tracked if the balances were public, and for scalability reasons, given that it
would be necessary to flood the network with update messages with each payment.

Time

Before Payment Aer Payment
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1
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Figure 2.3: An example of 1 token payment from user A to user D in a payment
channel network. The payment goes through the indicated path, modifying the
channel balances along the payment path. Channel capacity, indicated inside the
rectangles, represents the total amount allocated by both parties and is constant
during a channel’s lifespan.

We provide a formal payment channel network definition based on the one pro-
posed by Malavolta et al. [44]:
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Definition 2.2.1: Payment Channel Networks (PCN)

A PCN is a bidirectional graph G := (V,E), where V is the set of nodes and E

is the set of opened payment channels. A payment channel network depends on
an underlying blockchain B and has the following operations: openChannel,
closeChannel, pay. We describe these operations below.

• openChannel(i, j, β, t, f) → {1, 0}. To open a channel, two users use
their blockchain address i and j to issue a funding transaction containing
information on the channel capacity β, a timeout t, and a fee value f .
If the operation is authorized by i and i owns β coins, a new channel
is created by registering its opening on the blockchain B with attributes
(cij, β, t, f) ∈ E and the operation returns 1. Otherwise, it returns 0.

• closeChannel(cij, b) → {1, 0}. To close a channel, one of the partici-
pants only needs to inform the channel identifier cij ∈ E and the channel
balance b. The operation removes the corresponding channel from G and
registers the closing transaction with balance v in B.

• pay((ci1, c12, ..., cnr), v) → {1, 0}. To issue a payment to user r, user
i identifies the payment path through the channel identifiers p =

ci1, c12, ..., cnr and the payment value v. The payment only succeeds if
each of the channels on the way, e.g., c34, have balance b34 ≥ v

′

k, where
v

′

k =
∑k−1

j=1 f(p) and f(p) is the fee charged at each channel of the path.
In that case, the operation returns 1. Otherwise, it returns 0.

2.2.1 Hashed Timelock Contracts (HTLCs)

PCNs assume that intermediary nodes cannot be trusted. As payments are routed
through multiple independent channels, there must be a scheme to secure this pay-
ment from possible malicious actors. Hashed Timelock Contracts (HTLCs) establish
a mechanism that guarantees the security of payment delivery. These contracts are
set at each hop on a payment path among users sharing a payment channel and
ensure that the intermediary is only paid when the payment is complete.

When a user wants to route a payment to a destination going through intermedi-
aries, the payment is not delivered right away. Instead, the user locks the payment
using HTLCs, which are contracts that are locked with an associated hash and a
time. HTLCs establish two conditions to unlock the payment:

1. The destination must reveal a secret that generates the associated hash.

2. If the time associated with the HTLC passes, the hash condition is no longer

10



valid and the user who established the HTLC can retrieve her payment. Thus,
the payment timeouts.

Condition 1 guarantees that intermediaries in the payment path are not able to claim
the payment before the payment is complete. The secret associated with the HTLC
is usually generated by the final payment destination before the payment begins.
The secret is hashed and the hashed version is sent to the payment source to create
the first HTLC. The hash condition is the same along the complete payment path.
The destination awaits the establishment of the payment and the HTLCs along the
way to reveal this secret. Condition 2 guarantees that the payment lock is finite.

In the payment example depicted by Figure 2.3, user D first generates a secret
x and sends the hash of this secret H(x) to user A. User A finds a payment path
through users B and E and establishes the first HTLC with user B, locking 1 token
in the channel A-B. User B generates an HTLC with user E using the same hash
condition initialized by user A. User E also generates an HTLC in channel E-D.
When user D receives an HTLC with hash H(x), user D reveals x, which unlocks
the whole payment chain and the payment is complete. Using this mechanism, a
malicious intermediary, e.g. B, cannot steal coins from A before the payment is
complete, given that x is unknown to B before the payment reaches its destination.

2.2.2 Routing and Rebalancing in PCNs

Routing payments in PCNs is challenging and radically differs from routing data-
grams in computer networks. As described in the pay operation, when a payment
is routed on a channel in PCNs, the channel loses the capacity to forward future
payments in that direction. Thus, when payments concentrate on one direction, the
channel can become depleted and unable to route payments in the direction of these
payments. Figure 2.4 shows an example where the channel from n1 to n2 is depleted
(the capacity is zero). The user, then, has two options to reactivate (rebalance) the
depleted payment channel. The first approach is closing and reopening the channel
or acquiring liquidity through a liquidity provider [45]. As these approaches rely
on blockchain transactions, it is slow and costly. Furthermore, by closing the chan-
nel for reopening an active one, the user interrupts the channel’s lifespan, halting
payments and hindering fee collection. Besides, while the reopening transactions or
liquidity purchases are unconfirmed in the blockchain, the node cannot issue pay-
ments or collect fees in the depleted channel. In the example of the figure, n1 is
unable to route payments in the direction of n2 and, therefore, cannot collect fees
or issue payments.

The second and most efficient approach to rebalancing depleted channels is to
issue a self-payment through a circular route in the network [16–18, 46, 47]. Fig-
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Figure 2.4: Channel rebalancing through self-payment in a circular route. Node n1

finds a cycle and issues a self-payment of value 5, rebalancing its channel with n2.

ure 2.4 illustrates the process of off-chain rebalancing. The key idea is to move funds
from low-demand channels to high-demand ones, keeping the high-demand channels
alive for a longer period of time. Although this approach offers a low-cost alterna-
tive to closing and reopening the payment channel, it depends on the existence and
availability of cycles in the network topology. If cycles are unavailable, users have
no other option than to resort to the blockchain. In this thesis, we verify that 36%

of nodes in the Lightning Network, the most popular PCN currently, do not partic-
ipate in cycles. Furthermore, even nodes that do participate in cycles usually have
to pay high rebalancing fees, which restricts user adoption to off-chain rebalancing
(see Chapter 3).

2.3 The Lightning Network

PCNs became more popular after the implementation of the Lightning Network in
2017, Bitcoin’s and first PCN ever launched. The Lightning Network was proposed
by Poon and Dryja [6] in 2016. The Lightning Network has experienced significant
growth from 2020 to 2021. Figure 2.5 shows the growth of LN in terms of nodes
and channels. In 18 months, the number of nodes in LN tripled, going from under
4, 000 to over 13, 000 nodes. Similarly, the number of channels went from a little
over 20, 000 to over 60, 000 in the same period. As of November 2023, LN is the
biggest PCN, having over $190, 000, 000.00 distributed among 14, 000 nodes and
61, 644 public channels [48]. Due to its size and rapid growth, LN is the reference
PCN currently and is the object of several studies [13, 49–51].

In LN, router nodes receive a small fee in exchange for routing services. Par-
ticularly, LN defines two types of fee: a fixed base fee, which is charged for every
forwarded transaction, and a proportional fee, which varies with the payment value.
A user A who is interested in paying a user B, calculates a route to B using Di-
jkstra’s Shortest Path First (SPF) algorithm and computes the fee value charged
by every node on the path. Usually, the selected path is the one that presents the
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Figure 2.5: Lightning Network’s growth from January 2020 to August 2021.

smallest fee sum, meaning the cheapest path to user A. Then, A adds the sum of
the fee values to the payment value and sends it through the computed route.

The Lightning Network standardizes the message formats and protocols through
the Basis of the Lightning Technology (BOLTs) [52], documents based on the Inter-
net Request for Comments (RFC) that formally describe how the network should be
implemented. Currently, LN has three major implementations: c-lightning [53],
Lightning Network Daemon (LND) [54], and eclair [55].

