
1

ProfitPilot: Enabling Rebalancing in
Payment Channel Networks through

Profitable Cycle Creation
Gustavo F. Camilo1, Gabriel Antonio F. Rebello1,2,3, Lucas Airam C. de Souza1,

Miguel Elias M. Campista1, and Luı́s Henrique M. K. Costa1

1Universidade Federal do Rio de Janeiro - GTA/Poli/COPPE/UFRJ
2Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

3Instituto de Pesquisas Eldorado, Brazil

Abstract—Payment Channel Networks (PCNs) have success-
fully replaced slow global consensus mechanisms with local
cryptographic agreements between nodes. As PCN payments
heavily depend on network topology for payment routing, strate-
gic node positioning is critical to building cost-effective channels
for users and enhancing network robustness against topological
attacks. Nevertheless, existing node attachment strategies in the
Lightning Network (LN), the most popular PCN, ignore crucial
topology issues, such as network centralization and the scarcity
of cycles for cheap off-chain rebalancing. In this paper, we first
investigate the current state of the LN topology and show that the
availability of topology cycles is highly unequal in the network,
which exposes the network to several vulnerabilities. Then, we
design ProfitPilot, a node positioning strategy that encourages
cycle creation in PCNs to reverse the trend in centralization and
enable cheap off-chain rebalancing. We compare our proposed
algorithm with heuristics available in the Lightning Network
and verify that even by focusing on creating cycles, ProfitPilot
successfully increases the user’s probability of collecting fees by
over 2× while reducing average paying fees. Furthermore, out
of all the evaluated heuristics, ProfitPilot presents the fastest
increase in network transitivity and mitigates the impact of
targeted topological attacks by over 17% compared with the
regular Lightning Network operation.

Index Terms—blockchain, payment channel networks, Light-
ning Network.

I. Introduction
Public cryptocurrencies still suffer from low scalability

despite their undeniable success. While traditional payment
methods, such as credit cards, process over 24,000 transactions
per second [1], the two largest cryptocurrencies, Bitcoin and
Ethereum, achieve a throughput of only 7 and 15 transactions
per second, respectively [2]. This scalability problem stems
primarily from the requirement imposed by public blockchains
of processing every transaction through a slow global consen-
sus mechanism [3], [4], [5], [2], [6].

Payment channels are one of the main solutions to the
scalability problem of public cryptocurrencies [5], [7], [8],
[9]. In a payment channel, two users transfer funds into a 2-
of-2 multi-signature address in the blockchain so the funds
can only be spent if both agree to sign a new transaction.
Then, instead of publishing new transactions, they establish an

off-chain communication channel and send transactions that
rebalance the channel funds directly to each other. Multiple
payment channels can be connected to build a payment chan-
nel network (PCN), which allows users to route payments
through intermediaries under the condition of paying a small
routing fee. Hashed Timelock Contracts (HTLC) guarantee the
trustlessness of such process by enforcing that intermediaries
only receive funds from the previous hop after transferring
a nearly-equal amount of funds (fees are discounted) to the
next hop. PCNs have been implemented in the two most
popular cryptocurrencies, namely Bitcoin’s Lightning Network
(LN) [5] and Ethereum’s Raiden [10], and have effectively im-
proved transaction throughput and latency in public blockchain
systems. In fact, PCNs are considered a motivation for the
adoption of Bitcoin as an official payment method in El
Salvador [11].

Routing payments in PCNs is challenging and radically
differs from routing datagrams in computer networks. In PCNs,
when a payment is routed on a channel, the channel’s capacity
to forward future payments in that direction is reduced. Thus,
when payments concentrate on one direction, the channel can
become depleted and unable to route payments in the direction
of these payments. Figure 1 shows an example where the
channel from 𝑛1 to 𝑛2 is depleted (the capacity is zero). The
user, then, has two options to reactivate (rebalance) the depleted
payment channel. The first approach is closing and reopening the
channel or acquiring liquidity through a liquidity provider [12].
As these approaches rely on blockchain transactions, it is slow
and costly. Furthermore, by closing the channel for reopening
an active one, the user interrupts the channel’s lifespan, halting
payments and hindering fee collection. Besides, while the
reopening transactions or liquidity purchases are unconfirmed
in the blockchain, the node is unable to issue payments or collect
fees in the depleted channel.

The second and most efficient approach to rebalance depleted
channels is to issue a self-payment through a circular route
in the network [13], [14], [15], [16], [17]. Figure 1 illustrates
the process of off-chain rebalancing. The key idea is to move
funds from low-demand channels to high-demand ones, keeping
the high-demand channels alive for a longer period of time.

2

Time

RebalancingBefore Rebalancing Aer Rebalancing

5

205
5

255
10

2510
0

200
5

10

2510
0

200

Fig. 1: Channel rebalancing through self-payment in a circular route. Node 𝑛1 finds a cycle and issues a self-payment of value 5,
rebalancing its channel with 𝑛2.

Although this approach offers a low-cost alternative to closing
and reopening the payment channel, it depends on the existence
and availability of cycles in the network topology. If cycles
are unavailable, users have no other option than to resort to
the blockchain. In this paper, we verify that 36% of nodes
in the Lightning Network, the most popular PCN currently,
do not participate in cycles. Furthermore, even nodes that
do participate in cycles usually have to pay high rebalancing
fees, which restricts user adoption to off-chain rebalancing
(see Section II). A low number of cycles in the network
topology means fewer alternative paths and a highly centralized
network [18]. This centralization trend exposes the network to
several topological attacks [19], [20]. These attacks can partition
the network, directly impacting payment success rates and
payment reachability [20]. As a consequence, node attachment
strategies are pivotal not only to reverse the centralization trend
but also to enable cheap off-chain rebalancing operations [20],
[21].

Even though network cycles avoid channel depletion, the
current literature shows a gap in attachment strategies that
benefit both the network and users. Thus far, most work on PCN
attachment strategies focuses solely on creating profitable chan-
nels for liquidity service providers (LSP) and relay nodes [21],
[22], [23]. Furthermore, Lightning Network autopilots, tools
that automate channel creation for users, usually focus on
connecting to high-degree or high-capacity nodes [23], [24].
These attachment patterns reinforce the current trend in network
centralization and offer little incentive for mass user adoption.

In this paper, we present ProfitPilot, a node attachment
strategy for PCNs that prioritizes cycle creation while aiming
for cheap rebalance and improving PCN robustness. We first
analyze the availability of cycles in the most popular PCN
implementation, Bitcoin’s Lightning Network (LN) [5]. We
show that, despite off-chain rebalancing being the most efficient
approach for restoring channels [13], [15], [16], LN’s current
topology restricts such operations to a limited number of nodes.
Moreover, we demonstrate the impact of cycle scarcity in
network centralization and how it reduces network robustness.
We simulate attacks on an LN snapshot and show their long-term
consequences. Next, we introduce ProfitPilot, our attachment
strategy that focuses on creating cycles. In particular, the core
of ProfitPilot is to produce 3-node cycles to create low-cost
routes and enhance network robustness. As creating cycles

requires users to open more than one channel, which is costly,
ProfitPilot strategically creates profitable channels to encourage
user adoption. Unlike previous works, ProfitPilot also considers
regular users who might want to both collect fees and make
payments in the PCN.

We implement ProfitPilot and compare our proposal to
state-of-the-art attachment heuristics available in the Lightning
Network. We evaluate our algorithm on the Lightning Network
and two synthetic topologies. ProfitPilot achieves 2× higher fee
collection in all evaluated topologies when compared to other
heuristics and efficiently generates cheaper routes. Moreover,
ProfitPilot rapidly increases network transitivity.

This paper is organized as follows. Section II presents the
motivation of our work based on the LN topology of July 2022.
Section III introduces ProfitPilot, our proposed node attachment
algorithm. Section IV evaluates the performance of ProfitPilot.
Section V reviews related work. Finally, Section VI concludes
the paper and identifies future work directions.

