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Abstract—The disaggregation promoted by the O-RAN ar-
chitecture allows for unprecedented flexibility in Radio Access
Networks (RANs). The existence of specific components to
control the infrastructure, such as RAN Intelligent Controllers
(RICs), places intelligence at the center of the management
and orchestration mechanisms of these networks. Hence, deep
learning plays a crucial role in developing these solutions.
As deep learning heavily relies on data for model training
and generalization, using public datasets becomes essential to
facilitate research and foster advancements in O-RAN. This
paper surveys the primary public datasets available online used
in O-RAN research. Our goal is to overview these datasets and
act as a complement to their documentation.

I. INTRODUCTION

The O-RAN architecture allows the disaggregation of Radio
Access Networks (RANs), fostering innovation and reducing
vendor lock-in [1]. In this architecture, three separated compo-
nents implement Base Station (BS) functions: O-RU (O-RAN
Radio Unit), O-DU (O-RAN Distributed Unit), and O-CU (O-
RAN Central Unit). The existence of specific components to
control RANs, such as Non-Real-Time (Non-RT) and Near-
Real-Time (Near-RT) RAN Intelligent Controllers (RICs),
places intelligence at the core of O-RAN management and
orchestration mechanisms, which is a major aspect envisioned
for 6G networking [2]. The Non-RT RIC has a global view of
the infrastructure and operates through rApps, with timescales
larger than one second. The Near-RT RIC controls a spe-
cific set of RAN components through xApps, operating at
timescales between ten milliseconds and one second [3].

Near-RT RICs generally manage user sessions and medium
access [4]. Their xApps may calculate network slicing
scheduling strategies, establish load balancing mechanisms,
and manage handover policies. For instance, a xApp can run
machine learning models to predict the availability of different
RAN resources. In this case, the models receive the current
state of the RAN, including its Key Performance Indicators
(KPIs), and forecast the demand for resource utilization. These
resources may include computational aspects like processing,
storage, and memory or communication-related aspects like
spectral utilization. With its global view of the infrastructure,
a Non-RT RIC has rApps that can act by configuring the
xApps and defining their policies and parameters.

Deep learning models are highly present in xApps and
rApps [5]. However, their training necessitates substantial data
input, which may be prohibitive for those researchers that
do not dispose of an O-RAN testbed. The need for specific

hardware and operation on licensed radio spectrum makes it
difficult to build this type of infrastructure. This accentuates
the need for diverse and extensive public datasets to foster
O-RAN research. In addition, the diversity of O-RAN data
offered by public datasets helps to achieve model generaliza-
tion. Finally, public datasets can be used as benchmarks to
compare different proposals.

In this work, we survey the available public datasets that
can be used in deep learning models for O-RAN. We select
the most important datasets used in the O-RAN literature and
describe their organization and collected metrics. Our goal
is to shed light on the publicly available data and act as a
complement to the datasets’ documentation.

This work is organized as follows. Section II describes the
related work, while Section III overviews the main tools and
testbeds used to build the datasets. Next, Section IV details
the datasets, showing their structure and collected metrics.
Finally, Section V concludes this work.

II. RELATED WORK

Deep learning techniques are widely present in O-RAN
literature. For example, Bonati et al. employ Deep Reinforce-
ment Learning (DRL) to choose the best radio link scheduling
policies [4]. Baldesi et al. use Residual Networks (RNs) and
Convolutional Neural Networks (CNNs) to classify the traffic
in a RAN. Hojeij et al. use a Recurrent Neural Network
(RNN) to decide the placement of O-DUs and O-CUs along
the computing infrastructure [6]. Rezazadeh et al. employ
Federated Deep Reinforcement Learning (FDRL) to tune the
amount of radio link resources given to each network slice [7].
The works in [5], [8] surveys different proposals that use deep
learning and other machine learning approaches in open radio
access networks.

