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Abstract—The increase in personal data collection for service
customization threatens users’ privacy. In federated learning,
privacy can be preserved by distributing the learning process,
where only neural networks’ weights are shared between clients
and servers. This work evaluates the impact of different net-
works parameters on the performance of federated learning
models in a mobile-oriented scenario. Particularly, we consider
the performance of convolutional neural networks for image
classification. The experiments use the Flower framework and
the CIFAR-10 dataset for image classification. Typical parameters
in mobile networks, such as latency, connectivity, data volume,
and client availability, are evaluated. Our results show that, in
addition to the increase in total training time, a higher number
of disconnected users in a training round can negatively impact
the model performance. These results indicate the need for client-
server orchestration to perform dynamic adaptation of network
conditions.

Index Terms—Federated learning, wireless mobile networks.

I. INTRODUCTION

The popularization of deep-learning-based solutions for
computer networks is undeniable [1]. From action recogni-
tion [2] to botnet detection in the Internet of Things (IoT) [3],
deep learning has overtaken traditional algorithms for devel-
oping new solutions. However, training deep learning models
requires a large amount of computational power, usually
available at the network core in central servers. Therefore,
the common approach is to aggregate the data from producing
devices in a central server to train machine learning models.
This approach raises some privacy concerns, specifically for
privacy-sensitive applications, such as in insurance [4] or the
healthcare domain [5].

Recently, federated learning has emerged as a new machine
learning paradigm to tackle privacy concerns in deep-learning-
based applications [6]. Federated learning eliminates raw data
transmission from data-producing devices to the central server.
Instead, each data-producing device trains a machine-learning
model locally on its own data. Each participating client sends
the resulting machine-learning model to the central server,
which aggregates the received parameters. The computed
model is sent to the participating clients, repeating the pro-
cedure until the algorithm converges or a final condition is
reached. Since privacy concerns contribute to the consistent
growth of federated learning popularity, research must be

conducted to understand better issues such as performance,
explainability, security, and robustness.

An appealing scenario for extensively investigating feder-
ated learning performance is mobile networking. The lessons
learned with wired networks may not suit these networks well,
given the data transmission dynamics and the heterogeneous
nature of the participating devices. Federated learning on mo-
bile networks has to deal with highly variable device density
and computational power availability, which may negatively
affect the model convergence and performance [7]. Therefore,
experiments on implementations of federated learning algo-
rithms in typical mobile network scenarios are required as a
first step toward proposing improvements to both performance
and convergence time.

This work evaluates the impact of mobile network parame-
ters on the performance of federated learning algorithms1. We
analyze parameters such data reception probability, participat-
ing hardware constraints, device availability, and transmission
delay. We start with a revision step to identify datasets,
learning algorithms, and frameworks commonly used in the
corresponding literature. After this initial step, we run cen-
tralized learning models to establish a performance baseline
for future comparison. The ideal federated learning scenario is
then simulated, i.e., we ignore parameters such as transmission
delay and device availability. Next, we analyze the impact of
different mobile network parameters on federated learning and
finally propose and evaluate improvements for its operation in
mobile networks.

The remainder of this work is organized as follows. Sec-
tion II reviews papers related to this work. Section III explains
federated learning and the relationship with mobile networking
parameters. Section IV presents the experimental setup, while
Section V presents the obtained results. Finally, Section VI
concludes this work and suggests future directions.

II. RELATED WORK

This section considers papers that evaluate the federated
learning performance in wireless and mobile settings. We also

1A preliminary version of this paper was published in SBRC 2021, a
Brazilian conference in Portuguese. The paper can be accessed in http:
//www.gta.ufrj.br/ftp/gta/TechReports/BSD21.pdf



review contributions proposing client clustering and aggrega-
tion methods, which is a future step for our work.