II. Topological Analysis of the Lightning Network

We analyze the Lightning Network [5], Bitcoin’s most popular
PCN, to verify the availability of cycles in the network. Cycles
are particularly important in PCNs to allow cheap off-chain
channel rebalancing [13], [16], [15]. We use real-world data
collected from the Lightning Network from July 2020 to July
2022 to build the network graph [25]. The data consists of raw
node and channel announcement messages spread through the
network using gossip messages to disseminate topology updates.
The messages contain information that allows nodes to build
the network topology, such as the fees charged on the channel,
who participates on the channel, and the channel identifiers.
The fields of announcement messages are detailed in the Basis
of the Lightning Technology (BOLTs) [26], which describes
LN’s implementation standards. We reconstruct the network
topology using the collected messages and the NetworkX Python
library to generate bidirectional graphs. For this analysis, we
only consider the largest connected component of the graph.
We also fill in missing attributes on the dataset1, such as
channel capacities, using publicly available information on LN
explorers [27].

1The results of this attribute retrieval are available at https://gta.ufrj.br/
∼gabriel/files/ln-graphs.tar.gz.

https://gta.ufrj.br/~gabriel/files/ln-graphs.tar.gz
https://gta.ufrj.br/~gabriel/files/ln-graphs.tar.gz

3

101 102 103

Node Degree

0.00

0.25

0.50

0.75

1.00
C

D
F

≈36% of nodes have
one neighbor only

(a) Node degree cumulative distribution in the
Lightning Network in July 2022.

4 8 12 16 20 24 28 32 36 40
Node Degree

101

103

105

107

R
eb

al
an

ci
ng

Fe
es

(s
at

os
hi

s)

(b) Rebalancing fees as a function of the node
degree in the Lightning Network.

Jul 2020 Jul 2021 Jul 2022
Date

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
et

w
or

k
Tr

an
si

ti
vi

ty

Transitivity hits a historical
minimum in Jan 2022

(c) Network transitivity of the Lightning Net-
work from July 2020 to July 2022.

Fig. 2: Network metrics of the Lightning Network in July 2022. We verify the scarcity of cycles in the network for a high number
of nodes, hindering several rebalancing operations. Furthermore, we verify how rebalancing fees are highly unequal to nodes that
do participate in cycles.

0.0 0.5 1.0
Removed Central Nodes (%)

0 20 40 60 80 100
of Removed Central Nodes

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
et

w
or

k
C

ap
ac

it
y

(1
011

sa
to

sh
is

)

×1011

Network capacity
falls by 70%

(a) Network capacity as high-degree nodes are
removed.

0.0 0.5 1.0
Removed Central Nodes (%)

0 20 40 60 80 100
of Removed Central Nodes

1

500

1000

1500

2000

2500

#
of

C
on

ne
ct
ed

C
om

po
ne
nt
s

Number of components
goes up to 2505

(b) Network components as high-degree nodes
are removed.

0.00 0.25 0.50 0.75 1.00
Removed Central Nodes (%)

0 20 40 60 80 100
of Removed Central Nodes

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Pa
ym

en
t

Su
cc

es
s

R
at

e
(c) Payment success rate as high-degree nodes
are removed.

Fig. 3: Impact of topological attacks in the Lightning Network as of July 2022. We simulate central nodes being impaired in a
targeted attack and verify the effect on network capacity and partitioning.

Figure 2a shows the degree distribution in the Lightning
Network in July 2022. While the majority of nodes in LN have
a low degree, a small number of nodes concentrate the network
connectivity. Almost 36% of nodes in the Lightning Network
have only one neighbor. Leaf nodes are unable to rebalance their
channels through off-chain methods and have to rely on slow
and expensive blockchain payments to keep their channels alive
once they get depleted. Although these nodes may create cycles,
they would still have to endure high fees in the blockchain,
and current automatic channel creation heuristics present no
financial benefits to the user. Even worse, leaf nodes typically
have low-capacity channels, in contrast with high-capacity nodes
that can easily perform off-chain rebalancing. This contrast
deepens the network inequality, which recent works claim is
extremely high [18], [28].

We also verify the availability of cheap rebalancing routes
among nodes that have more than one neighbor. We run
Dijkstra’s Shortest Path First (SPF) algorithm using fees as edge
weights and considering the average payment value of a dataset
containing Ripple’s credit network transactions2 (see Section III

2The Lightning Network keeps payment values private by design and thus
no payment dataset is available. We assume Ripple’s credit network operates
similarly to PCNs and, therefore, has similar payment ranges.

for a formal definition of our network model) [29]. Ripple’s
transaction dataset contains over 2 million transactions collected
by crawling Ripple’s credit network and gathering information
from its creation, in January 2013, to November 2016. The
dataset contains information on transaction identifiers, sender-
receiver pairs, the timestamp of when the transaction was issued,
and the value of the transaction in dollars. We find that even when
using off-chain rebalancing, the distribution of rebalancing fees
is highly unequal in the network. Figure 2b shows that, while
high-degree nodes usually find cheap routes to rebalance their
channels, low-degree nodes have fewer options and end up
paying more for each rebalancing operation.

The scarcity of short network cycles can also be observed
in the network transitivity. Network transitivity measures the
ratio between the number of triangles and the number of
connected triples of nodes. Transitivity varies between 0 and
1 and high transitivity implies a large number of triangles, e.g.,
a dense graph, while low transitivity indicates a sparse network.
Figure 2c shows the transitivity of the Lightning Network from
July 2020 to July 2022. Despite the small increase from January
to July 2022, the LN’s transitivity tends to decrease [18], [28].
The low transitivity of LN demonstrates the low number of
cycles, particularly 3-node cycles, and is a consequence of the

4

centralization trend of the network [18].
Creating cycles in the network is important not only to enable

rebalancing operations but also to improve robustness against
targeted topology attacks [19], [20]. Several works point out that,
despite being born a decentralized network, LN is becoming
more centralized by concentrating connectivity and capacity in
a small number of nodes [18], [28]. This centralization trend
increases vulnerability to attacks targeting the highest-degree
nodes.
Impact of Topological Attacks. Figure 3a shows that impairing
only 44 of the highest degree nodes (≈ 0.5% of nodes in the
network) reduces the network capacity by half. Furthermore,
extending the attack to the 100 highest-degree nodes (≈ 1.2%
of the network) leads to a decrease of 70% in network capacity.
Reducing the network capacity directly affects the payment
success rate, due to less available channels [30], [8]. Figure 3b
also demonstrates the impact of targeted attacks on the number
of network components. We verify that attacking 100 of the
highest degree nodes increases the number of components from
one to over 2,500. Indeed, removing only the highest-degree
node breaks the network into 140 components. This network
partitioning pattern has drastic effects on PCNs, as it makes
several payments infeasible.

Figure 3c shows how the network partition affects payment
success rate. We implement a Lightning Network simulator3
and simulate a PCN using an LN snapshot from July 2022
as the network topology and a Ripple transaction dataset as
workload [31], [29]. The success rate falls from over 55% to
less than 30% after blocking the 100 highest-degree nodes,
resulting in multiple failed payments. Users must complete these
failed payments in the blockchain, incurring high fees and long
confirmation time. It is important to note that these attacks are
not only theoretical. In 2018, LN was the target of a DDoS
attack, which affected 20% of its nodes [32], [18].

III. Building ProfitPilot
We present ProfitPilot, an algorithm for connecting new nodes

to PCNs. ProfitPilot focuses on the creation of 3-node cycles,
favoring rebalancing operations and reducing the centralization
tendency mentioned in Section II. We choose to focus on 3-
node cycles for two main reasons. First, smaller cycles provide
higher tolerance against fee fluctuations over time. Instead of
relying on 𝑛 − 1 nodes not changing their fees in a 𝑛-length
cycle, the user only relies on 2 nodes, which are her neighbors.
We argue that it is easier for the user to keep control or exert
influence over channels with their own neighbors than over
other nodes she does not share channels with. Furthermore,
by focusing on creating 3-node cycles, we improve the overall
network robustness that would otherwise be negatively affected
by only considering connections to central nodes as in previous
work [23]. ProfitPilot builds triangles on top of the original
network graph, providing alternative paths and mitigating the
effect of targeted attacks. To make the cycle creation economi-
cally viable, our strategy offers financial incentives to encourage
user adoption. Finally, with mass adoption, 3-node cycles merge
into forming cycles with higher lengths, increasing possible

3Available at https://github.com/gFrancoCamilo/ln-looprebalance.

rebalancing paths [14]. Our focus is on establishing channels
that maximize the likelihood of routing payments through them
and minimize the average number of hops to other participants.
This optimization reduces transaction fees and enhances the
overall efficiency of the network.