The adoption of deep learning algorithms in cellular net-
works is a topic that can be independent of the work conducted
on the O-RAN architecture [9]–[11]. However, one can adapt
these solutions by considering O-RAN interfaces and compo-
nents. Accordingly, O-RAN approaches may employ datasets
already used in the general area of mobile networking. The
work in [12] overviews these datasets.

Despite considering the available RAN datasets as in [12],
we only survey the ones already used in an O-RAN paper.
Since we focus on a few datasets, we are able to describe
some of their details and act as a complement to their
documentation.



III. TOOLS AND TESTBEDS

The public datasets surveyed in this work are collected in
testbeds that use Universal Software Radio Peripheral (USRP)
to implement User Equipment (UE) and Base Stations (BSs).
A USRP is a hardware designed by Ettus Research1 com-
monly used in Software-Defined Radio (SDR) applications.
The idea of an SDR is to provide a flexible and programmable
platform for radio frequency (RF) communications. Due to
their flexibility, USRP devices are largely used in testbeds.
A USRP architecture is generally composed of two modules.
The motherboard is the main hardware component, including a
CPU, memory, an FPGA (Field-Programmable Gate Array),
and other interfaces that connect to the host computer, en-
abling data transfer and USRP’s control. The motherboard
thus processes the baseband signal. In turn, the daughterboard
transmits and receives RF signals and contains the RF cir-
cuitry, such as mixers, filters, amplifiers, and transceivers.

Another common component used in O-RAN testbeds is
a RAN implementation provided by the srsRAN project2.
srsRAN has software stacks to implement O-CUs, O-DUs, O-
RUs, and UEs. Hence, a BS can be implemented by installing
the O-RU srsRAN stack on a USRP and the O-CU/O-DU on a
general-purpose server. In the same way, UEs are implemented
by installing a UE stack on a USRP.

The Colosseum testbed, which is part of a broader initiative
named OpenRAN Gym [13], is an example of a wireless
network emulator that employs 128 USRP connected through
a Massive Channel Emulator (MCHEM) [13]. This MCHEM
allows the emulation of different channel aspects, such as path
loss, fading, and user mobility. The RAN used in Colosseum
employs the solutions provided by the srsRAN project.

IV. PUBLICLY AVAILABLE DATASETS USED IN O-RAN

This section describes the most representative public
datasets used in O-RAN papers. We select those datasets
which the papers explicitly mention their applicability to O-
RAN. However, some of these datasets were not employed in
deep learning yet. We consider them in this survey since they
can help design novel deep learning models.

We have downloaded and manipulated all the datasets
surveyed in this paper to explore some details that were not
explicitly described in their documentation. Consequently, our
work act as a complement to their original documentation.
However, it is advised to carefully read their documentation
and associated papers before using the datasets. Furthermore,
to use these datasets, please refer to the conditions available
on each dataset link.

A. Colosseum O-RAN COMMAG Dataset

This dataset, used in [4], is available on GitHub [14],
being a result of a 5G network emulation on Colosseum
(Section III). The emulation considers real Base Station (BS)

1https://www.ettus.com/
2https://www.srsran.com/

locations in an area of 0.11 km2 in Rome, Italy. This emula-
tion employs 40 UEs and four BSs. A network slicing scenario
is considered in which each BS has three different slices, and
the UEs are statically assigned to a given slice.

The UEs generate traffic using the Colosseum Traffic Gen-
erator (TGEN) [13] following three traffic types. The first
one is enhanced mobile broadband (eMBB), in which the UE
generates constant bitrate traffic of 1 Mbps. The other one
is machine-type communications (MTC), in which the UE
generates 125-byte packets following a Poisson distribution
with a rate of 30 pkt/s (packets per second). Finally, the ultra-
reliable low-latency communications (URLLC) type considers
that the UE generates a traffic of 125-byte packets using a
Poisson distribution with a 10 pkt/s rate.