Ghosh et al. tackle client clustering on federated learning
settings [8]. They proposed a framework named Iterative
Federated Clustering Algorithm (IFCA), which dynamically
allocates federated learning clients into different clusters. The
decision to group clients in real-time occurs because client data
is not transferred through the network, hindering clusters from
being defined beforehand. The novelty of their paper consists
of sharing representation layers, i.e., shallower layers, between
all users to train the final layers of each cluster. Their proposal
borrows this concept from multi-task learning. The authors
perform their experiments using image recognition datasets
and observe performance improvements up to 7 and 57%
compared with traditional federated learning and centralized
machine learning, respectively. In the last approach, each client
trains machine learning models on their local datasets.

Nishio et al. consider the impact of mobile edge computer
scenarios on federated learning performance [9]. The authors
explore the heterogeneity of mobile clients, namely, clients
in a cellular network, to dynamically select which clients
participate in a training round. The variation in computational
power, data resources, and channel conditions directly impact
their proposal. The authors then propose FedCS (Federated
Learning with Client Selection), which takes a “resource
oriented” approach to client selection. The FedCS approach
relies on a resource request step that provides the information
of each client. Information such as channel state and GPU
(Graphical Processing Unit) availability is used to build client
groups, which perform individual federated training rounds.
The authors evaluate their proposal on standard image clas-
sification datasets and show that their proposal can improve
classification performance compared with standard federated
learning algorithms. Their proposal, however, leverages client
metadata, such as hardware capabilities, which may not be
available for some applications.

Yang et al. evaluate three scheduling policies for federated
training on wireless networks and their impact on accuracy and
communication rounds required for convergence [10], [11].
The authors also evaluate the impact of some physical layer
parameters, e.g., Signal-to-Noise Ratio (SNR), on model con-
vergence in federated settings. Despite implementing classical
scheduling policies, their experiments consider complete client
availability, where only the communication channel limits
performance. This assumption, however, may not represent
some wireless scenarios, such as mobile networks.

Nguyen et al. develop a system capable of detecting botnet
in IoT network [12] by leveraging IoT gateways as federated
learning clients [13]. The authors perform a centralized per-
formance evaluation to configure the federated setting. The
research performed by Nguyen et al. explains that a real
application cannot use centralized learning as a first step
to adjust the configuration of federated learning parameters.
Nevertheless, our work follows the same trend since our goal is
to understand the impact of mobile network parameters on the
overall model performance, instead of building and deploying

a federated learning application.
Tran et al. analyze how local processing latency, e.g., the

time a client takes to finish processing its data during a
federated training round, impacts federated training perfor-
mance [14]. Their proposal uses synchronized updates to
improve federated performance, which may not be viable if
a single base station does not directly control the clients, as
is the case for large-scale mobile applications.

Even though our work focuses on mobile networks’ ap-
plications, some federated learning settings are deployed on
stable and highly available networks to preserve privacy with-
out optimizing communication [6]. Kairouz et al. highlight
the availability of reproducible results as an open issue in
federated learning research [7]. Multiple studies evaluate fed-
erated learning performance on devices optimized for DNNs
(Deep Neural Networks) [15]. These works, however, do not
represent the mobile setting on which clients cannot leverage
models with billions of parameters. This work tackles the study
of mobile network’s parameters on federated learning, where
the number of available clients can vary, the data available for
training is unknown a priori, and faulty connections are more
present than on Ethernet-based networks.

III. FEDERATED LEARNING

Federated learning is an emerging decentralized and dis-
tributed machine learning paradigm [6]. It enables devices
to leverage their computing power to collaboratively train a
global model on private and locally available data, without
transmitting it to another location, usually high-performance
servers [16]. The main motivation of federated learning is to
enable the development of privacy algorithms coupled with
high performance DNNs.

Classical machine learning approaches require that the
clients send their data to a centralized server, which may be
an issue for privacy sensitive applications, such as healthcare
applications [17]. Federated learning, alternatively, distributes
a learning model to clients and requires them to send back
only the learning model’s parameters. Note that each client
trains the model on its locally available data. All these steps
form a federated learning round and the server may choose
to perform more training rounds according to some criteria,
such as client availability, inference performance, elapsed real
time, and model convergence. Once the training is finished the
obtained model can be distributed to the clients and then be
used to perform inferences.