This thesis uses messages received at one of the network nodes to reconstruct
the topology at different moments in history. In particular, the BOLT 2 document
defines the announcements of public channels through channel announcement mes-
sages that are broadcast in the network through a gossip protocol [56]. In the gossip
protocol, a participant disseminates a message to a specific number of neighbors,
who repeat the message to their neighbors. The procedure continues until the infor-
mation reaches the entire network. The network nodes can build, from the received
messages, a local topology containing the active channels with their respective par-
ticipants and capabilities.

In this thesis, we also use different graphs to represent the LN topology. Fig-
ure 2.6 depicts multiple representations used in this work. First, the channel graph
is used in the first part of the topological analysis of the LN. In this representation,
the LN topology is modeled as an undirected graph and the only considered edge
attribute is channel capacity. This representation suits well the objective of analyz-
ing some network topology features that do not require computing distances, given
that it ignores channel fees. Thus, we use the first representation in the following
chapter of the thesis in metrics such as transitivity, number of components, and
average degree, unless the analysis requires distance measurements.

In the second part of the thesis, we move from analyzing the network topology
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Figure 2.6: Types of graph representations of the Lightning Network considered in
this thesis. Some fee attributes in the fee and payment graphs are removed from
the image for clarity.

to positioning nodes to increase its probability of routing payments and simulating
payments in the network. The balance graph is particularly important for simulating
payments as it correctly captures the state of the network and how the capacity is
divided in both directions of a channel. Nevertheless, as mentioned before, LN keeps
channel balances private due to scalability and security concerns. This feature makes
it difficult to determine how the capacity is exactly divided among participants.
Therefore, we build the balance graph to simulate some payments in Chapters 3
and 4 by assuming that the top 10% of central nodes have channels with equally
split capacity while periphery nodes have 99% of the capacity allocated towards one
side of the channel.

Finally, we also use a payment graph for most of the second part of this thesis.
The payment graph is directed and built from the fee graph, which is a graph
with the charged fees as attributes, for a fixed payment value. Figure 2.6 shows an
example of a payment graph built from the fee graph for a payment value of 1. In the
figure, the fee values are presented in only one of the channel directions for clarity.
Nevertheless, the fees could be different in both directions of a channel. Unless
stated otherwise, the payment value used as a reference in this thesis is derived from
a transaction dataset from the Ripple credit network [57, 58].
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Chapter 3

Topological Analysis of the Lightning
Network

The rapid growth of LN motivates the study of its topology evolution to identify
possible features and trends. This chapter presents an analysis of the LN topology,
discusses the centralization tendency that it presents, and how it affects the network
in terms of security.

3.1 Network State, Evolution and Trends

The default routing of the Lightning Network is source-based. Thus, Lightning
requires that nodes know the full topology of the network to make payments, infor-
mation that can be gathered from announcement messages. In the present thesis, we
use a dataset collected by Lightning Network developers of channel announcement
messages transmitted using a gossip protocol for node synchronization in the Light-
ning Network [59]. The dataset contains three types of messages collected by a node
using the Lightning Network implementation in C language, called c-lightning:
(i) channel announcement messages, which make a channel public in the network;
(ii) channel update messages, used to update the parameters of a given channel; and
(iii) node announcement messages, used to inform the metadata of a node. To create
the dataset, raw messages were stored in a file and a filter was used to remove dupli-
cate messages. The file contains messages from the Lightning Network from August
2018 through August 2021. Given that the period 2018 and 2019 has already been
covered by other papers [13, 14], we consider the period between January 2020 and
August 2021 unless stated otherwise. All messages have a timestamp, which tells
the time at which they were created using the UNIX system time base. Thus, using
a time window, it is possible to reconstruct the topology of the Lightning Network
at any instant in time. This work uses two-week time windows for topology analysis,
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i.e., it ignores messages prior to a two-week period when reconstructing the network
at a given instant.
Network state. The first set of experiments checks the state of the message dataset
from August 17 to August 31, 2021, to estimate the resource concentration and
connectivity in the Lightning Network. Figure 3.1 shows the distribution of channel
routing capacity in the network. The channel routing capacity is the total number
of tokens allocated by the two parties during its creation. We note an intense
concentration of funds in the network, where few channels have high capacity and
multiple channels have low resources. The capacity of the channels is a decisive
factor for transaction routing. The low amount of high-value channels, e.g., only 13
channels (0.02% of the network) with capacity above US$ 85,678.60 (≈ 2 BTC)1,
restricts the amount of paths that high-value payments can use. Although the
value seems high, payments of 2 BTC or more are not uncommon on the Bitcoin
Network [60]. By concentrating high-capacity channels on a few paths, most of the
network must resort to blockchain to make high-value payments, experiencing high
confirmation time and high fees.
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Figure 3.1: Relationship between node degree and node capacity in the Lightning
Network.

Figure 3.2a shows the degree distribution in the Lightning Network in July 2022.
While the majority of nodes in the Lightning Network have a low degree, a small
number of nodes concentrate the network connectivity. In fact, we see that almost
36% of nodes in the Lightning Network have only one neighbor. Although these
nodes may create cycles, they still have to endure high fees due to the blockchain,
and current automatic channel creation heuristics present no financial benefits to the
user. Thus, single-neighbor nodes are unable to rebalance their channels through
off-chain methods and have to rely on slow and expensive blockchain payments to

1Exchange rate on January 13th, 2024.

16



keep their channels alive once they get depleted. To make matters worse, these
nodes usually present low-capacity, in contrast with high-capacity nodes that can
easily perform off-chain rebalancing. This contrast deepens the network inequality,
which recent works show to already be extremely high [51, 61].
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Figure 3.2: Network metrics of the Lightning Network in July 2022. We verify
the scarcity of cycles in the network for a high number of nodes, hindering several
rebalancing operations. Furthermore, we verify how rebalancing fees are highly
unequal to nodes that do participate in cycles.

We also verify the availability of cheap rebalancing routes among nodes that have
more than one neighbor. We run Dijkstra’s Shortest Path First (SPF) algorithm
that uses fees as a metric to select the shortest path. As fees on PCNs depend
on the payment value, we set the payment value to the average value of a transac-
tion dataset collected in the Ripple credit network2 [62]. We find that even using
off-chain rebalancing, the distribution of rebalancing fees is highly unequal in the
network. Figure 3.2b shows that, while high-degree nodes usually find cheap routes
to rebalance their channels, low-degree nodes have fewer options and end up paying
more for each rebalancing operation.

Network Evolution and Trends. The second set of experiments checks the
evolution of network metrics to assess whether the degree of network concentration
has been increasing. The experiments evaluate the network in the period between
January 21, 2020 and August 31, 2021. Figure 3.3 shows the evolution of the Light-
ning Network metrics. All metrics consider only the largest component of the graph,
except the number of components result. Although the number of components in the
network grows from 6 to 53 during the evaluated period, as shown in Figure 3.3a, the
number of nodes of the smallest components is negligible compared to the number

2The Lightning Network keeps payment values private by design and thus no payment dataset
is available. We hold that Ripple’s credit network works similarly to PCNs and, therefore, has
similar payment value ranges.
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of nodes of the largest component. As an example, the network snapshot with the
largest number of components has 13,462 nodes in the largest component, while the
smallest components have at most 3 nodes. Thus, using only the largest component
does not affect the reliability of the results, given that the smallest components do
not make payments with more than 1 hop and cannot meet the demands of most of
the network. The increase in the number of components is natural due to the growth
in the number of nodes in the network. Some nodes establish connections with each
other to make recurring payments and do not seek to establish connections with
other participants.