A. Assumptions and Network Model
Publicly-available topology. ProfitPilot assumes that the topol-
ogy of the PCN is publicly available to PCN participants before
they create any channel. In particular, we assume that the
available information includes public nodes, channels, their
capacity, and their fee policy. The two most popular PCNs
today, Lightning and Raiden [5], [10], both allow users to
download the network topology before establishing a channel
in the network. In fact, Lightning and Raiden network explorers
store and display information about nodes and channels on
public websites [27]. We also assume that substantial changes
in the network topology while the algorithm is running are rare.
Our assumption is based on the fact that every topology update
has to go through the blockchain, which is time-consuming [21].
Thus, only minor changes occur during the execution of the
algorithm.
Freedom to create channels. We assume that a new node
coming to the PCN can create channels with any other node
publicly announced in the network. The newcomer, however,
funds all costs related to channel creation. We assume that the
other party acts rationally and accepts channel creation as she
does not have to fund the channel and may gain fees from
payment routing. This assumption is also made by previous
works in the literature [21], [22].
Source-routed payments. We strategically position a node
to receive routing fees and pay, on average, lower fees than
other nodes. Thus, we need to be aware of how payments are
routed in the network. ProfitPilot assumes that nodes adopt the
default routing strategy in the Lightning Network, i.e. source
routing with paths computed by Dijkstra’s SPF algorithm.
Although several proposals to modify routing algorithms in
PCNs have been proposed [8], [29], [30], [33], [34], the current
implementation of the Lightning Network still uses Dijkstra’s
SPF algorithm with fees as the distance metric. Furthermore,
following previous works [21], [35], we assume a uniform
distribution of sender-receiver pairs when placing the node in
the network.
Network model. We model the PCN as a directed graph 𝐺 =

(𝑉, 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of channels
in the network. Each bidirectional channel, represented by two
directed edges, holds a set of attributes with information about
the routing fees, channel capacity, and a channel identifier. In
particular, an edge 𝑒𝑖 𝑗 ∈ 𝐸 stores two attributes regarding fees:
a base fee 𝑓 𝐵 and a proportional fee 𝑓 𝑃 (𝑝𝑣). While the base
fee is fixed for every transaction that is forwarded through the
channel, the proportional fee depends on the payment value 𝑝𝑣
being routed. Thus, the total amount of fees accounted for in a
channel 𝑒𝑖 𝑗 that transports a payment of value 𝑝𝑣 is given by
𝑓 𝑇
𝑖 𝑗
(𝑝𝑣) = 𝑓 𝐵

𝑖 𝑗
+ 𝑓 𝑃

𝑖 𝑗
(𝑝𝑣).

Similar to [19], we account for the weight of the fees by
generating a payment graph 𝐺𝑃 = (𝑉, 𝐸,𝑊) from the original

https://github.com/gFrancoCamilo/ln-looprebalance.

5

network 𝐺, where 𝑊 is the set of edge weights. Basically, the
payment graph has the same nodes and edges as the original
network graph, but the edges are weighted by the total fees.
Thus, given a channel 𝑒𝑖 𝑗 , the weight 𝑤𝑖 𝑗 is defined as 𝑓 𝑇

𝑖 𝑗
(𝑝𝑣)

for a fixed value of 𝑝𝑣 . Users may define different fees in both
directions of the payment channel, i.e., given an edge 𝑒𝑖 𝑗 ∈ 𝐸 ,
it is possible that 𝑤𝑖 𝑗 ≠ 𝑤 𝑗𝑖 . As total fees depend on payment
values, which are kept private on the Lightning Network [5], we
use the average payment value of a transaction dataset collected
from the real-world Ripple credit network [29].

B. Requirements
We identify the following requirements for our attachment

strategy design:
1) Profitability: As channel creation incurs expenses and

cycle creation requires establishing more than one chan-
nel, we focus on the creation of profitable channels, which
may compensate for the opening costs during its lifespan.

2) Economy: As the user does not know beforehand all
the potential payment destinations, we create channels
as close as possible to other nodes in the network so the
new user pays fewer fees on average.

3) Cycle-enabled: As we focus on enabling cheap off-chain
rebalancing operations, newly-created channels must have
at least one cycle.

The above requirements aim to encourage user adoption
through incentives. From the network perspective, we claim
that building cycles creates redundancies, which attenuate the
current trend of network centralization [18], [20].

C. Greedy Algorithm for Node Attachment
We propose a greedy algorithm that recommends channel

connections to ingress nodes in the network. The goal of
the algorithm is to create 3-node cycles while maximizing
a user’s probability of forwarding a payment and reducing
the average amount paid in fees when issuing a transaction.
We achieve both of these features through centrality metrics.
First, as current PCNs use a simple Dijkstra’s SPF algorithm
to select the cheapest payment route, we can fulfill our goal
of increasing the node’s probability of forwarding a payment
by creating channels that belong to as many shortest paths as
possible in the PCN. In other words, for each channel created the
user is interested in having more payments routed through her
node. To that end, we employ the node betweenness centrality,
which measures the fraction of shortest paths crossing the node,
as one of the optimization objectives (Appendix A gives the
mathematical formulation). Increasing a node’s probability of
routing is equivalent to increasing its betweenness centrality.

Second, we employ the closeness centrality to measure how
far from every other node the new user is on the network.
ProfitPilot aims to minimize the overall distance to everyone else
in the network, as it assumes that the new user does not know
beforehand to whom she is going to send payments. Closeness
centrality suits well in our proposal as it measures the overall
distance of a node to the rest of the network. Thus, the higher
the closeness centrality, the closer the node is to all other nodes,
meaning fewer routing fees for the new node.

Both betweenness and closeness centralities depend on the
fees that will be charged on the created channel. This happens
because the default Dijkstra’s SPF algorithm used by some
PCNs, including the Lightning Network, selects the cheapest
path, i.e., the one that charges fewer fees. Thus, setting
low base and proportional fees results in higher betweenness
and closeness centrality, whereas setting high fees yields the
opposite result. As choosing channel fees is beyond the scope of
our work 4, ProfitPilot considers a user that sets the channel fees
as the median of the entire network. Thus, we set the base fee to
100 milisatoshis (msat) and the proportional fee to 50 satoshis
(sat)5.

We combine the node’s betweenness and closeness centrality
into one incentive metric (see Appendix A), 𝑅𝑛, described as

𝑅𝑛 = 𝛼 · 𝑏𝑐𝑛 + (1 − 𝛼) · 𝑐𝑐𝑛, (1)

where 𝑏𝑐𝑛 represents the betweenness centrality and 𝑐𝑐𝑛 is
the closeness centrality of node 𝑛. ProfitPilot offers a tuning
parameter 𝛼, 0 ≤ 𝛼 ≤ 1, that can be set by the user to control
the weight given to the betweenness centrality and the closeness
centrality in the incentive computation. If the new user plans
to issue a small number of transactions, she can set 𝛼 > 0.5,
prioritizing gains from fee collection. Conversely, if the user
plans to issue several transactions and wants to pay fewer fees
on average, the user may set 𝛼 < 0.5.

At each step, ProfitPilot greedily looks for the neighbor with
the highest incentive metric increase. ProfitPilot’s algorithm,
detailed in Algorithm 1 receives the PCN topology 𝐺 and
the maximum number of channels 𝑘 to create as input and
returns the recommended neighbors for a new node. ProfitPilot
simulates the creation of multiple channels offline and computes
the incentive return. The algorithm iterates through the nodes
of the network creating channels with each one and stores the
node 𝑁+ that offers the highest incentive 𝑅𝑀 on each round in
a list 𝑁 . This procedure continues until the incentive no longer
increases, meaning it has reached a local maximum, or until the
list 𝑁 reaches 𝑘 channels. If the incentive starts to decrease, the
algorithm stops, given that any selected channel will provide a
smaller incentive than the current list.