Each BS serves ten UEs on the emulation. Also, a UE
is fixedly assigned to a given BS and a slice using two
possible assignments. The UEs from a BS are distributed
randomly among the three slices for the UE assignment
called slice_mixed. In contrast, the assignment called
slice_traffic considers that each slice handles one
different traffic type (i.e., eMBB, MTC, and URLLC). Hence,
the traffic type of a given UE is known, and the UE is
assigned to a given slice depending on its traffic type, which
is fixed throughout the emulation. For each BS, there are three
UEs generating eMBB traffic, three UEs generating MTC
traffic, and four UEs generating URLLC traffic3. The dataset’s
README.md file specifies which UEs follow each traffic type.

The dataset is organized using one directory tree
for the slice_mixed emulation and another tree
for the slice_traffic one. Figure 1 shows the
slice_traffic tree organization. The tree for the
slice_mixed, omitted to conciseness, is similar to
the one in Figure 1. There are four different emulation
scenarios for slice_traffic according to Figure 1.
The rome_slow_close considers that UEs move at
an average speed of 3m/s within 20 m of each BS. The
other ones consider that UEs are static, differing according
to the distance between UEs and their associated BS. In
rome_static_close, the UEs are within 20 m of their
BS. In rome_static_medium and rome_static_far,
this distance is 50 m and 100 m, respectively. The
slice_mixed emulation has only rome_slow_close
and rome_static_close scenarios.

The emulation uses different initial configurations of Re-
source Block Group (RBG) allocations and scheduling poli-
cies. A Resource Block Group (RBG) is a group of contigu-
ous PRBs (Physical Resource Blocks). In its turn, the PRB
(Physical Resource Block) is the smallest allocation unit of
the radio link, consisting of subcarriers allocated at a specific
frequency and during a determined time interval. Hence,
the RBG allocation defines the amount of radio resources
allocated to a given slice. The emulation considers that one
RBG has two PRBs. The scheduling policy defines how the

3The paper in [4] describes a slightly different UE distribution for the traffic
types. However, after analyzing the data, we can state that the distribution
reported here is the actual one used by the public dataset.



rome_static_close rome_static_medium rome_static_farrome_slow_close

slice_traffic

tr0 tr17. . .

exp1 exp5. . .

BS1 BS2 BS3 BS4

UE assignment

Emulation 
scenario

Training 
Configuration

Experimental 
Sample

BS data

Fig. 1. Directory tree for the Colosseum O-RAN COMMAG Dataset.

available RBGs are scheduled between UEs within a network
slice. The emulation considers three different policies: Round-
robin (RR), Waterfilling (WF), and Proportionally fair (PF).

The emulation enables a diverse model training with 18
different initial combinations of RBG allocation and schedul-
ing policies, named tr0 to tr17, as shown in Figure 1 for
the rome_static_close scenario. For example, for tr0,
the eMBB slice has one RBG and employs the PF policy,
the MTC slice has two RBGs and the RR policy, and the
URLLC slice has four RBGs and the PF policy. The RBG
allocation and scheduling policy for each configuration is
specified on the dataset’s README.md file. Although Figure 1
details only the rome_static_close case, the 18 training
configurations are employed in all scenarios.

The emulation has 480 seconds. The initial RBG allocation,
defined in the training configuration, is kept during the first
30 seconds. After that, the RBG allocation varies while the
policy is kept fixed. This variation is detailed on the dataset’s
README.md file. The RBG variation allows the evaluation
of algorithms that dynamically choose the scheduling policy,
as performed in [4].

For each training configuration, the experiment is repeated
five times. Hence, as shown in Figure 1 for the case of tr17
in the rome_static_close scenario, each configuration
has five directories, named from exp1 to exp5.

An experimental sample (i.e., exp1 to exp5) has four
directories to describe the performance metrics for each BS.
Figure 2 shows the directory tree that describes the BS data,
using BS1 as an example. The directory has a CSV file for
each UE connected to the BS, one CSV file related to the
BS itself, and a directory that stores CSV files for each UE
describing slice allocation metrics. The CSV files can be easily
read by libraries such as pandas4.