The assortativity r of a graph indicates the connection preference of nodes in
the network. A dissortative graph has r < 0, indicating that low-degree nodes in
the network prefer to connect to high-degree nodes, while an assortative graph has
r > 0, indicating that high-degree nodes prefer to connect to high-degree nodes.
The network’s assortativity coefficient, in Figure 3.3b, shows that the Lightning
Network is disassortative, indicating that low-degree nodes tend to connect to high-
degree nodes. This is because some Lightning Network implementations, such as
Lightning Daemon (LND), adopt policies that connect new nodes to more central
nodes in the network [13]. This strategy is adopted because nodes that intend to
make payments to more than one entity may prioritize connecting to more central
nodes, seeking lower paths and fees. Despite the disassortativity of the network,
we can see a growth tendency in this metric, pointing to an assortative network in
the future. This can be explained by the establishment of a connection between the
central hubs after they consolidate, increasing the assortativity. The upward trend
in assortativity can be explained by the emergence of new hubs as a result of the
rapid growth of the network.

The graph transitivity measures the fraction of cycles existing in the network
relative to triads, which are subgraphs formed by 3 nodes. Thus, the transitiv-
ity measure only considers 3-node cycles and varies between zero and one. The
transitivity T of a graph is given by

T = 3
l3
t
, (3.1)

where l3 is the number of cycles between 3 nodes in the network and t is the number
of triads. In PCNs, establishing cycles of a few hops is crucial to enable low-cost
rebalancing proposals [11, 12]. These proposals take advantage of cycles so that
a node can make payments to itself, rebalancing paths by moving money between
channels. Keeping channels balanced is of utmost importance to increase the prob-
ability of a successful transaction [63]. Nevertheless, the low transitivity, presented
in Figure 3.3c and its downward trend in the network point to the existence of few
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Figure 3.3: Evolution of the graph metrics of the Lightning Network over the period
from January 21, 2020 to August 31, 2021.
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3-node cycles, which makes proposals expensive and possibly unfeasible for most
participants who have low financial power. This low transitivity is a natural conse-
quence of the establishment of connections between low-degree nodes to high-degree
nodes, generating several possibilities of cycles that are not formed. The centralized
topology tends towards a core-periphery structure, in which most of the nodes are
at the extremities, i.e., at the periphery. Thus, these nodes have only one neighbor,
which does not contribute to the formation of triangles in the network, lowering
transitivity.

The density of a graph is given by the fraction of the edges existing in the graph
and the edges of a complete graph with the same number of nodes. Thus, the density
of an undirected graph can be calculated by

d =
m

n(n− 1)
, (3.2)

where m is the number of edges in the network and n is the number of nodes. The
low density observed in Figure 3.3d shows that the Lightning Network is extremely
sparse. The downward trend in density can also be explained by the connection
of new nodes to more central nodes. This type of behavior is common in scale-free
networks, where a small portion of nodes concentrate a large part of the connections.
The behavior of the Lightning Network as a scale-free network can also be observed
in the drop in the average network degree, as shown in Figure 3.3e. The entry of
one-connection only nodes contributes to the drop in the average network degree
even as the degree of the most central nodes increases.

Figures 3.3f and 3.3g expose the low diameter and average shortest-path in the
Lightning Network. The diameter of a graph is defined by the longest shortest
path between any pair of nodes. The average shortest path is obtained through the
sum of the minimum distance for each pair of vertices of the graph divided by the
total number of vertices. Despite the number of nodes in the network tripling in
the period, the two metrics present low variation if compared to the other metrics,
varying by 28% in the case of the diameter and approximately 15% in the case of
the shortest path.

The centralization trend becomes even clearer when analyzing Figure 3.4, which
shows the resource concentration of the nodes over time. It can be seen that while in
January 2020 approximately 2.0% and 0.9% of nodes concentrated 80% and 50% of
the total network capacity, respectively, the numbers dropped to 1.1% and 0.3% in
August 2021. The downward trend, albeit smooth, shows that a small set of nodes
concentrates much of the allocated revenue and exposes future vulnerabilities and
security challenges in the network.

20



21 Jan 2020

31 Aug 2021

0.5

1.0

1.5

2.0

Pe
rc

en
ta

ge
of

N
od

es

50% of capacity 80% of capacity

Figure 3.4: Resource concentration in the Lightning Network from January 2020 to
August 2021. The dashes indicate the percentage of nodes that concentrate 50%
and 80% of the total network capacity in each two-week period.

3.2 Impact of Topological Attacks

Creating cycles in the network is important not only to enable rebalancing operations
but also to improve network robustness against targeted topology attacks [64, 65].
Several works point out that, despite being proposed as a completely decentralized
network, the Lightning Network is becoming more centralized by concentrating con-
nectivity and capacity in a small number of nodes [51, 61]. This centralization trend
leads to vulnerabilities against attacks targeted at the highest-degree nodes. We
simulate some of these attacks by considering an attacker that has access to the
network topology and targets nodes with the highest degree in the network. This
attacker can perform a DDoS attack on each of the target nodes and impair their
operation temporarily in the network.

Figure 3.5a shows that impairing only 44 nodes (≈ 0.5% of nodes in the network)
reduces the network capacity by half. Furthermore, extending the attack to 100
highest-degree nodes (≈ 1.2% of the network) leads to a decrease in capacity by
70%. Reducing the network capacity directly affects the payment success rate,
leading to multiple failures due to a lack of available channels [8, 66]. Furthermore,
Figure 3.5b also demonstrates the impact of targeted attacks on the number of
network components. We verify that attacking 100 nodes increases the number of
components by over 2, 500×. In fact, removing the highest-degree node from the
network leads to network partitioning in 140 components. This network partitioning
pattern has drastic effects on PCNs, as it makes several payments infeasible.

Figure 3.5c shows how the network partition affects the payment success rate in
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Figure 3.5: Impact of topological attacks in the Lightning Network as of July 2022.
We simulate central nodes being impaired in a targeted attack and verify the effect
on network capacity and partitioning.

the network. We implement a Lightning Network simulator3 and simulate a PCN
using a Lightning Network snapshot from July 2022 as network topology and a
Ripple transaction dataset as workload [57, 62]. With the removal of 100 highest-
degree nodes, the payment success rate falls from over 55% to less than 30%. The
failed payments must be completed on the blockchain, incurring high fees and slow
confirmation time. It is worth noting that these attacks are not restricted to theory.
The Lightning Network was the target of a DDoS attack that affected 20% of the
network nodes [51, 67].

3Available at https://github.com/gFrancoCamilo/ln-looprebalance
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3.3 Discussion

Despite presenting itself as a fully decentralized alternative for fast payments in
blockchains, the results show a clear centralization of resource and network con-
nectivity. The resource concentration is evident when analyzing the distribution of
capacity and channel degrees in Figure 3.1. Higher capacity nodes hold a monopoly
on routing high-value payments in the network, getting richer by collecting more
fees. These higher capacity nodes attract connections from new participants, cre-
ating hubs, as new participants seek to open channels in a location that can reach
multiple destinations in a smaller number of hops. Thus, participants choose to con-
nect to the more central nodes seeking to lower the routing fee paid when making a
payment.

Low connectivity of nodes in the periphery also makes proposals that take ad-
vantage of cycles to rebalance channels unfeasible or expensive in practice. These
proposals are restricted to central nodes, that have greater connectivity and are
more likely to find paths with cycles for rebalancing. While nodes with higher con-
nectivity can easily rebalance their own channels using the network topology, most
network participants must resort to the blockchain. This phenomenon further ac-
centuates network inequality, given that central nodes are less likely to experience
periods of routing unavailability when waiting for transaction confirmation in the
blockchain, nor do they pay high fees to rebalance their own channels.