ProfitPilot aims to create triangles in the network. After
selecting the first node that presents the highest incentive, it is
possible to create a 3-node cycle by verifying the selected node’s
neighbor instead of iterating through every node in the network.
Thus, our algorithm executes the same procedure of looking
for the highest incentive but in a reduced search space, saving
execution time. Through this procedure, ProfitPilot guarantees
the creation of |N | − 1 triangles (see proof in Appendix B)
that the node participates in, where N is the set of the node’s
suggested neighbors, including already established ones, and
|N | is the size of the set.

Although ProfitPilot only considers new nodes joining the
network, it can easily be extended to nodes that already

4Readers interested in fee selection may refer to Ersoy et al. [21].
5A satoshi is the atomic unit of Bitcoin and is equivalent to 10−8 BTC.

Nevertheless, operations in milisatoashis (1 satoshi = 1, 000 milisatoshis) are
common in the Lightning Network. The milisatoshis are usually rounded down
when closing the channel.

6

Algorithm 1: ProfitPilot’s main algorithm.
Input : 𝐺 = (𝑉, 𝐸) → payment channel network as a

directed graph;
𝑛→ node entering the network;
𝛼→ parameter that indicates whether the user

prioritizes collecting fees or paying low fees;
𝑘 → maximum number of channels the user

wants to create.
Output : N → set of neighbors recommended by the

algorithm.
Initialize empty set of neighbors N ← ∅;
while |N | < 𝑘 do

Initialize maximum reward 𝑅𝑀 ← 0;
Initialize selected node 𝑁+ ← None;
foreach 𝑛𝑖 ∈ 𝑉 do

Simulate channel opening (𝑛, 𝑛𝑖);
Compute incentive
𝑅𝑛 ← ComputeIncentive(𝐺, 𝑛, 𝛼);

Simulate channel closure (𝑛, 𝑛𝑖);
if 𝑅𝑛 ≥ 𝑅𝑀 then

if |N | > 0 then
if 𝑛𝑖 is neighbor of 𝑛𝑠 ∈ N then

𝑅𝑀 ← 𝑅𝑛;
𝑁+ ← 𝑛𝑖;

end
end
else

𝑅𝑀 ← 𝑅𝑛;
𝑁+ ← 𝑛𝑖;

end
end

end
Compute current incentive
𝐶𝑅 ← ComputeIncentive(𝐺, 𝑛, 𝛼);

if 𝑅𝑀 ≤ 𝐶𝑅 then
Break out of the loop;

end
N ← N ∪ 𝑁+;
Add channel (𝑛, 𝑁+) to network 𝐺;

end
return N

participate in the PCN. In that case, instead of iterating through
every node in the network, ProfitPilot attempts to form a
cycle in a procedure similar to closing a triangle or a triadic
closure [36]. ProfitPilot connects to the node that provides the
highest increase in incentive among the neighbors of the user’s
already established neighbors.

IV. Implementation and Evaluation
We implement ProfitPilot and evaluate it using real data

collected from the LN topology. We use Python v3.8 and the Net-
workX library for graph analysis6. We build the network graph
from node and channel announcement messages, used by nodes
to announce their channel on the network publicly. The messages
were collected using the c-lightning implementation and

6Available at: https://github.com/gFrancoCamilo/ln-looprebalance.

comprise the period from January 2020 to July 2022 [25].
Similar to the literature [8], [14], we snowball sample [37] the
complete Lightning Network topology starting from the highest
degree node, going from a topology with 8, 676 nodes and
80, 220 edges to a network with 512 nodes and 3, 212 edges.
Our analysis focuses on evaluating ProfitPilot in the Lightning
Network. Nonetheless, ProfitPilot is PCN-agnostic and can be
easily adapted to other PCNs.

Besides LN, we evaluate ProfitPilot using two synthetic
topologies: a scale-free Barabasi-Albert graph [38] and a small-
world Watts-Stogratz [39] graph, both with 512 nodes. We chose
these two topologies because the Lightning Network behaves
both as a scale-free and as a small-world topology [18], [20],
[28]. We sample node and channel attributes, such as channel
capacity, base fee, and proportional fee, from the real Lightning
Network and assign them to nodes and edges in the synthetic
topology. During this assignment, node correspondence was
kept, meaning that the central nodes in the synthetic topology
receive their attribute from the central nodes in the Lightning
Network snapshot. In particular, the 10% highest degree nodes
in the synthetic topology receive attributes from the 10%
highest degree nodes in the original LN topology. Unless stated
otherwise, we repeat our experiments 10 times to account for
statistical variations and error bars represent 95% confidence
intervals. The results of ProfitPilot on LN, however, do not
present error bars given that the LN topology is fixed and the
greedy algorithm is deterministic.
Attachment algorithms. We compare our solution to the
following attachment heuristics used by a publicly available LN
autopilot [23]:

1) Centrality: This heuristic selects nodes as potential neigh-
bors from a distribution proportional to the betweenness
centrality of nodes.

2) Rich: This heuristic selects nodes from a distribution
proportional to the capacity of nodes in the network.

3) Random: This heuristic follows the Erdos-Renyi [40]
model by drawing nodes from a uniform distribution.

4) Degree: This heuristic draws nodes from a distribution
proportional to the degree of nodes.

The above-listed heuristics were chosen due to their presence
in the most popular Lightning Network implementations. The
first three heuristics are available in lib autopilot, the
default autopilot for the c-lightning implementation of the
Lightning Network [23].

A. Results

We divide our performance evaluation into two parts. First,
we evaluate our proposal from the new node’s point of view.
We verify if our proposed solution achieves higher rewards than
current solutions. Our evaluation compares the approach that
creates cycles and the approach that doesn’t create cycles to
verify if there is a significant loss in incentives. Finally, we
evaluate the difference in collected fees from our algorithm
to the c-lightning ones. Then, we verify the impact of mass
adoption from the network point of view and how it affects the
network centralization.

https://github.com/gFrancoCamilo/ln-looprebalance

7

2 4 6 8 10
of Neighbors

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Pr

ob
ab

ili
ty

of
C

ol
le

ct
in

g
Fe

es
ProfitPilot
Centrality
Degree
Rich
Random

(a) Barabasi-Albert topology.

2 4 6 8 10
of Neighbors

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ili

ty
of

C
ol

le
ct

in
g

Fe
es

ProfitPilot
Centrality
Degree
Rich
Random

(b) Watts-Strogatz topology.

2 4 6 8 10
of Neighbors

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ili

ty
of

C
ol

le
ct

in
g

Fe
es

ProfitPilot
Centrality
Degree
Rich
Random

(c) Lightning Network topology.

Fig. 4: Probability of forwarding a payment and, therefore, collecting fees in the evaluated topologies. ProfitPilot more than doubles
the probability of collecting fees.

2 4 6 8 10
of Neighbors

250

300

350

400

450

Av
er

ag
e

Pa
id

Fe
e

(s
at

os
hi

s) ProfitPilot
Centrality
Degree
Rich
Random

(a) Barabasi-Albert topology.

2 4 6 8 10
of Neighbors

240

260

280

300

320

340

360

380

Av
er

ag
e

Pa
id

Fe
e

(s
at

os
hi

s) ProfitPilot
Centrality
Degree
Rich
Random

(b) Watts-Strogatz topology.

2 4 6 8 10
of Neighbors

500

1000

1500

2000

2500

3000

3500

4000

4500

Av
er

ag
e

Pa
id

Fe
e

(s
at

os
hi

s) ProfitPilot
Centrality
Degree
Rich
Random

(c) Lightning Network topology.

Fig. 5: Average paid fee for a transaction in the evaluated topologies. ProfitPilot creates cheaper routes when compared with
state-of-the-art heuristics in all evaluated topologies.