The columns of the UE or BS CSV files describe metrics

4https://pandas.pydata.org/
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Fig. 2. BS data for the Colosseum O-RAN COMMAG Dataset.

reported by the srsRAN tool. Each row contains the metrics
for a given timestamp. The main columns of a UE CSV file
(e.g., the ue10.csv file in Figure 2) are described in Table I. To
conciseness, this table and the following ones have names with
“dl(ul)” indicating that there is a value for the downlink and
the uplink. A detailed description of each metric is available
on srsRAN documentation. Table II describes the columns of
the BS CSV file (e.g., the bs1.csv file in Figure 2).

The slice metrics CSV files for each UE are grouped in
a directory (e.g., slices_bs1 in Figure 2). The name of
each file has the UE’s IMSI (International Mobile Subscriber
Identity), a unique identifier for a UE. These files are the
ones employed in [4] to train the agents that choose the slice
scheduling policy. The main columns of the CSV file for slice
metrics are described in Table III. Note that there are metrics
in common with the UE’s CSV files.

The work in [4] uses the described dataset to propose
xApps based on Deep Reinforcement Learning (DRL) that
dynamically chooses the best scheduling policy among RR,
WF, and PF. The algorithm is trained using the dataset,
which has different performance metrics according to fixed



TABLE I
MAIN COLUMNS OF THE UE CSV FILE IN COLOSSEUM O-RAN

COMMAG DATASET.

Name Description
time Timestamp in milliseconds
cc Component Carrier (LTE)
pci Physical Cell Identifier

earfcn Frequency Channel
rsrp Reference Signal Receive Power (dBm)
pl Pathloss (dB)
cfo Carrier Frequency Offset (Hz)

dl(ul) mcs Downlink (uplink) - Modulation and coding scheme
dl(ul) brate Downlink (uplink) - Bitrate (bits/sec)
dl(ul) bler Downlink (uplink) - Block error rate

dl snr Downlink - Signal-to-Noise (SNR) Ratio (dB)
ul buff Uplink - Buffer status (i.e., enqueued bytes)

TABLE II
COLUMNS OF THE BS CSV FILE IN COLOSSEUM O-RAN COMMAG

DATASET.

Name Description
time Timestamp in UNIX time (milliseconds)

nof ue Number of UEs associated with the BS
dl(ul) brate Downlink (uplink) - Bitrate (bits/sec)

scheduling policies, as described in Table III. The dataset link
also contains the algorithm implementation.

B. Colosseum ColO-RAN Dataset

This dataset, used in [15], is available on GitHub [16]. The
emulation uses Colosseum and the same BS environment in
Rome, as described in Section IV-A. However, it considers
only the slice_traffic assignment (i.e., the UEs are
assigned to one of the three slices based on their traffic types).
Also, the dataset uses only the rome_static_medium
scenario, in which static UEs are distributed within 50 m of
their BS. The emulation employs 42 UEs and seven BSs.

Figure 3 shows the directory tree for this dataset. Note
that the structure is similar to that of Section IV-A. How-
ever, the ColO-RAN dataset has only one emulation scenario
(i.e., rome_static_medium). Also, instead of varying the
scheduling policy in the training configuration, there is one
directory for each scheduling policy. Hence, in sched_0, all

TABLE III
MAIN COLUMNS OF THE CSV FILE FOR SLICE METRICS OF EACH UE IN

COLOSSEUM O-RAN COMMAG DATASET.

Name Description
time Timestamp in UNIX time (millisec-

onds)
slice id Slice assigned to this UE (eMBB=0,

MTC=1, and URLLC=2)
dl buffer [bytes] Downlink - Buffer size (i.e., transmis-

sion queue size)
tx brate downlink [Mbps] Downlink - Transmission bit rate be-

tween the BS and the UE
sum requested prbs Number of PRBs requested by the UE
sum granted prbs Number of PRBs granted to the UE
scheduling policy Slice’s initial scheduling policy (RR=0,

WF=1, and PF=2)
slice prb Number of PRBs initially attributed to

the slice

slices use a RR policy, while in sched_1 and sched_2
they use WF and PF, respectively. Consequently, the training
configuration, named from tr0 to tr27, only varies the number
of RBGs allocated per slice. This variation is detailed on the
dataset’s README.md file.