Although federated learning can aid in privacy preservation,
this new paradigm suffers from new and interesting challenges.
These challenges can be divided into four. Firstly, in tradi-
tionally studied distributed machine learning, where a server
distributes data to a number of clients for training, the clients
receive data samples from the same data distribution, which are
consequently IID (Independent and Identically Distributed). In
contrast to the aforementioned distributed machine learning
scenario and centralized machine learning, each client partici-
pating in a federated learning application has its own collected
data, which introduces the notion of “non-IIDness”. Secondly,



data volume also varies from client to client. Thirdly, the
number of participating clients in a federated training round
can vary, and this fact is more pronounced in mobile scenarios.
A common strategy is to query clients for availability before
starting the training process. Mobile clients will only partic-
ipate in a training round if some requirements are met, i.e.,
the device is connected to a charger and it has not been used
for several hours. Finally, hardware heterogeneity can affect
performance. Again, this characteristic is more prominent in
mobile scenarios. All of these challenges motivate an in-
depth and thorough study of federated learning techniques and
their applications [6], [7]. This work strives to explore how
the previously presented challenges affect federated learning
performance and how to improve it.

It is possible to identify multiple stages where mobile
networks can introduce errors that impact the overall final
model performance. Clients must have enough computational
power to both hold the machine learning models in memory
and train the models during the allocated time for a federated
training round. Furthermore, client availability can increase
the number of training rounds needed to achieve convergence.
Finally, the communication latency between server and clients,
besides impacting model performance when the communica-
tion interval exceeds the time allocated by the server for a
training round, increases the time it takes for the global model
to finish training rounds.

IV. EXPERIMENTAL SETUP

The neural network was firstly trained and evaluated in a
centralized setting, aiming to establish a performance baseline
for the federated learning results. The baseline is obtained
using an early stop mechanism to achieve improved perfor-
mance on the centralized setting. Classification metrics are
then used to qualitatively estimate if the machine learning
model achieved convergence.

After concluding the centralized analysis, the neural net-
work was deployed on a federated learning setting with ideal
network conditions, i.e., communication and processing delays
are ignored, and the clients had the failure probability set
to zero percent. The results obtained in this step are used
to evaluate the number of rounds needed for the model
convergence. At this point, it is important to highlight the term
“round” as the process of: (i) transmitting the model from
the server to the selected clients, (ii) training the model on
each client with their particular dataset for some number of
local epochs, and (iii) transmitting the trained models from
the clients back to the server for aggregation. During the
ideal federated training, a family of curves is obtained by
varying the following simulation parameters: the number of
participating clients (Nc), the number of training epochs for
each client (Et), and the local batch sizes for each client (Bc).

Additionally, each client has another parameter named
“steps per epoch”, which limits the maximum number of sam-
ples used by the client on each round. This parameter is used
to prevent full access to the training dataset along all rounds,
to better reflect federated learning scenarios. This decision

was made since in real-world applications, participating clients
possess datasets with different statistical properties.

Finally, mobile networks’ parameters are emulated by con-
sidering a scenario where clients may disconnect during train-
ing and may not be able to process the data during training.
This was achieved by instantiating each client in the simulation
with a given failure probability.

CIFAR-10 is an image classification dataset widely used
for computer vision tasks [18]. The low-resolution images
result in a compact dataset with numerous samples, which
enables fast training. This characteristic make the dataset
highly popular for benchmarking in computer vision tasks.
The dataset comprises 10 classes (airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck) and is a subset of
the CIFAR-100 dataset [18].

Model selection is a sensitive issue for mobile applications,
since the model’s performance must be balanced with memory
consumption and processing times. Even though commonly
available mobile devices are capable of processing models
which consume hundreds of MBs of memory [19], it is ex-
pected that multiple applications share devices’ resources. As
such, typical deep-learning-based mobile applications leverage
models consisting of a few MBs. This work follows the trend
of minimizing the use of fully-connected layers and, instead,
uses deep convolutional neural networks, which are more
appropriate for computer vision tasks [1]. Naturally, real-world
applications may employ additional techniques to further re-
duce the neural network size, such as weight quantization [20].
This work does not use these techniques since neural network
compression is considered to be orthogonal to this work.