ProfitPilot without cycles. One of ProfitPilot’s main benefits
is allowing nodes to compensate for channel creation costs by
collecting routing fees. We run an experiment that compares
ProfitPilot with the currently available autopilot heuristics to
quantify this profit boost. The evaluation scenario consists of a
node that creates ten channels, each set to charge the network
median base and proportional fees, and 𝛼 = 0.5. Figure 4 shows
the probability of forwarding a payment for each heuristic in
the evaluated topology. ProfitPilot increases the likelihood of
forwarding a payment and thereby collecting a fee by over 5× in
the Barabasi-Albert and Watts-Strogatz topologies, as shown in
Figures 4a and 4b respectively, and by over 2× in the Lightning
(Figure 4c). Thus, users are compensated for the cost of opening
multiple channels using ProfitPilot.

ProfitPilot also creates cost-effective payment routes (Fig-
ure 5). The average paid fee is computed based on the shortest
paths from the ingress to all other nodes in the network and
averaging the path fees. We consider a payment value equal to
the average transaction of a Ripple dataset [29] to calculate the
fees. ProfitPilot presents equal or lower-cost paths compared
with the other heuristics for the three topologies evaluated.
Moreover, creating more channels decreases the average paying
fees, notably for the Watts-Strogatz topology (Figure 5b).
Impact of cycles.

We repeat the previous experiments for the cycle creation
approach. Figures 6 and 7 show the results for the average paid

fees and the probability of collecting fees, respectively. Even
by forcing the creation of triangles and reducing search space,
ProfitPilot achieves a higher probability of collecting fees in all
three evaluated topologies. In particular, ProfitPilot stands out
in the Lightning Network topology, significantly improving fee
collection probability. Furthermore, similarly to the approach
that ignores cycle creation, ProfitPilot also offers a smaller
average paid fee compared to other available heuristics from
the first channel created. Thus, users are not required to create
a high number of channels to receive the benefits of ProfitPilot.

We also verify the number of triangles the node participates in
using ProfitPilot or the other evaluated heuristics. Triangles are
valuable in PCN topologies to allow off-chain rebalancing and
create redundancies. As stated in Section III-C and demonstrated
in Appendix B, ProfitPilot guarantees the creation of at least
|N | − 1 triangles in all topologies, where |N | is the number of
neighbors. Figure 8c shows that the centrality and rich heuristics
generate a higher number of triangles in the Lightning Network
topology. One possible reason for this difference is that central
nodes, which are usually high-capacity nodes [18], are highly
connected to each other, increasing the probability of creating
triangles in the Centrality and Rich heuristics. Nevertheless,
these heuristics are unable to ensure the creation of triangles
under different topologies, as shown in the results of the
Barabasi-Albert and Watts-Strogatz topologies in Figures 8a
and 8b, respectively, unlike ProfitPilot.

8

2 4 6 8 10
of Neighbors

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175
Pr

ob
ab

ili
ty

of
C

ol
le

ct
in

g
Fe

es
ProfitPilot
Centrality
Degree
Rich
Random

(a) Barabasi-Albert topology.

2 4 6 8 10
of Neighbors

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Pr
ob

ab
ili

ty
of

C
ol

le
ct

in
g

Fe
es

ProfitPilot
Centrality
Degree
Rich
Random

(b) Watts-Strogatz topology.

2 4 6 8 10
of Neighbors

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ili

ty
of

C
ol

le
ct

in
g

Fe
es

ProfitPilot
Centrality
Degree
Rich
Random

(c) Lightning Network topology.

Fig. 6: Probability of forwarding a payment and, therefore, collecting fees in the evaluated topologies using the strategy that
prioritizes the formation of 3-node cycles. Even by forcing the creation of triangles, ProfitPilot presents a higher probability of
collecting fees than currently available heuristics.

2 4 6 8 10
of Neighbors

300

350

400

450

Av
er

ag
e

Pa
id

Fe
e

(s
at

os
hi

s) ProfitPilot
Centrality
Degree
Rich
Random

(a) Barabasi-Albert topology.

2 4 6 8 10
of Neighbors

260

280

300

320

340

Av
er

ag
e

Pa
id

Fe
e

(s
at

os
hi

s) ProfitPilot
Centrality
Degree
Rich
Random

(b) Watts-Strogatz topology.

2 4 6 8 10
of Neighbors

500

1000

1500

2000

2500

3000

3500

4000

4500

Av
er

ag
e

Pa
id

Fe
e

(s
at

os
hi

s) ProfitPilot
Centrality
Degree
Rich
Random

(c) Lightning Network topology.

Fig. 7: Average paid fee for a transaction in the evaluated topologies using ProfitPilot to prioritize the formation of 3-node cycles.

2 4 6 8 10
of Neighbors

0

2

4

6

8

#
of

Tr
ia

ng
le

s

ProfitPilot
Centrality
Degree
Rich
Random

(a) Barabasi-Albert topology.

2 4 6 8 10
of Neighbors

0

2

4

6

8

#
of

Tr
ia

ng
le

s

ProfitPilot
Centrality
Degree
Rich
Random

(b) Watts-Strogatz topology.

2 4 6 8 10
of Neighbors

0

5

10

15

20

#
of

Tr
ia

ng
le

s

ProfitPilot
Centrality
Degree
Rich
Random

(c) Lightning Network topology.

Fig. 8: Number of triangles created by ProfitPilot and state-of-the-art heuristics in the evaluated topologies.

Figure 9 shows the rebalancing fees paid by the user in each
topology after creating 10 channels. As ProfitPilot focuses on
creating 3-node cycles, it may not produce least-cost cycles.
Figure 9a shows that Centrality produces cheaper rebalancing
cycles than ProfitPilot for the Lightning Network topology. Still,
ProfitPilot presents equally low fees in both Barabasi-Albert
and Watts-Strogatz topologies. While the centrality heuristic
outperforms ProfitPilot in rebalancing fees in the Lightning
Network, ProfitPilot’s benefits, such as channel profitability,
compensate the user for this difference. Figure 9 shows that
ProfitPilot compares to the other heuristics regarding rebalanc-

ing fees, except for the Lightning Network.

Impact on the network. Finally, we apply ProfitPilot to
multiple existing nodes in the network using the procedure
described in Section III. Basically, ProfitPilot connects to the
node that provides the highest incentive among the neighbors
of the existing node’s neighbor. Our goal is to verify the
impact of ProfitPilot on network transitivity and robustness.
In particular, we randomly select 15 nodes with a single
neighbor and use ProfitPilot to create 3 bidirectional channels
for each node. Figure 10a shows the impact of ProfitPilot and
the lib autopilot heuristics on the network transitivity as

9

ProfitPilot Centrality Degree Rich Random

0

10000

20000

30000

40000

R
eb

al
an

ci
ng

Fe
es

(a) Barabasi-Albert topology.

ProfitPilot Centrality Degree Rich Random

0

500

1000

1500

2000

2500

3000

3500

R
eb

al
an

ci
ng

Fe
es

(b) Watts-Strogatz topology.

ProfitPilot Centrality Degree Rich Random

0

500

1000

1500

2000

2500

3000

R
eb

al
an

ci
ng

Fe
es

(c) Lightning Network topology.

Fig. 9: Rebalancing fees in satoshis using ProfitPilot and state-of-the-art heuristics in the evaluated topologies.

1 2 3
Percentage of Nodes (%)

1 2 3 4 5 6 7 8 9 101112131415
of Nodes Adopting

0.0380

0.0382

0.0384

0.0386

0.0388

N
et

w
or

k
Tr

an
si

ti
vi

ty ProfitPilot
Centrality
Degree
Rich
Random

(a) Improvement in network transitivity as a function of the number of
nodes adopting each heuristic in the Lightning Network topology.

0.0 0.5 1.0 1.5 2.0
Removed Central Nodes (%)

0 2 4 6 8 10
of Central Nodes Removed

1

50

100

150

200

250

#
of

C
on

ne
ct
ed

C
om

po
ne

nt
s

0 node
2.93% of nodes
5.86% of nodes
8.79% of nodes

(b) Robustness against targeted attacks in the Lightning Network
topology. The curves illustrate the number of nodes adopting ProfitPilot.