In the same way, as in Section IV-A, each training configu-
ration has five experimental samples. The directory of a given
experimental sample has one directory for each considered
BS. The BS directory has the same structure described before
in Figure 2, with the same columns for the CSV files,
described in Tables I, II, and III.

The work in [15] uses the described dataset to propose
xApps that use DRL to select the scheduling and slicing
policies. The scheduling policies are the same as described
before in Section IV-A, and thus, the xApp must choose
between RR, WF, and PF. The slicing policy is the number
of PRBs for each slice.

C. Computing, Energy, and Application Dataset

The dataset described in [17] reports computing and en-
ergy metrics of a vRAN (virtual RAN) testbed. This testbed
employs srsRAN to implement UEs and BSs on USRP B210
boards. The UE software runs on commodity laptops. The
BS software functions run on a computing pool, implemented
as containers executing as vBSs (virtual Base Stations). This
computing pool uses off-the-shelf hardware, such as servers
equipped with Intel i7-7700K CPUs with eight cores. Also,
an edge application server is connected to the BS through
the mobile core and used to generate traffic or run an object
recognition application. The dataset is available on IEEE
Dataport™ [18]. This repository is not widely open as GitHub
but can be accessed for free by IEEE Society Members or
through a paid institutional or individual subscription.

Figure 4 shows the dataset’s directory tree. The
energy_datasets has two CSV files reporting energy
consumption metrics on vBSs. The dataset_ul.csv file
results from an experiment with only uplink traffic, while
the dataset_dlul.csv file considers uplink and downlink
traffic. Each row of these files represents the metrics obtained
during one minute for a given configuration. The first columns
of these files represent the configuration parameters of the
testbed, while the other ones represent the metrics. Table IV
shows the main configuration parameters, and Table V shows
the main metrics. These metrics were obtained by software
or hardware. The software measurements estimate CPU con-
sumption using the Running Average Power Limit (RAPL)
functionality via Linux turbostat tool. Also, they employ
a digital power meter to capture the energy consumption of
the entire server and the radio head.

The computing_datasets in Figure 4 reports the
server’s CPU utilization using different configuration pa-
rameters and numbers of containers hosting vBS func-
tions. The CSV files are grouped in two directories. The
datasets_unpin directory has five CSV files named
dataset_x.csv, in which x is the number of concurrent
vBS container instances. In this experiment, the default Linux
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TABLE IV
CONFIGURATIONS OF THE ENERGY_DATASETS CSV FILES IN THE

COMPUTING, ENERGY, AND APPLICATION DATASET.

Name Description
date Timestamp using ISO 8601 date format
BW Bandwidth in terms of PRBs

traffic load dl(ul) Downlink (uplink) traffic load
txgain dl(ul) Downlink (uplink) transmission gain config-

ured on the USRP board to evaluate different
SNR patterns

selected mcs dl(ul) Modulation and coding scheme (MCS) used
in the downlink (uplink)

selected airtime dl(ul) Airtime used in the downlink (uplink), config-
ured using the maximum number of PRBs per
subframe

CPU scheduling policy chooses which CPU core runs a
given instance. On the hand, the datasets_pin refers to
experiments in which each container is pinned to a specific

TABLE V
MAIN ENERGY CONSUMPTION METRICS IN THE COMPUTING, ENERGY,

AND APPLICATION DATASET.