Possible solutions to the centralization problem include network-attachment pro-
posals that prioritize distributing connectivity when opening channels. In this case,
the creation of alternative paths in the network ensures less dependence of peripheral
nodes on centralized nodes and reduces the effects of split attacks on the network.
Furthermore, connecting new nodes by creating cycles in the topology mitigates the
impact of problems related to low transitivity, such as rebalancing channels through
the network topology. Thus, generating cycles when opening channels ensures that
nodes can rebalance their channels without having to resort to blockchain.
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Chapter 4

ProfitPilot: Profitable Cycles for
Low-Cost Rebalancing in LN

We present ProfitPilot, an algorithm for strategically adding new nodes to payment
channel networks that focuses on the creation of 3-node cycles, enabling efficient
rebalancing operations to mitigate the scarcity of cycles and the centralization ten-
dency cited in Chapter 2. ProfitPilot enables channel rebalancing to promote a high
channel lifespan, eliminating the need for frequent channel closure and reopening,
which is costly for users. We choose to focus on 3-node cycles for two main reasons.
First, as fees vary over time, smaller cycles provide higher tolerance against this
fluctuation. Instead of relying on n− 1 nodes not changing their fees in a n-length
cycle, the user only relies on 2 nodes, which are his/her neighbors. Furthermore,
by focusing on creating 3-node cycles, we improve the overall network robustness
that would otherwise be lost by only considering connections to central nodes as
in previous work [68]. ProfitPilot builds complete subgraphs on top of the original
network graph, providing alternative paths and mitigating the effect of targeted at-
tacks. To make the cycle creation economically viable, our strategy offers financial
incentives to encourage user adoption. Finally, 3-node cycles merge into forming
cycles with higher lengths, increasing possible rebalancing paths [46]. Our focus is
on establishing channels that maximize the likelihood of routing payments through
them and minimize the average number of hops to other network participants. This
optimization reduces transaction fees and enhances the overall efficiency of the net-
work.

4.1 Assumptions and Network Model

Publicly-available topology. ProfitPilot relies on the network topology, includ-
ing node and channel attributes, being publicly available to nodes before creating
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channels. The two most popular PCNs currently, Lightning and Raiden, offer imple-
mentations that allow users to download the network topology before establishing
a channel in the network. Even before adhering to the Lightning or Raiden net-
work, users may verify several network explorers that store and display information
about nodes and channels on public websites [48]. We also assume that substantial
changes in the network topology are time-consuming, given that these updates are
done through the blockchain [69]. Thus, only minor changes may occur during the
execution of the algorithm.
Freedom to create channels. We assume that a new node coming into the
network can create nodes with any node publicly announced in the network. To do
so, the new node uses the openChannel operation described in Chapter 2. The new
node, however, funds all costs of creating the channel. Although the other party
can theoretically reject connections, we assume that the other party acts rationally
and accepts channel creation as they do not have to fund the channel and may gain
fees from payment routing. This assumption is also present in previous works in the
literature [69, 70].
Source-routed payments. We strategically position a node to receive routing
fees and pay, on average, low fees when compared to other nodes. Thus, we need
to clearly define how payments are routed in the network. ProfitPilot assumes that
nodes adopt the standard routing strategy in the Lightning Network, which uses
source routing with Dijkstra’s SPF algorithm to select the payment route. Although
several proposals to modify routing algorithms in PCNs have been proposed [8, 62,
66, 71, 72], the current implementation of the Lightning Network still uses Dijkstra’s
SPF algorithm with fees as the distance metric. Furthermore, like previous work [49,
69], we assume a uniform distribution of possible sender-receiver pairs when placing
the node on the network.
Network model. We model a PCN as a directed graph G = (V,E), where V

is the set of nodes and E is the set of channels in the network (balance graph in
Figure 2.6). Each bidirectional channel, represented by two directed edges, holds a
set of attributes, such as information about the routing fees. In particular, an edge
eij ∈ E stores two attributes regarding fees: a base fee fB and a proportional fee
fP (pv). While the base fee is fixed for every transaction that is forwarded in the
channel, the proportional fee depends on the payment value pv being routed. Thus
the total amount of fees accounted for in a channel eij that transports a payment of
value pv is given by fT

ij (pv) = fB
ij + fP

ij · pv.
Like a similar work [64], we account for the weight of the fees by generating a

payment graph GP = (V,E,W ) from the original network G, where W is the set
of edge weights, as described in Chapter 2.3. Basically, the payment graph has the
same nodes and edges as the original network graph but the edges are weighted by
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the total fees. Thus, given a channel eij, the weight wij is defined as fT
ij (pv) for a

fixed value of pv. Users may define different fees in both directions of the payment
channel, i.e., given an edge eij ∈ E, it is possible that wij ̸= wji. As total fees
depend on payment values, which are kept private on the Lightning Network [6], we
use the average payment value of a transaction dataset collected from the real-world
Ripple credit network [62].

4.2 Requirements

We identify the following requirements for our attachment strategy design:

1. Profitability: As channel creation incurs expenses and the creation of cycles
requires more than one channel to be established, we focus on the creation of
profitable channels that compensate for the opening costs during its lifespan.

2. Economy: As the user does not know beforehand who is a potential payment
destination, we must create channels as close as possible to all other nodes in
the network so the new user pays fewer fees overall.

3. Cycle-enabled: As we focus on enabling rebalancing operations, newly-
created channels must have at least one cycle to rebalance. Particularly, we
focus on short cycles to add redundancies and increase network robustness.

The above requirements aim to encourage user adoption. The list presents sig-
nificant incentives from a user’s point of view, but nothing is said of the network.
From the network perspective, we hold that the requirement of being cycle-enabled
creates redundancies that attenuate the current trend of network centralization in
the long-term [51, 65].

4.3 Problem Formulation

We formulate the following problem. Consider a payment channel network described
by a directed graph G = (V,E) and a user u interested in creating new channels in a
PCN. The user u can create channel a euv with any v ∈ V . The fee is composed of a
fixed base fee fB

uv and a proportional fee fP
uv(pv) proportional to the value of payment

pv. These fees combine into a total fee fT
uv(pv) = fB

uv + fP
uv(pv) charged to route pv

on the channel euv. Like Ersoy et al. [69], we define an event of a transaction with
source s and destination t and value pv passing through the established channel as
X(pv, s, t). We model the expected gain of the user u in the newly created channel
euv as a product of probabilities, given by [69]:
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E[Gu] =
∑

∀s,t∈V
s ̸=t̸=u

Tmax∑
pv=1

∑
v∈C

Pr[P = (s, t)]× Pr[T = pv]× fui(pv)Pr[X(pv, s, t)], (4.1)

where Pr[P = (s, t)] is the probability of a payment occurring between nodes s and
t, modeled by a distribution P ; Pr[T = pv] is the probability of a payment, modeled
by the statistical variable T , which can assume a maximum value of Tmax, having a
value pv. Finally, Pr[X(pv, s, t)] is the probability of the payment of value pv going
from s to t passing through channel euv, given C = V − {u}. The gain is given by
the product of all three probabilities.

Besides maximizing the financial gain, described by Equation 4.1, the user u also
expects to pay fewer fees when issuing payments. Unlike previous work [69, 70] that
solely focuses on collecting fees, we consider that the new user might want to issue
payments in the network. As we assume that u does not know who he/she is going
to transact with before joining the network, we aim to reduce u’s distance to every
other node in the network.