Fig. 10: Impact of our proposal on the Lightning Network topology as more nodes adopt ProfitPilot.

more nodes adopt these designs. ProfitPilot offers the fastest
transitivity increase among all of the strategies. This increase
is mostly due to ProfitPilot creating connections in previously
intransitive triads in a process similar to closing triangles. While
other heuristics also create triangles, they also create more
intransitive triads, slowing the increase in network transitivity.
We also note that as more nodes adopt ProfitPilot, the quicker
the network transitivity reverses its downtrend [18], [28].

We also examine the robustness of the network against attacks
on central nodes. This type of attack is critical in the current
Lightning topology as discussed in Section II. Figure 10b
demonstrates that ProfitPilot efficiently mitigates the effect of
targeted attacks by 18% with only 45 nodes adopting it with
3 channels each. We also verify that the higher the number
of nodes adopting ProfitPilot, the more robust the network
becomes. Although our test is restricted to nodes creating 3
channels, we also expect that an increase in the number of
channels results in a more robust network. ProfitPilot’s features,
i.e. profitability and low-cost routing, encourage mass adoption,
enhancing the network’s robustness even further.

V. Related Work
Payment channel networks. Most of PCN works in the litera-
ture focus on improving the standard routing algorithm [8], [30],
[34], [29], [41], [33] or proposing rebalancing strategies [8],
[16], [14], [15]. The problem of making rebalancing cheaper

and faster is addressed by multiple proposals in the literature [8],
[13], [42], [14]. Sivaraman et al. propose Spider, a PCN
routing algorithm that uses a congestion control protocol to keep
channels balanced [8]. Spider defines that payment sources must
maintain an adjusted flow window to issue transactions at the
same rate they receive, keeping the channel balanced according
to demand. In Spider, if the flow of payments in one direction
is greater than the flow in the opposite direction, the transaction
waits in the queue for another transaction of the same amount in
the opposite direction to guarantee equal flows in both directions.
This solution, despite improving channel balancing, has some
major disadvantages. First, Spider relies on the existence of
unpredictable payment demands in the opposite direction to
equalize the flow in both directions. If the demand does not exist,
the user may have her payment halted until the payment timeout.
Second, Spider ignores payment fees in its optimization, which
can result in high costs for the user. Finally, implementing
queues and flow control requires structural changes in Lightning
Network, which currently does not have these features.

One of the most popular rebalancing techniques in PCNs
is issuing self-payments through circular routes. This method
allows users to move funds from a low-demand channel to a
high-demand channel, reactivating the channel without resorting
to the blockchain. Khalil and Gervais propose REVIVE, a
secure payment method on circular routes [13]. In REVIVE,
an elected leader receives rebalance requests from users and

10

calculates a set of transactions that must be performed. This
set of transactions seeks to meet user requirements and must
ensure that users’ funds remain the same during the process.
The algorithm, however, violates users’ privacy, given that to
calculate the set of rebalancing transactions, the leader must
know users’ channel balance. Awathare et al. propose REBAL,
a circular rebalancing method that uses the transaction flow
history of the channel to define the amount of funds that should
be moved between channels [14]. In REBAL, participants run
the rebalancing protocol locally, which removes the need to
share private information with third parties. Otto presents a tool
to automate the rebalancing of channels through self-payments
in the implementation of the Lightning Network [42] language.
The tool allows users to configure the amount of funds they
want in each channel and calculates, based on an optimization
problem, the best set of rebalancing transactions locally.

All of these proposals, however, depend on the availability of
cycles in the network. As we show in this paper, these operations
are not possible for a significant number of nodes in the network.
Instead, these nodes have to resort to the blockchain, paying
high fees and waiting for long periods of time for transaction
confirmation. Our approach guarantees the creation of cycles,
enabling off-chain rebalancing for nodes in the network.
Attachment strategies. Several works study different strategies
for adding new nodes in PCNs [23], [21], [19]. Pickhardt
presents lib autopilot, a software to automate the creation
of channels in the network. Lib autopilot allows users to
select heuristics for creating channels, such as random, central,
and reduced diameter [23]. Lib autopilot has been adopted
as a plug-in in the c-lightning implementation of the Lightning
Network. Lange et al. study models of attachment strategies
applied to the context of payment channel networks [19]. The
authors verify a trade-off between security and efficiency in
the evaluated models. While connecting to higher-degree nodes
usually results in more efficient payment routing, they also
expose the network to several security threats. Ersoy et al.
focus on making payment channels profitable for users [21]. The
authors formalize the maximum reward problem, show that the
problem is NP-hard, and propose a channel creation algorithm
that returns the maximum reward for a channel. The authors,
however, consider a scenario in which the nodes only seek to
act as routers, without issuing payments. This consideration
prevents the development of a solution close to the real scenario
of payment channel networks, in which participants assume
roles of both sellers and buyers [5]. In addition, all the above-
cited solutions ignore the issue of rebalancing the channels,
which can result in a low lifespan for the channel and high costs
in channel operation.

Unlike previous works, we introduce a node attachment
strategy that aims at increasing users’ financial gains while
simultaneously decreasing their possible routing costs. Further-
more, our paper develops an algorithm that allows users to
establish cycles in the network topology, enabling rebalancing
operations and extending the channel lifespan. The proposed
model compensates for the cost of opening multiple channels
to establish cycles. As far as we know, our approach is the first
one to propose cycle creation to enable channel rebalancing and
improve network robustness.

VI. Conclusion

This paper presented ProfitPilot, a strategy for connecting
new nodes in payment channel networks. Our proposed model
presents financial advantages to users, such as compensating the
costs of channel creation by establishing profitable and low-cost
routes. Furthermore, the proposed scheme is also beneficial to
the network as it promotes redundancies and makes it more
robust to some security threats. We expect that these features
promote user adoption. We implement and test ProfitPilot on
real-world Lightning Network topology and the results show
that the presented solution rewards the user up to 3× more
than the traditional methods of adding nodes in the network.
ProfitPilot also presents cost-efficient routes with as low as one
channel being created by the user when compared to state-of-
the-art heuristics. ProfitPilot also benefits network security, as
it quickly increases network transitivity and reduces the effects
of targeted topological attacks.

Future work should offer fee-setting strategies, which allow
the entry node to maintain its profitable position after joining
the network.

VII. Acknowledgments

This paper was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001. This paper was also funded
by CNPq, CAPES, FAPERJ, and FAPESP (2018/23292-0,
2015/24494-8, 2015/24514-9, 2015/24485-9, and 2014/50937-
1).

References

[1] “Visa acceptance for retailers,” Access: Oct 31st, 2023. [Online].
Available: https://usa.visa.com/run-your-business/small-business-tools/
retail.html

[2] “Bitcoin Scalability,” Access: Oct 31st, 2023. [Online]. Available:
https://en.bitcoin.it/wiki/Scalability

[3] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 95–112.

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
51–68.

[5] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[6] D. M. F. Mattos, G. R. Carrara, C. Albuquerque, and D. Mossé, “Exploring
overlay topology cost-termination tradeoff in blockchain vicinity-based
consensus,” IEEE Transactions on Network and Service Management,
vol. 20, no. 2, pp. 1733–1744, 2023.

[7] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, p. 949–966.

[8] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, “High throughput cryptocurrency
routing in payment channel networks,” in Proceedings of the 17th Usenix
Conference on Networked Systems Design and Implementation, 2020, pp.
777–796.

[9] N. Ilk, G. Shang, S. Fan, and J. L. Zhao, “Stability of transaction fees
in bitcoin: A supply and demand perspective,” Management Information
Systems Quarterly, vol. 45, no. 2, pp. 563–692, 2021.