Name Description
thr dl(ul) Average downlink (uplink) throughput
pm power Average power consumed by the vBS measured

using the power meter
pm var(median) Variance (or median) of the power consumed by the

vBS measured using the power meter
rapl power Average power consumed by the vBS’s CPU

rapl var Variance of the power consumed by the vBS’s CPU

CPU core.
For the CPU pin case, the dataset_2_1_2.csv reports

the results of an experiment with two vBS instances. One
instance is pinned to the CPU core #1, and the other to
the CPU core #2. In this case, the instances share the same
L3 cache but use different L1 and L2 caches [17]. For the



dataset_2_1_5.csv file, one instance is pinned to the
CPU core #1, and the other one to the CPU core #5. In
this configuration, the instances share all CPU caches since
core #5 is the hyperthread of core #1 (i.e., both cores are on
the same physical core). This same reasoning applies to the
dataset_4_0_1_2_3.csv file, which consists of four in-
stances pinned to cores #0, #1, #2, and #3, respectively. In this
case, the cores are on different physical cores, sharing only
the L3 cache. Finally, for the dataset_4_1_2_5_6.csv
file, the instances on cores #1 and #5 share all the caches.
This same pattern occurs among instances on cores #2 and
#6. All the instances share the L3 cache. Table VI shows the
configuration parameters for the computing_datasets
CSV files, while Table VII describes the metrics.

TABLE VI
CONFIGURATIONS OF THE COMPUTING_DATASETS CSV FILES IN THE

COMPUTING, ENERGY, AND APPLICATION DATASET.

Name Description
mcs dl(ul) i Modulation and coding scheme in the downlink (uplink)

for vBS i
dl(ul) kbps i Downlink (uplink) load for vBS i

cpu set i Set of CPU cores that can be used by vBS i

TABLE VII
COMPUTING METRICS IN THE COMPUTING, ENERGY, AND APPLICATION

DATASET.

Name Description
cpu j Average utilization of CPU core j, between 0 and 1

explode Indicates if the experiment should be discarded due to running
problems

Finally, the application_datasets in Figure 4 has
a CSV file with metrics related to an object recognition
application in which a UE sends an image to an edge server
using its vBS. The server thus performs object recognition
tasks in this image and sends the result back to the UE
through the vBS. The metrics available in the dataset include
power consumption and CPU utilization measurements and
application-specific ones. Due to conciseness, we omit their
description, which can be found in [17] or in the dataset
link [18].

The work in [17] discusses some applications of the pro-
posed dataset. For example, they show that the vBS CPU
utilization varies according to the radio link quality. Hence, a
deep learning model can choose the CPU resource allocation
according to the SNR sensed in the link.

D. ChARM Dataset

The dataset used in [19] consists of spectrum data collected
using the Colosseum testbed. The data consists of I/Q samples
collected from LTE and WiFi traffic and background noise. An
I/Q sample represents an instantaneous snapshot of the mod-
ulated signal, containing both the In-phase (I) and Quadrature
(Q) components. The I value represents the amplitude of the
baseband signal in-phase with the I carrier (0-degree phase).

The Q value represents the amplitude of the baseband signal
in-phase with the Q carrier (90-degree phase).

The data was collected at the Colosseum testbed, using
the central frequency of 5.2 GHz and a 20MHz bandwidth.
For data collection, GNURadio5 and a USRP x310 were
employed. WiFi data generation was performed using Open-
WiFi and two Xilinx zc706 boards, acting as an access point
and a client. LTE data generation utilized srsRAN and two
USRP x310 boards, acting as a BS and a UE. The dataset
is available at the Northeastern University Digital Repository
Service (DRS) [20]. It consists of nine files:

• LTE_ZT - LTE traces with idle traffic (i.e., considering
only control traffic from the BS);

• LTE_1M - LTE traces with a 1Mbps flow between the
BS and the UE, generated using iperf3;

• LTE_FLOOD - LTE traces with ping flooding with 1KB
packets between the BS and the UE. These traces repre-
sent bursty traffic with high throughput;

• LTE_PINGs300 - LTE traces with ping communication
with 300-byte packets between the BS and the UE. These
traces represent bursty traffic with low throughput;

• WIFI_ZT, WIFI_1M, WIFI_FLOOD, and
WIFI_PINGs300 - WiFi traces with the same
traffic pattern as their LTE counterparts.

• CLEAR - Background noise, collected when there is no
LTE or WiFi communication.