The dataset chosen is commonly used as a benchmark for
computer vision applications. As a result, there is a multitude
of papers published which evaluate the performance of cen-
tralized neural networks on such dataset [21]. The architecture
used on the CIFAR-10 dataset was selected using the design
principles of VGG models [22]. The neural network has
550,570 parameters and the corresponding file in Hierarchical
Data Format (HDF) has 4.3 MB. The Flower framework,
which is being developed to enable federated applications, was
used in the simulations to deploy the FedAVG algorithm [6].
We run our experiments on an Intel Core i5−10400 2,90 GHz
computer with 6 processing cores and 32 GB RAM.

V. RESULTS

A. Baseline Models on Centralized Training

Centralized machine learning is already well-explored in
the literature. This work applies previously researched work-
flows to obtain the centralized results [1]. It is important to
mention that the overall model size, i.e., the volume of data
transmitted to each client, must be limited due to the mobile
network limitations discussed in Section III. Even though
devices may choose to participate in federated training rounds
during periods of low activity, it is important to guarantee
that memory, CPU, and GPU usage does not hinder other
applications. Although it is possible to achieve better results
with deeper and more complex models, communication and



processing costs can make their use unfeasible. We argue that
the values obtained during centralized training only shift the
performance practical upper bound used for evaluation and do
not contradict the results discussed in Section V.

The centralized experiments use SGD (Stochastic Gradient
Descent) as the optimizer, the learning rate is 0.0001, and a
momentum is 0.9. Training is performed for 25 epochs with a
batch size of 128 samples. The centralized learning algorithm
achieved 67.82% accuracy on the test set. This value was used
as a practical upper bound to evaluate distributed convergence.

B. Federated Learning on Ideal Wireless Conditions

DNNs are distributed to the clients and, after each round,
their performances are evaluated on two clients chosen at
random. Figure 1 shows that the number of local training
epochs has a positive impact on model convergence. This
is expected, since for a given number of federated training
rounds, a high number of local training epochs allows each
client to look at more data during training, accelerating the
global model convergence. Furthermore, local batch sizes,
which assume a regularizing role during centralized machine
learning [23], can act as a catalyst for model convergence.
This occurs because clients are limited to a given number of
steps per epoch. Thus, increasing the batch size also enables
the clients to look at more data during each federated training
round.

Another important federated learning parameter can be seen
when comparing Figure 1(a) and Figure 1(b). The number of
clients has direct impact on model convergence and model
performance. However, in mobile settings, the number of
available clients may vary greatly. Therefore, techniques to
evaluate if the server must execute a training round for a given
set of clients must be developed. The blue curve of Figure 1(b)
shows that the model performance may decrease if the number
of available clients is insufficient, so the server must be able
to decide if another training round must be performed. As
Figure 1(a) shows, a model training on just a few clients can
achieve satisfying performance. however, the training process
becomes more sensitive to the federated parameters, which
is shown by the poor performance when using 10 training
epochs and 64 data samples per batch. Figure 1(c) confirms
the previous results in a scenario with 50 clients.

C. Federated Learning on More Realistic Wireless Conditions

In this section, wireless mobile network parameters are in-
troduced in the form of failure probability, which corresponds
to the chance of a client being disconnected or not being able
to finish its training during a training round. Since a client may
stop responding to the server altogether, the centralized server
can only infer that the client failed during training, because
of either high processing time or transmission delay between
the client and the server. The results are compared to those
obtained with ideal network conditions.