E[Cu] =
∑
∀t∈V
t̸=u

Tmax∑
pv=1

∑
∀t∈V t ̸=u

Pr[P = (u, t)]× Pr[T = pv]× fT
ut, (4.2)

where fT
ut(pv) is the fee charged by the channel to forward a payment of value pv

from u to t.
To simplify the problem, we assume the probability of payment from s to t in

Equation 4.1 to be modeled as a uniform distribution. Thus, Pr[P ] = 1
(|V |−1)(|V |−2)

is constant, and |V | is the number of vertex in the network. We also consider a fixed
pv value, eliminating the second sum and the fee charged fT

uv(pv). Equation 4.1
can, then, be rewritten as E[Gu] =

∑
v∈C Pr[X(pv, s, t)]. Finally, we adopt the

betweenness centrality to model the probability Pr[X(pv, s, t)] of the event X. As
PCNs use Dijkstra’s SPF, we consider that the betweenness centrality of a node
provides an accurate prediction on the probability of that node forwarding payments.

Definition 4.3.1. Node betweenness centrality. A node’s u betweenness cen-
trality is proportional to the number of shortest paths that traverses u and is defined
as

bcu =
∑
s ̸=t,
σst ̸=0

σst[u]

σst

,

where σst is the number of shortest paths between s and t, and σst[euv ] is the number
of shortest paths between s and t that goes through u.
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Thus, we rewrite Equation 4.1 as E[Gu] = bcu. The same logic is applied to
Equation 4.2, associating it with closeness centrality.

Definition 4.3.2. Closeness centrality. The closeness centrality of a node u is
inversely proportional to its distance to other nodes and is defined as

ccu =
∑
v∈V

1

duv
,

where duv is the distance between u and v in total fees.

As we set the distance of a node to another as the total fee charged by the
channel, we can use closeness centrality to infer the average amount of fees paid
by our node. Thus, the sum of distances acts as a natural average for the fees
encountered by u assuming a uniform distribution of transaction values [49]. We
rewrite Equation 4.2 as 1/E[Cu] = ccu, where ccu is the closeness centrality of u. As
closeness centrality is inversely proportional to the sum of distances, the higher a
node’s closeness centrality the smaller the distance between the node and the rest
of the network. Therefore, instead of minimizing costs, we combine both closeness
and betweenness centrality into a metric that we aim to maximize. We introduce
the expected incentive E[I(u)] of node u as

E[I(u)] = bcu + ccu. (4.3)

4.4 Greedy Algorithm for Node Attachment

We propose a greedy algorithm that recommends channel connections to ingress
nodes in the network. The goal of the algorithm is to create 3-node cycles while
maximizing a user’s probability of forwarding a payment and reducing the average
amount paid in fees when issuing a transaction. We achieve both of these features
through centrality metrics. First, as current PCNs use a simple Dijkstra’s SPF
algorithm to select the cheapest payment route, we can fulfill our goal of increasing
the node’s probability of forwarding a payment by creating channels that belong to
as many shortest paths as possible in the PCN. In other words, for each channel
created the user is interested in having more payments routed through her node. To
that end, we employ the node betweenness centrality, which measures the fraction of
shortest paths crossing the node, as one of the optimization objectives (Appendix 4.3
gives the mathematical formulation). Increasing a node’s probability of routing is
equivalent to increasing its betweenness centrality.

Second, we employ the closeness centrality to measure how far from every other
node the new user is on the network. ProfitPilot aims to minimize the overall
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distance to everyone else in the network, as it assumes that the new user does not
know beforehand to whom she is going to send payments. Closeness centrality suits
well in our proposal as it measures the overall distance of a node to the rest of the
network. We set the weight of the closeness centrality as total fees in our payment
graph. Thus, the higher the closeness centrality, the closer the node is to all other
nodes, meaning fewer routing fees for the new node.

Both betweenness and closeness centralities depend on the fees that will be
charged on the created channel. This happens because the default Dijkstra’s SPF al-
gorithm used by some PCNs, including the Lightning Network, selects the cheapest
path, i.e., the one that charges fewer fees. Thus, setting low base and proportional
fees results in higher betweenness and closeness centrality, whereas setting high fees
yields the opposite result. As choosing channel fees is beyond the scope of our work
1, ProfitPilot considers a user that sets the channel fees as the median of the entire
network. Thus, we set the base fee to 100 milisatoshis (msat) and the proportional
fee to 50 satoshis (sat)2.

We combine the node’s betweenness and closeness centrality into one incentive
metric (see Chapter 4.3), Rn, described as

Rn = α · bcn + (1− α) · ccn, (4.4)

where bcn represents the betweenness centrality and ccn is the closeness centrality
of node n. ProfitPilot offers a tuning parameter α, 0 ≤ α ≤ 1, that can be set by
the user to control the weight given to the betweenness centrality and the closeness
centrality in the incentive computation. If the new user on issuing a small number of
transactions, she can set α > 0, 5, prioritizing gains from fee collection. Conversely,
if the user plans on issuing several transactions and wants to pay fewer fees on
average, the user may set α < 0, 5.

At each step, ProfitPilot greedily looks for the neighbor with the highest incentive
metric increase. ProfitPilot’s algorithm, detailed in Algorithm 1 receives the PCN
topology G and the maximum number of channels k to create as input and returns
the recommended neighbors for a new node. ProfitPilot simulates the creation of
multiple channels offline and computes the incentive return. The algorithm iterates
through the nodes of the network creating channels with each one and stores the
node N+ that offers the highest incentive RM on each round in a list N . This
procedure continues until the incentive no longer increases, meaning it has reached
a local maximum, or until the list N reaches k channels. If the incentive starts to

1Readers interested in fee selection may refer to Ersoy et al. [69].
2A satoshi is the atomic unit of Bitcoin and is equivalent to 10−8 BTC. Nevertheless, operations

in milisatoashis (1 satoshi = 1, 000 milisatoshis) are common in the Lightning Network. The
milisatoshis are usually rounded down when closing the channel.
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Algorithm 1: ProfitPilot’s main algorithm.
Input : G = (V,E)→ payment channel network as a directed graph;

n→ node entering the network;
α→ parameter that indicates whether the user prioritizes

collecting fees or paying low fees;
k → maximum number of channels the user wants to create.

Output : N → set of neighbors recommended by the algorithm.
Initialize empty set of neighbors N ← ∅;
while |N | < k do

Initialize maximum reward RM ← 0;
Initialize selected node N+ ← None;
foreach ni ∈ V do

Simulate channel opening (n, ni);
Compute incentive Rn ← ComputeIncentive(G, n, α);
Simulate channel closure (n, ni);
if Rn ≥ RM then

if |N | > 0 then
if ni is neighbor of ns ∈ N then

RM ← Rn;
N+ ← ni;

end
end
else

RM ← Rn;
N+ ← ni;

end
end

end
Compute current incentive CR ← ComputeIncentive(G, n, α);
if RM ≤ CR then

Break out of the loop;
end
N ← N ∪N+;
Add channel (n,N+) to network G;

end
return N

decrease, the algorithm stops, given that any selected channel will provide a smaller
incentive than the current list.

ProfitPilot aims to create triangles in the network. After selecting the first
node that presents the highest incentive, it is possible to create a 3-node cycle by
verifying the selected node’s neighbor instead of iterating through every node in
the network. Thus, our algorithm executes the same procedure of looking for the
highest incentive but in a reduced search space, saving execution time. Through
this procedure, ProfitPilot guarantees the creation of |N | − 1 triangles (see proof
in Appendix A) that the node participates in, where N is the set of the node’s
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suggested neighbors, including already established ones, and |N | is the size of the
set.