Each file described before is a binary one containing a
sequence of 32-bit floating-point number pairs in the little-
endian order. Each pair is an I/Q sample, starting from a 32-bit
floating number representing the I value followed by a 32-bit
floating number representing the corresponding Q value. We
have provided a code6 in GitHub exemplifying how to read the
files. This code is a simplified version of the implementation
provided by the authors in [19], which can also be found on
GitHub7.

This dataset is employed in [19] to train a residual network
(RN) and a convolutional neural network (CNN) that classifies
the traffic type when receiving a stream of I/Q samples. The
neural network can classify the traffic in Clear, WiFi, LTE, and
Unknown (i.e., when the classification has low confidence).
This classification is used in the proposed Channel-Aware
Reactive Mechanism (ChARM) system, which allows WiFi
and LTE traffic to coexist in O-RAN infrastructures.

E. Ultra Dense Indoor mMIMO CSI Dataset

The dataset used in [21] is available on IEEE
Dataport™ [22]. Differently from the dataset surveyed
in Section IV-C, which is also on IEEE Dataport™, this
dataset is available in an open-access manner.

The dataset consists of Channel State Information (CSI)
samples collected in a room with 64 antennas deployed using
USRPs. CSI represents information about the wireless com-
munication channel between a transmitter and a receiver. For

5https://www.gnuradio.org/
6https://github.com/GTA-UFRJ/useorandatasets/blob/main/readCharm.py
7https://github.com/lucabaldesi/charm trainer/blob/master/read IQ.py
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Fig. 5. Directory tree for the Ultra Dense Indoor mMIMO CSI Dataset.

this dataset, a CSI sample consists of complex-valued matrices
that span 64 rows (representing the number of BS antennas)
and 100 columns (representing the number of subcarriers).
Hence, the CSI matrix, along with the channel noise, can be
used to estimate the receiving signal given the transmitted
one [23].

Figure 5 shows the dataset’s directory structure. There are
four different directories storing measurements for different
antenna array topologies. The dataset link [22] has a figure
showing these topologies, described next:

• URA_lab_LoS - Uniform Rectangular Array (URA)
with Line of Sight (LoS). In this case, the antennas
are arranged in an 8x8 grid without obstacles on the
communication paths. The grid rows (i.e., a group of
8 antennas) are in the same (x,y) coordinate. The rows’
positions differ in their height. Hence, considering an
(x,y,z) coordinate, each 8-antenna group has a different
value on the Z-axis.

• URA_lab_nLoS - The same array as in URA_lab_LoS
but using a metal blocker to create an obstacle on the
communication paths.

• ULA_lab_LoS - Uniform Linear Array (ULA) with
LoS. In this case, the 64 antennas are arranged in a linear
array without obstacles. Hence, considering an (x,y,z)
coordinate, the antennas differ only regarding their X-
axis.

• DIS_lab_LoS - Distributed Antenna System (DIS)
with LoS. In this case, the antennas are grouped in linear
arrays of eight antennas. These groups are distributed
across the room, and there are no obstacles. All the
groups are at the same height.

Each one of the described directories has the same struc-
ture presented in Figure 5 for the ULA_lab_LoS one.
All the data files are pickled arrays from NumPy, which
can be easily accessed by the numpy.load() method8.

8https://numpy.org/doc/stable/reference/generated/numpy.load.html

The antenna_positions.npy file stores the antenna
placement across the room, considering their correspond-
ing topology described before. The file has an array with
shape (64,3), in which each row corresponds to a BS an-
tenna, and the columns are float64 values representing
their x, y, and z coordinates in millimeters. Likewise, the
antenna_positions.npy file stores the UE placement
across the room. The experiment involves moving the UE
using a CNC (Computer Numerical Control) XY-table, a
mechanical platform that allows movement along the X and
Y axes. This movement occurs by zigzagging across a nine-
squared meter area in steps of 5mm, resulting in 252,004
samples. Accordingly, the antenna_positions.npy file
stores an array with shape (252004, 3), in which each row is a
sample (i.e., UE position), and the columns are int64 values
representing their x, y, and z coordinates in millimeters.