[10] “Raiden network,” Access: Oct 31st, 2023. [Online]. Available:
https://raiden.network/

https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://en.bitcoin.it/wiki/Scalability
https://raiden.network/

11

[11] CloudTweaks, “How Bitcoin Brought The Lightning
Network To El Salvador,” 2021, Access: Oct 31st,
2023. [Online]. Available: https://cloudtweaks.com/2021/07/
how-bitcoin-brought-lightning-network-el-salvador/

[12] C. Decker, “Splicing. [Lightning-dev] Channel top-up,” 2017, Access:
Oct 31st, 2023. [Online]. Available: https://lists.linuxfoundation.org/
pipermail/lightning-dev/2017-May/000696.html

[13] R. Khalil and A. Gervais, “Revive: Rebalancing Off-Blockchain Payment
Networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 439–453.

[14] N. Awathare, Suraj, Akash, V. J. Ribeiro, and U. Bellur, “REBAL: Channel
Balancing for Payment Channel Networks,” in 2021 29th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Nov. 2021, pp. 1–8.

[15] Z. Avarikioti, K. Pietrzak, I. Salem, S. Schmid, S. Tiwari, and M. Yeo,
“Hide&seek: Privacy-preserving rebalancing on payment channel net-
works,” in Financial Cryptography and Data Security, 2022, p. 358–373.

[16] Z. Hong, S. Guo, R. Zhang, P. Li, Y. Zhan, and W. Chen, “Cycle:
Sustainable off-chain payment channel network with asynchronous re-
balancing,” in 2022 52nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2022, pp. 41–53.

[17] R. Pickhardt and M. Nowostawski, “Imbalance measure and proactive
channel rebalancing algorithm for the lightning network,” in 2020 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
2020, pp. 1–5.

[18] I. A. Seres, L. Gulyás, D. A. Nagy, and P. Burcsi, “Topological analysis
of bitcoin’s lightning network,” in Mathematical Research for Blockchain
Economy, 2020, pp. 1–12.

[19] K. Lange, E. Rohrer, and F. Tschorsch, “On the impact of attachment
strategies for payment channel networks,” in 2021 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1–9.

[20] E. Rohrer, J. Malliaris, and F. Tschorsch, “Discharged payment channels:
Quantifying the lightning network’s resilience to topology-based attacks,”
in 2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), 2019, pp. 347–356.

[21] O. Ersoy, S. Roos, and Z. Erkin, “How to Profit from Payments Channels,”
in Financial Cryptography and Data Security. Springer International
Publishing, 2020, pp. 284–303.

[22] G. Avarikioti, Y. Wang, and R. Wattenhofer, “Algorithmic Channel
Design,” p. 12 pages, 2018, Access: Oct 31st, 2023. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2018/9964/

[23] R. Pickhardt, “lightning-network-autopilot,” 2019, Access: Oct
31st, 2023. [Online]. Available: https://github.com/renepickhardt/
lightning-network-autopilot

[24] LND, “lnd-autopilot,” 2022, Access: Oct 31st, 2023. [Online]. Available:
https://github.com/lightningnetwork/lnd/tree/master/autopilot

[25] C. Decker, “Lightning network research; topology datasets,” https://github.
com/lnresearch/topology, 2021, Access: Oct 31st, 2023.

[26] R. Russell et al., “BOLT #7: P2p node and channel discovery,”
https://github.com/lightningnetwork/lightning-rfc/blob/master/https:
//github.com/lightning/bolts/blob/master/07-routing-gossip.md, 2022.

[27] “1ML - Lightning Network Search and Analysis Engine,” Access: Oct
31st, 2023. [Online]. Available: https://1ml.com/

[28] G. F. Camilo, G. A. F. Rebello, L. A. C. de Souza, M. Potop-Butucaru,
M. D. Amorim, M. E. M. Campista, and L. H. M. K. Costa, “Topological
evolution analysis of payment channels in the lightning network,” in 2022
IEEE Latin-American Conference on Communications (LATINCOM),
2022, pp. 1–6.

[29] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
Payments Fast and Private: Efficient Decentralized Routing for Path-Based
Transactions,” in Network and Distributed System Security Symposium,
2018.

[30] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: Efficient dynamic routing for
offchain networks,” in Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies, ser. CoNEXT
’19. Association for Computing Machinery, 2019, p. 370–381.

[31] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in Trust and Trustworthy Computing.
Springer International Publishing, 2015, pp. 163–180.

[32] “Lightning Network DDoS Sends 20% of Nodes Down,” https://www.
trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes,
Access: Oct 31st, 2023.

[33] Y. Zhang and D. Yang, “RobustPay+: Robust payment routing with
approximation guarantee in blockchain-based payment channel networks,”
IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp. 1676–1686,
2021.

[34] W. Chen, X. Qiu, Z. Hong, Z. Zheng, H.-N. Dai, and J. Zhang, “Proactive
look-ahead control of transaction flows for high-throughput payment
channel network,” in Proceedings of the 13th Symposium on Cloud
Computing, 2022, p. 429–444.

[35] Z. Avarikioti, L. Heimbach, Y. Wang, and R. Wattenhofer, “Ride the
Lightning: The Game Theory of Payment Channels,” in Financial Cryp-
tography and Data Security. Cham: Springer International Publishing,
2020, pp. 264–283.

[36] H. Huang, J. Tang, L. Liu, J. Luo, and X. Fu, “Triadic closure pattern
analysis and prediction in social networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 12, pp. 3374–3389, 2015.

[37] P. Hu and W. C. Lau, “A survey and taxonomy of graph sampling,” arXiv
preprint arXiv:1308.5865, 2013.

[38] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[39] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998, number:
6684 Publisher: Nature Publishing Group.

[40] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[41] Y. Chen, Y. Ran, J. Zhou, J. Zhang, and X. Gong, “MPCN-RP: A routing
protocol for blockchain-based multi-charge payment channel networks,”
IEEE Transactions on Network and Service Management, vol. 19, no. 2,
pp. 1229–1242, 2022.

[42] C. Otto, “Rebalance-LND,” 2022, Access: Oct 31st, 2023. [Online].
Available: https://github.com/C-Otto/rebalance-lnd

Appendix A
Problem Formulation

We formulate the following problem. Consider a payment
channel network described by a directed graph 𝐺 = (𝑉, 𝐸) and
a user 𝑢 interested in creating new channels in a PCN. The user 𝑢
can create channel a 𝑒𝑢𝑣 with any 𝑣 ∈ 𝑉 . The fee is composed of
a fixed base fee 𝑓 𝐵𝑢𝑣 and a proportional fee 𝑓 𝑃𝑢𝑣 (𝑝𝑣) proportional
to the value of payment 𝑝𝑣 . These fees combine into a total fee
𝑓 𝑇𝑢𝑣 (𝑝𝑣) = 𝑓 𝐵𝑢𝑣 + 𝑓 𝑃𝑢𝑣 (𝑝𝑣) charged to route 𝑝𝑣 on the channel
𝑒𝑢𝑣 . Like Ersoy et al. [21], we define an event of a transaction
with source 𝑠 and destination 𝑡 and value 𝑝𝑣 passing through
the established channel as 𝑋 (𝑝𝑣 , 𝑠, 𝑡). We model the expected
gain of the user 𝑢 in the newly created channel 𝑒𝑢𝑣 as a product
of probabilities, given by [21]:

𝔼[𝐺𝑢] =
∑︁
∀𝑠,𝑡∈𝑉
𝑠≠𝑡≠𝑢

𝑇𝑚𝑎𝑥∑︁
𝑝𝑣=1

∑︁
𝑣∈𝐶

𝑃𝑟 [𝑃 = (𝑠, 𝑡)] × 𝑃𝑟 [𝑇 = 𝑝𝑣]

× 𝑓𝑢𝑖 (𝑝𝑣)𝑃𝑟 [𝑋 (𝑝𝑣 , 𝑠, 𝑡)], (2)

where 𝑃𝑟 [𝑃 = (𝑠, 𝑡)] is the probability of a payment occurring
between nodes 𝑠 and 𝑡, modeled by a distribution 𝑃; 𝑃𝑟 [𝑇 =

𝑝𝑣] is the probability of a payment, modeled by the statistical
variable𝑇 , which can assume a maximum value of𝑇𝑚𝑎𝑥 , having
a value 𝑝𝑣 . Finally, 𝑃𝑟 [𝑋 (𝑝𝑣 , 𝑠, 𝑡)] is the probability of the
payment of value 𝑝𝑣 going from 𝑠 to 𝑡 passing through channel
𝑒𝑢𝑣 , given 𝐶 = 𝑉 − {𝑢}. The gain is given by the product of all
three probabilities.