Although ProfitPilot only considers new nodes joining the network, it can easily
be extended to nodes that already participate in the PCN. In that case, instead of
iterating through every node in the network, ProfitPilot attempts to form a cycle in
a procedure similar to closing a triangle or a triadic closure [73]. ProfitPilot connects
to the node that provides the highest increase in incentive among the neighbors of
the user’s already established neighbors.
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Chapter 5

Development of the Prototype and
Experimental Results

We implement ProfitPilot and evaluate it using real data collected from the LN
topology. We use Python v3.8 and the NetworkX library for graph analysis1. We
build the network graph from node and channel announcement messages, used by
nodes to announce their channel on the network publicly. The messages were col-
lected using the c-lightning implementation and comprise the period from January
2020 to July 2022 [59]. Similar to the literature [8, 46], we snowball sample [74] the
complete Lightning Network topology starting from the highest degree node, going
from a topology with 8, 676 nodes and 80, 220 edges to a network with 512 nodes
and 3, 212 edges. Our analysis focuses on evaluating ProfitPilot in the Lightning
Network. Nonetheless, ProfitPilot is PCN-agnostic and can be easily adapted to
other PCNs.

Besides LN, we evaluate ProfitPilot using two synthetic topologies: a scale-free
Barabasi-Albert graph [75] and a small-world Watts-Stogratz [76] graph, both with
512 nodes. We chose these two topologies because the Lightning Network behaves
both as a scale-free and as a small-world topology [51, 61, 65]. We sample node and
channel attributes, such as channel capacity, base fee, and proportional fee, from
the real Lightning Network and assign them to nodes and edges in the synthetic
topology. During this assignment, node correspondence was kept, meaning that the
central nodes in the synthetic topology receive their attribute from the central nodes
in the Lightning Network snapshot. In particular, the 10% highest degree nodes in
the synthetic topology receive attributes from the 10% highest degree nodes in the
original LN topology. Unless stated otherwise, we repeat our experiments 10 times
to account for statistical variations and error bars represent 95% confidence intervals.
The results of ProfitPilot on LN, however, do not present error bars given that the

1Available at: https://github.com/gFrancoCamilo/ln-looprebalance.

32

https://github.com/gFrancoCamilo/ln-looprebalance


LN topology is fixed and the greedy algorithm is deterministic.
Attachment algorithms. We compare our solution to the following attachment
heuristics used by a publicly available LN autopilot [68]:

1. Centrality: This heuristic selects nodes as potential neighbors from a distri-
bution proportional to the betweenness centrality of nodes.

2. Rich: This heuristic selects nodes from a distribution proportional to the
capacity of nodes in the network.

3. Random: This heuristic follows the Erdos-Renyi [77] model by drawing nodes
from a uniform distribution.

4. Degree: This heuristic draws nodes from a distribution proportional to the
degree of nodes.

The above-listed heuristics were chosen due to their presence in the most pop-
ular Lightning Network implementations. The first three heuristics are available in
lib_autopilot, the default autopilot for the c-lightning implementation of the
Lightning Network [68].

5.1 Results

We divide our performance evaluation into two parts. First, we evaluate our proposal
from the new node’s point of view. We verify if our proposed solution achieves higher
rewards than current solutions. Our evaluation compares the approach that creates
cycles and the approach that doesn’t create cycles to verify if there is a significant
loss in incentives. Finally, we evaluate the difference in collected fees from our
algorithm to the c-lightning ones. Then, we verify the impact of mass adoption
from the network point of view and how it affects the network centralization.
ProfitPilot without cycles. One of ProfitPilot’s main benefits is allowing nodes
to compensate for channel creation costs by collecting routing fees. We run an ex-
periment that compares ProfitPilot with the currently available autopilot heuristics
to quantify this profit boost. The evaluation scenario consists of a node that creates
ten channels, each set to charge the network median base and proportional fees,
and α = 0.5. Figure 5.1 shows the probability of forwarding a payment for each
heuristic in the evaluated topology. ProfitPilot increases the likelihood of forward-
ing a payment and thereby collecting a fee by over 5× in the Barabasi-Albert and
Watts-Strogatz topologies, as shown in Figures 5.1a and 5.1b respectively, and by
over 2× in the Lightning (Figure 5.1c). Thus, users are compensated for the cost of
opening multiple channels using ProfitPilot.
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(a) Barabasi-Albert topology.
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(b) Watts-Strogatz topology.
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(c) LN topology.

Figure 5.1: Probability of forwarding a payment and, therefore, collecting fees in
the evaluated topologies. ProfitPilot more than doubles the probability of collecting
fees.

ProfitPilot also creates cost-effective payment routes (Figure 5.2). The average
paid fee is computed based on the shortest paths from the ingress to all other nodes
in the network and averaging the path fees. We consider a payment value equal to
the average transaction of a Ripple dataset [62] to calculate the fees. ProfitPilot
presents equal or lower-cost paths compared with the other heuristics for the three
topologies evaluated. Moreover, creating more channels decreases the average paying
fees, notably for the Watts-Strogatz topology (Figure 5.2b).
Impact of cycles. We repeat the previous experiments for the cycle creation ap-
proach. Figures 5.3 and 5.4 show the results for the average paid fees and the prob-
ability of collecting fees, respectively. Even by forcing the creation of triangles and
reducing search space, ProfitPilot achieves a higher probability of collecting fees in
all three evaluated topologies. In particular, ProfitPilot stands out in the Lightning
Network topology, significantly improving fee collection probability. Furthermore,
similarly to the approach that ignores cycle creation, ProfitPilot also offers a smaller
average paid fee compared to other available heuristics from the first channel cre-
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(a) Barabasi-Albert topology.
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(b) Watts-Strogatz topology.
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(c) LN topology.

Figure 5.2: Average paid fee for a transaction in the evaluated topologies. Profit-
Pilot creates cheaper routes when compared with state-of-the-art heuristics in all
evaluated topologies.

ated. Thus, users are not required to create a high number of channels to receive
the benefits of ProfitPilot.

We also verify the number of triangles the node participates in using ProfitPi-
lot or the other evaluated heuristics. Triangles are valuable in PCN topologies to
allow off-chain rebalancing and create redundancies. As stated in Chapter 4.4 and
demonstrated in Appendix A, ProfitPilot guarantees the creation of at least |N |−1

triangles in all topologies, where |N | is the number of neighbors. Figure 5.5c shows
that the centrality and rich heuristics generate a higher number of triangles in the
LN topology. One possible reason for this difference is that central nodes, which are
usually high-capacity nodes [51], are highly connected to each other, increasing the
probability of creating triangles in the Centrality and Rich heuristics. Nevertheless,
these heuristics are unable to ensure the creation of triangles under different topolo-
gies, as shown in the results of the Barabasi-Albert and Watts-Strogatz topologies
in Figures 5.5a and 5.5b, respectively, unlike ProfitPilot.

Figure 5.6 shows the rebalancing fees paid by the user in each topology after
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(a) Barabasi-Albert topology.
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(b) Watts-Strogatz topology.
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(c) LN topology.