As shown in Figure 5, each topology directory has a
subdirectory named samples, which stores a NumPy pickled
array for each position sample. Hence, each samples sub-
directory has 252,004 files. Each file has an array with shape
(64, 100) representing the CSI matrix. Each row of this array
corresponds to an antenna, and a column is a complex number
(i.e., a complex128 value) representing a given subcarrier.
The element of the CSI matrix is thus a complex number that
can be used to obtain the amplitude gain (i.e., indicating signal
strength) and phase gain (i.e., representing phase shift) for a
specific subcarrier and antenna combination.

The work in [21] uses this dataset to analyze the perfor-
mance of cell-free deployments in the context of O-RAN.
Cell-free networks consist of wireless infrastructures where
multiple BS can serve a given UE. The architecture of O-RAN
facilitates the implementation of cell-free networks since, for
example, different O-RUs can cooperate if the same O-DU
serves them.



F. O-RAN Software Community Dataset

The work in [24] uses a dataset and an anomaly detec-
tion xApp provided on GitHub by the O-RAN Software
Community9 [25]. The dataset consists of a single CSV
file containing throughput values sampled at 10 ms intervals
in an environment with 20 UEs and four BSs. Each row
represents a sample for a given UE. The timestamp and
the downlink throughput values are reported in the column
measTimeStampRf and DRB.UEThpDl, respectively. As
of the writing of this article, there were no further details
available about this dataset, despite a brief description in [24].
Since the focus of the code provided by the O-RAN Software
Community is the xApp itself, there is no information on how
the measurement was performed or if it consists of actual
experiments or simulations. Hence, in this paper, we are not
able to provide more details about this dataset.

V. CONCLUSIONS

The application of deep learning models in O-RAN is a
reality. However, building testbeds for radio access networks
is challenging, and deep learning heavily relies on extensive
data. Our paper has surveyed datasets already employed by
O-RAN mechanisms, providing descriptive details to enhance
their accessibility for research.

Notably, most datasets described in this work are cur-
rently confined to their original research papers, limiting their
broader utilization. In addition, some deep learning models
might need more data than that available in the existing
datasets. However, this paper’s insights aim to pave the way
for broader adoption and enrichment of these datasets by
researchers and practitioners in the deep learning O-RAN
community.

ACKNOWLEDGEMENT

This study was financed in part by Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001, CNPq, PR2/UFRJ, FAPERJ
Grants E-26/010.002174/2019, and E-26/201.300/2021, and
FAPESP Grant 15/24494-8.

REFERENCES

[1] M. Moussaoui, E. Bertin, and N. Crespi, “Telecom business models
for beyond 5G and 6G networks: Towards disaggregation?” in 1st
International Conference on 6G Networking (6GNet), 2022, pp. 1–8.

[2] M. A. Lopez, G. N. N. Barbosa, and D. M. F. Mattos, “New barriers
on 6G networking: An exploratory study on the security, privacy and
opportunities for aerial networks,” in 1st International Conference on
6G Networking (6GNet), 2022, pp. 1–6.

[3] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Under-
standing O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” IEEE Communications Surveys & Tutorials,
vol. 25, no. 2, pp. 1376–1411, 2023.

[4] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “In-
telligence and Learning in O-RAN for Data-Driven NextG Cellular
Networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21–
27, 2021.

9The dataset is available inside the xApp’s source code: https://github.com/
o-ran-sc/ric-app-ad/blob/master/src/ue.csv

[5] B. Brik, K. Boutiba, and A. Ksentini, “Deep Learning for B5G
Open Radio Access Network: Evolution, Survey, Case Studies, and
Challenges,” IEEE Open Journal of the Communications Society, vol. 3,
pp. 228–250, 2022.

[6] H. Hojeij, M. Sharara, S. Hoteit, and V. Vèque, “Dynamic placement
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