Besides maximizing the financial gain, described by Equa-
tion 2, the user 𝑢 also expects to pay fewer fees when issuing
payments. Unlike previous work [21], [22] that solely focuses
on collecting fees, we consider that the new user might want to
issue payments in the network. As we assume that 𝑢 does not
know who he/she is going to transact with before joining the
network, we aim to reduce 𝑢’s distance to every other node in
the network.

https://cloudtweaks.com/2021/07/how-bitcoin-brought-lightning-network-el-salvador/
https://cloudtweaks.com/2021/07/how-bitcoin-brought-lightning-network-el-salvador/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2017-May/000696.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2017-May/000696.html
http://drops.dagstuhl.de/opus/volltexte/2018/9964/
https://github.com/renepickhardt/lightning-network-autopilot
https://github.com/renepickhardt/lightning-network-autopilot
https://github.com/lightningnetwork/lnd/tree/master/autopilot
https://github.com/lnresearch/topology
https://github.com/lnresearch/topology
https://github.com/lightningnetwork/lightning-rfc/blob/master/https://github.com/lightning/bolts/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/https://github.com/lightning/bolts/blob/master/07-routing-gossip.md
https://1ml.com/
https://www.trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes
https://www.trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes
https://github.com/C-Otto/rebalance-lnd

12

𝔼[𝐶𝑢] =
∑︁
∀𝑡∈𝑉
𝑡≠𝑢

𝑇𝑚𝑎𝑥∑︁
𝑝𝑣=1

∑︁
∀𝑡∈𝑉
𝑡≠𝑢

𝑃𝑟 [𝑃 = (𝑢, 𝑡)] × 𝑃𝑟 [𝑇 = 𝑝𝑣] × 𝑓 𝑇𝑢𝑡 ,

(3)
where 𝑓 𝑇𝑢𝑡 (𝑝𝑣) is the fee charged by the channel to forward a
payment of value 𝑝𝑣 from 𝑢 to 𝑡.

To simplify the problem, we assume the probability of
payment from 𝑠 to 𝑡 in Equation 2 to be modeled as a
uniform distribution. Thus, 𝑃𝑟 [𝑃] = 1

(|𝑉 |−1) (|𝑉 |−2) is constant,
and |𝑉 | is the number of vertices in the network. We also
consider a fixed 𝑝𝑣 value, eliminating the second sum and
the fee charged 𝑓 𝑇𝑢𝑣 (𝑝𝑣). Equation 2 can, then, be rewritten
as 𝔼[𝐺𝑢] =

∑
𝑣∈𝐶 𝑃𝑟 [𝑋 (𝑝𝑣 , 𝑠, 𝑡)]. Finally, we adopt the

betweenness centrality to model the probability 𝑃𝑟 [𝑋 (𝑝𝑣 , 𝑠, 𝑡)]
of the event 𝑋 . As PCNs use Dijkstra’s SPF, we consider that the
betweenness centrality of a node provides an accurate prediction
on the probability of that node forwarding payments.

Definition A.1. Node betweenness centrality. A node’s 𝑢 be-
tweenness centrality is proportional to the number of shortest
paths that traverses 𝑢 and is defined as

𝑏𝑐𝑢 =
∑︁
𝑠≠𝑡 ,
𝜎𝑠𝑡≠0

𝜎𝑠𝑡 [𝑢]
𝜎𝑠𝑡

,

where 𝜎𝑠𝑡 is the number of shortest paths between 𝑠 and 𝑡,
and 𝜎𝑠𝑡 [𝑒𝑢𝑣] is the number of shortest paths between 𝑠 and 𝑡

that goes through 𝑢.

Thus, we rewrite Equation 2 as 𝔼[𝐺𝑢] = 𝑏𝑐𝑢. The same logic
is applied to Equation 3, associating it with closeness centrality.

Definition A.2. Closeness centrality. The closeness centrality
of a node 𝑢 is inversely proportional to its distance to other
nodes and is defined as

𝑐𝑐𝑢 =
∑︁
𝑣∈𝑉

1
𝑑𝑢𝑣

,

where 𝑑𝑢𝑣 is the distance between 𝑢 and 𝑣 in total fees.

As we set the distance of a node to another as the total fee
charged by the channel, we can use closeness centrality to infer
the average amount of fees paid by our node. Thus, the sum of
distances acts as a natural average for the fees encountered by 𝑢

assuming a uniform distribution of transaction values [35]. We
rewrite Equation 3 as 1/𝔼[𝐶𝑢] = 𝑐𝑐𝑢, where 𝑐𝑐𝑢 is the closeness
centrality of 𝑢. As closeness centrality is inversely proportional
to the sum of distances, the higher a node’s closeness centrality
the smaller the distance between the node and the rest of the
network. Therefore, instead of minimizing costs, we combine
both closeness and betweenness centrality into a metric that we
aim to maximize. We introduce the expected incentive 𝔼[𝐼 (𝑢)]
of node 𝑢 as

𝔼[𝐼 (𝑢)] = 𝑏𝑐𝑢 + 𝑐𝑐𝑢. (4)

Appendix B
Creating Triangles with ProfitPilot

As mentioned in Section III-C, ProfitPilot guarantees the
creation of |N |−1 triangles. We refrain from a more formal proof
that would require showing a loop invariant proof of the inner
loop in Algorithm 1 to demonstrate that it only creates channels
with already selected nodes’ neighbors. Instead, we intuitively
state that the inner loop traverses the nodes of the network and
only selects nodes that are neighbors of already selected ones.
This can be logically observed by the ‘if ’ condition inside the
inner loop that checks if the analyzed node is a neighbor of a
node before storing it as a potential node as a suggestion.

Theorem B.1 (ProfitPilot’s triangles.). At each interaction of
Algorithm 1, the ingress node 𝑛 participates in at least |N |−1
triangles, for |N | ≥ 1.

Proof. We prove Theorem B.1 using the loop invariant method.
Initialization: We first show that the loop invariant holds for
|N | = 1. In this scenario, the list of suggested node connections
N is composed of a single element, meaning that 𝑛 has only one
channel. Thus, the loop invariant holds, given that one channel
is not enough to form a triangle, i.e., 𝑛 participates in |N |−1 = 0
triangles.
Maintenance: Next, we show that each iteration maintains the
invariant. First, assume that the loop invariant holds for an
iteration 𝑗 , that is |N | = 𝑗 and node 𝑛 participates in 𝑗 − 1
triangles. The inner loop only selects nodes that share a channel
with a node in N . Thus, if a node is selected by the algorithm,
it will be added toN and |N | = 𝑗 + 1. The algorithm will, then,
establish a channel with this selected node and, as it shares a
channel with a node already inN , the node will participate in at
least one more triangle, i.e., at least 𝑗 triangles. If the algorithm
traverses the network without selecting a node, |N | will remain
unchanged, maintaining the number of triangles at the beginning
of the interaction. Hence, the loop invariant holds at the end of
the iteration.
Termination: Finally, we analyze the loop termination. There
are two possible ways that the algorithm terminates. First, if
the maximum number of channels that the user wants to create
𝑘 has been achieved, meaning |N | = 𝑘 . In that case, node 𝑛

participates in at least 𝑘 − 1 triangles. The second possibility
of terminating the algorithm occurs if ProfitPilot fails to find
a higher incentive than the current setting. At that point, the
algorithm breaks out of the loop in the last if condition presented
at Algorithm 1 and the node participates in at least |N | − 1
triangles. □

	Introduction
	Topological Analysis of the Lightning Network
	Building ProfitPilot
	Assumptions and Network Model
	Requirements
	Greedy Algorithm for Node Attachment

	Implementation and Evaluation
	Results

	Related Work
	Conclusion
	Acknowledgments
	References
	Appendix A: Problem Formulation
	Appendix B: Creating Triangles with ProfitPilot