Figure 5.3: Probability of forwarding a payment and, therefore, collecting fees in
the evaluated topologies using the strategy that prioritizes the formation of 3-node
cycles. Even by forcing the creation of triangles, ProfitPilot presents a higher prob-
ability of collecting fees than currently available heuristics.

creating 10 channels. As ProfitPilot focuses on creating 3-node cycles, it may not
produce least-cost cycles. Figure 5.6a shows that Centrality produces cheaper re-
balancing cycles than ProfitPilot for the LN topology. Still, ProfitPilot presents
equally low fees in both Barabasi-Albert and Watts-Strogatz topologies. While the
centrality heuristic outperforms ProfitPilot in rebalancing fees in the Lightning Net-
work, ProfitPilot’s benefits, such as channel profitability, compensate the user for
this difference. Figure 5.6 shows that ProfitPilot compares to the other heuristics
regarding rebalancing fees, except for the Lightning Network.
Impact on the network. Finally, we apply ProfitPilot to multiple existing nodes
in the network using the procedure described in Chapter 4.4. Basically, ProfitPilot
connects to the node that provides the highest incentive among the neighbors of
the existing node’s neighbor. Our goal is to verify the impact of ProfitPilot on
network transitivity and robustness. In particular, we randomly select 15 nodes
with a single neighbor and use ProfitPilot to create 3 bidirectional channels for each
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(a) Barabasi-Albert topology.
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(b) Watts-Strogatz topology.
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(c) LN topology.

Figure 5.4: Average paid fee for a transaction in the evaluated topologies using
ProfitPilot to prioritize the formation of 3-node cycles.

node. Figure 5.7a shows the impact of ProfitPilot and the lib_autopilot heuristics
on the network transitivity as more nodes adopt these designs. ProfitPilot offers the
fastest transitivity increase among all of the strategies. This increase is mostly due to
ProfitPilot creating connections in previously intransitive triads in a process similar
to closing triangles. While other heuristics also create triangles, they also create
more intransitive triads, slowing the increase in network transitivity. We also note
that as more nodes adopt ProfitPilot, the quicker the network transitivity reverses
its downtrend [51, 61].

We also examine the robustness of the network against attacks on central nodes.
This type of attack is critical in the current Lightning topology as discussed in
Chapter 3. Figure 5.7b demonstrates that ProfitPilot efficiently mitigates the effect
of targeted attacks by 18% with only 45 nodes adopting it with 3 channels each.
We also verify that the higher the number of nodes adopting ProfitPilot, the more
robust the network becomes. Although our test is restricted to nodes creating 3

channels, we also expect that an increase in the number of channels results in a
more robust network. ProfitPilot’s features, i.e. profitability and low-cost routing,
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(a) Barabasi-Albert topology.
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(b) Watts-Strogatz topology.
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Figure 5.5: Number of triangles created by ProfitPilot and state-of-the-art heuristics
in the evaluated topologies.
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Figure 5.6: Rebalancing fees in satoshis using ProfitPilot and state-of-the-art heuris-
tics in the evaluated topologies.
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Figure 5.7: Impact of our proposal on the Lightning Network topology as more
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encourage mass adoption, enhancing the network’s robustness even further.
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Chapter 6

Related Work

6.1 Payment Channel Networks

Most of PCN works in the literature focus on improving the standard routing algo-
rithm [8, 62, 66, 72] or proposing rebalancing strategies [8, 17, 18, 46]. The problem
of making rebalancing cheaper and faster is addressed by multiple proposals in the
literature [8, 16, 46, 78]. Sivaraman et al. propose Spider, a PCN routing algorithm
that uses a congestion control protocol to keep channels balanced [8]. Spider defines
that payment sources must maintain an adjusted flow window to issue transactions
at the same rate they receive, keeping the channel balanced according to demand.
In Spider, if the flow of payments in one direction is greater than the flow in the
opposite direction, the transaction waits in the queue for another transaction of the
same amount in the opposite direction to guarantee equal flows in both directions.
This solution, despite improving channel balancing, has some major disadvantages.
First, Spider relies on the existence of unpredictable payment demands in the oppo-
site direction to equalize the flow in both directions. If the demands do not exist,
the user may have his payment halted indefinitely. Second, Spider does not consider
payment fees in its routing algorithm, which can result in high costs for the user.
Finally, the implementation of queues and flow control requires structural changes
in Lightning Network, which currently does not have these features.

One of the most popular forms of rebalancing in payment channel networks in-
volves issuing self-payments through circular routes. This method allows users to
move funds from a low-demand channel to a high-demand channel, reactivating the
channel without resorting to blockchains and slow consensus mechanisms. Khalil
and Gervais propose REVIVE, a secure payment method on circular routes [16]. In
REVIVE, an elected leader receives rebalance requests from multiple users and cal-
culates a set of transactions that must be performed. This set of transactions seeks
to meet user requirements and must ensure that users do not lose money in the pro-
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cess. The algorithm, however, violates users’ privacy, given that to calculate the set
of rebalancing transactions, the leader must know users’ channel balance. Awathare
et al. propose REBAL, a circular rebalancing method that uses the transaction flow
history of the channel to define the amount of funds that should be moved between
channels [46]. In REBAL, participants run the rebalancing protocol locally, which
removes the need to share private information with third parties. Otto presents a
tool to automate the rebalancing of channels through self-payments in the imple-
mentation of the Lightning Network in Go [78] language. The tool allows users to
configure the amount of funds he wants in each channel and calculates, based on an
optimization problem, the best set of rebalancing transactions locally.

All of these proposals, however, depend on the availability of cycles in the net-
work. As we show in this thesis, these operations are unavailable for a signifi-
cant number of nodes in the network. Instead, these nodes have to resort to the
blockchain, paying high fees and waiting for long periods of time for transaction
confirmation. Our approach guarantees the creation of cycles, enabling off-chain
rebalancing for nodes in the network.

6.2 Topology Evaluation

Some papers investigate the Lightning Network topology [13–15, 50]. Seres et al.
analyze the Lightning Network topology using graph metrics and a network snap-
shot from January 2019 [13]. From the analysis, the authors conclude that the
Lightning Network exhibits behavior similar to scale-free networks and small-world
networks, and exhibits robustness against random failure attack and vulnerabilities
to rational attackers. The authors evaluate the state of the network in January
2019, without considering historical growth. Due to the rapid growth and high
dynamicity of the network, the results are limited to the evaluated date and do
not consider the changing growth prospects of the network, as demonstrated in the
present work. Moreover, Seres et al. analysis does not consider some financial pa-
rameters, such as the fees paid by users and the direct effect of attacks directed at
the end user. Lin et al. evaluate the growth of the Lightning Network in relation to
the resource concentration of the network [14]. The authors evaluate indices such
as Gini, proximity centrality, and betweenness centrality of the network over the
period between January 2018 and July 2019. The results show that the network ex-
hibits core-periphery type structures where the core is formed by hubs and star-like
substructures, verifying a strong centralization in the network around the highest
capacity nodes. The authors expose that removing hubs would lead to partitioning
of the network into multiple components, leaving the network more vulnerable to
attacks. Similarly, Beres et al. analyze Lightning Network metrics, such as number
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of edges, average degree, and transitivity, over the period between January 2018 and
May 2019 [50] to build a traffic simulator. The papers, however, are limited to the
analysis of few centralization metrics, disregarding other metrics, such as evolution
of density, components, s-metric and assortativity, and the evolution and distribu-
tion of channel characteristics. These metrics allow for a greater understanding of
the state of the network and its prospects. Rohrer et al. focus on security analysis,
quantifying the resilience of the Lightning Network to topology-based attacks [15].
The authors show that the network is susceptible to channel exhaustion and node
isolation attacks, which affects the payment success rate and the average payment
flow in the network. The result shows that attackers with available resources should
follow the strategy of removing higher centrality nodes to perform effective attacks,
while nodes with low resource should focus on low capacity channels whose removal
partitions the graph.

Unlike the above cited articles, this work evaluates the evolution of centralization
of the Lightning Network based on graph-theory metrics and complex networks, as
well as evaluating the result of targeted attacks and their effects on end users. The
analysis uses real data collected from Lightning Network messages from January
2020 to August 2021 and evaluates the centralization trend of network connectivity
and resources, and discusses the consequences and trends of the current growth
model of the network for future proposals.

6.3 Attachment Strategies

Several works study different strategies for adding new nodes in PCNs [64, 68, 69].
Pickhardt presents lib_autopilot, a software that automates the creation of channels
in the network that allows the user to select heuristics for creating channels, such
as random, central, and reduced diameter [68]. Lib_autopilot has been adopted as
a plug-in in the c-lightning implementation of the Lightning Network. Lange et al.
study models of attachment strategies applied to the context of payment channel
networks [64]. The authors verify a trade-off between security and efficiency in
the evaluated models. While connecting to higher-degree nodes usually results in
more efficient payment routing, they also expose the network to several security
threats. Ersoy et al. focus on making payment channels profitable for users [69].
The authors formalize the maximum reward problem, show that the problem is NP-
hard, and propose a channel creation algorithm that returns the maximum reward
for a channel. The authors, however, consider a scenario in which the nodes only
seek to act as routers, without issuing payments. This consideration prevents the
development of a solution close to the real scenario of payment channel networks, in
which participants assume roles of both sellers and buyers [6]. In addition, all the
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above-cited solutions ignore the issue of rebalancing the channels, which can result
in a low lifespan for the channel and high costs in channel operation.

Unlike previous works, this work presents a channel-opening strategy that prior-
itizes the increase of financial gains and decreases possible costs to users by creating
channels. Furthermore, this thesis develops an algorithm that allows users to estab-
lish cycles in the network topology, enabling rebalancing operations and extending
the channel lifespan. The proposed model, which prioritizes the user’s financial
gains, compensates for the cost of opening multiple channels to establish cycles.
As far as we know, our approach is the first to propose creating cycles to enable
rebalancing and improve network robustness.
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Chapter 7

Conclusion and Future Work

Payment channel networks present a fundamental mechanism for enabling fast, se-
cure, and decentralized cryptocurrency payments in everyday life. Because of the
way the routing of payments through payment channels is implemented, PCNs are
heavily influenced by their topology. This thesis analyzes the evolution of the topol-
ogy of the Lightning Network, the main payment channel network, using graph
theory metrics and real messages collected from the network. The results show that
the connections and capacity allocated to the network are extremely concentrated
in a few nodes, which are mostly controlled by companies linked to blockchain de-
velopment. This centralization is a natural consequence of how the entry of new
participants takes place, seeking smaller paths to perform transactions and, conse-
quently, pay lower fees. In addition, the thesis finds that the results indicate an
evolution towards a weakly transitive network, which makes channel rebalancing
techniques unfeasible for most nodes.

This thesis presented ProfitPilot, a strategy for connecting new nodes in payment
channel networks. Our proposed model presents financial advantages to users, such
as compensating the costs of channel creation by establishing profitable and low-
cost routes. Furthermore, the proposed scheme is also beneficial to the network
as it promotes redundancies and makes it more robust to some security threats.
We expect that these features promote user adoption. We implement and test
ProfitPilot on real-world Lightning Network topology and the results show that the
presented solution rewards the user up to 3× more than the traditional methods of
adding nodes in the network. Although we focus on applying ProfitPilot to our PCN
scenario, ProfitPilot can also be used by any other network application with similar
routing characteristics as PCNs. ProfitPilot also presents cost-efficient routes with
as low as one channel being created by the user when compared to state-of-the-art
heuristics. ProfitPilot also benefits network security, as it quickly increases network
transitivity and reduces the effects of targeted topological attacks.

Future work should offer fee-setting strategies, which allow the entry node to
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maintain its profitable position after joining the network.
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Appendix A

Creating Triangles with ProfitPilot

As mentioned in Section 4.4, ProfitPilot guarantees the creation of |N |−1 triangles.
We refrain from a more formal proof that would require showing a loop invariant
proof of the inner loop in Algorithm 1 to demonstrate that it only creates channels
with already selected nodes’ neighbors. Instead, we intuitively state that the inner
loop traverses the nodes of the network and only selects nodes that are neighbors of
already selected ones. This can be logically observed by the ‘if ’ condition inside the
inner loop that checks if the analyzed node is a neighbor of a node before storing it
as a potential node as a suggestion.

Theorem A.0.1 (ProfitPilot’s triangles.). At each interaction of Algorithm 1, the
ingress node n participates in at least |N | − 1 triangles, for |N | ≥ 1.

Proof. We prove Theorem A.0.1 using the loop invariant method.
Initialization: We first show that the loop invariant holds for |N | = 1. In this
scenario, the list of suggested node connections N is composed of a single element,
meaning that n has only one channel. Thus, the loop invariant holds, given that one
channel is not enough to form a triangle, i.e., n participates in |N |−1 = 0 triangles.
Maintenance: Next, we show that each iteration maintains the invariant. First,
assume that the loop invariant holds for an iteration j, that is |N | = j and node n

participates in j−1 triangles. The inner loop only selects nodes that share a channel
with a node in N . Thus, if a node is selected by the algorithm, it will be added to
N and |N | = j +1. The algorithm will, then, establish a channel with this selected
node and, as it shares a channel with a node already in N , the node will participate
in at least one more triangle, i.e., at least j triangles. If the algorithm traverses
the network without selecting a node, |N | will remain unchanged, maintaining the
number of triangles at the beginning of the interaction. Hence, the loop invariant
holds at the end of the iteration.
Termination: Finally, we analyze the loop termination. There are two possible
ways that the algorithm terminates. First, if the maximum number of channels
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that the user wants to create k has been achieved, meaning |N | = k. In that case,
node n participates in at least k− 1 triangles. The second possibility of terminating
the algorithm occurs if ProfitPilot fails to find a higher incentive than the current
setting. At that point, the algorithm breaks out of the loop in the last if condition
presented at Algorithm 1 and the node participates in at least |N |−1 triangles.

57



Appendix B

Additional Results

We verify the node’s financial incentive with a varying α parameter. Figures B.1
and B.2 show the incentives nodes receive with parameter α = 1.0. In this scenario,
the node is not interested in paying low fees or issuing payments. Instead, the new
node is only interested in creating channels that will result in financial gain. This
strategy may be used by service providers or router nodes.
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(b) Watts-Strogatz topology.
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Figure B.1: Average paid fee for a transaction in the Barabasi-Albert, Watts-
Strogatz, and the Lightning Network topology considering α = 1.0.
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(b) Watts-Strogatz topology.
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Figure B.2: Probability of forwarding a payment and, therefore, collecting fees in the
Barabasi-Albert, Watts-Strogatz, and the Lightning Network topology considering
α = 1.0.

Figures B.3 and B.4 show the incentives nodes receive with parameter α = 0.0.
In this scenario, the node is not interested in creating channels that will result in
financial gain. Instead, the new node is only interested in paying low fees or in
issuing payments. This strategy may be used by buyers.

59



2 4 6 8 10
# of Neighbors

750

1000

1250

1500

1750

2000

2250

2500

Av
er

ag
e

Pa
id

Fe
e

(s
at

os
hi

s) ProfitPilot
Centrality
Degree
Rich
Random
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Figure B.3: Average paid fee for a transaction in the Barabasi-Albert, Watts-
Strogatz, and the Lightning Network topology considering α = 0.0.
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Figure B.4: Probability of forwarding a payment and, therefore, collecting fees in the
Barabasi-Albert, Watts-Strogatz, and the Lightning Network topology considering
α = 0.0.
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