Failure Probability: When a client’s latency surpasses the
time allocated by the server for a federated training round,
the client is “dropped” during that particular round, i.e., the
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(a) Curves obtained by simulating 5 clients.
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Fig. 1. Model convergence on the CIFAR-10 dataset with ideal network
conditions.

server infers that the client got disconnected during training.
For simulation purposes, if a client presents faulty behavior,
the server ignores the faulty client during the current round.
Hence, model convergence is impaired by these faulty connec-
tions. The failure probability values were select to cover both
critical and non-critical settings. It is also worth noting that
the model’s performance presents similar behavior for failure
probability in the range between 5% and 25%, thus we chose
to omit these results.



Figure 2 presents one of the models seen in Figure 1(b), but
with different failure probabilities (Pf ) applied to all clients.
We can observe that a large number of disconnections degrades
model performance and slows down model convergence. The
red curve (Pf = 25%) in Figure 2 shows that the algorithm
is able to converge when disconnections occur, but the model
achieves lower performance. However, at least in the simulated
scenarios, depending on the number of participating clients,
the effect of disconnections on model convergence can be
amplified. This can be seen in the blue curve (Pf = 75%),
which shows superior performance in relation to the green
curve (Pf = 50%), even though the number of faulty connec-
tions is greater. This result can be attributed to a regularization
effect introduced by removing some clients from each training
round, similarly to the way a dropout layer can reduce neuron
dependency on neural networks and increase its performance.
It is worth noting that the red, green, and blue curves do not
seem to converge at 250 rounds.

Latency: The server is responsible for allocating a maxi-
mum time interval for each training round. If the sum of a
client’s processing and transmission times is greater than this
maximum interval, the client is dropped during this training
round. This may result in performance degradation. However,
an increase in client’s latency always increases the elapsed real
time required for the model to converge. The overall latency to
train a model can be directly calculated by Equation 1 below:

Total latency =

R∑
i=1

max
∀c∈Ci

(min(Lc, T )), (1)

where Ci denotes the set of clients involved in a training round,
Lc denotes the latency of a single client, and T denotes a
timeout parameter configured by the server, and R denotes
the number of training rounds. In our model, a client’s latency
(Lc) is determined by the sum of its processing time and the
transmission time to the server. It is important to note that
failure or disconnection probabilities have direct impact on
the total latency, since a single client failing during training is
enough to set the latency of a training round to T .
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Fig. 2. Impact of disconnection probability during federated training.

Figure 3 presents a Monte Carlo simulation of Equation 1
for different failure probabilities. The timeout (T ) parameter
was selected as twice the worst case scenario for the devices.
This parameter is application dependent and thus must be
adjusted depending on the applications. Transmission latency
was estimated using the software iPerf32 to measure the
RTT (Round-Trip Time) between three servers in Brazil,
Canada, and Russia. The position of each client is chosen at
random during the simulation. Processing times of each device
was selected based on our previous simulations.

A possible strategy to reduce the impact of faulty clients is
to prematurely end a training round when some defined subset
of clients report their results to the server. Thus, the server
may start a new training round with those clients or select a
different subset of clients to reduce latency. This strategy is
presented in Figure 3, where the total training time is greatly
reduced by a large interval of failure probabilities (Pf ). It is
worth mentioning the tradeoff between the total training time
and the computational cost on each client, since the fraction
of training performed in slower clients is not used.

Convergence Analysis: Figure 4 summarizes the number of
rounds required for the algorithm to achieve convergence
for some configurations. The triangles pointing to the right
represent models that still showed signs of improvement at
round number 250, while the × symbol represents a model that
showed signs of deterioration during training. The convergence
was estimated by observing if the model’s performance is kept
stable during multiple training rounds. The figure shows that
a high number of disconnections, in addition to delaying con-
vergence, also can harm the final model’s performance. This
result coupled with the knowledge extracted from Figure 1(a),
it is possible to highlight that if the same group of clients
contributes to training across multiple rounds, the model’s
performance can even decrease. In that case, the server must
identify the drop in performance and stop the training process
until the appropriate number of clients is available to join the
training. We can also highlight the better performance of the

2Accessed on https://iperf.fr/.
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Fig. 4. Number of rounds for each scenario to achieve convergence.

model with Pf = 75% in relation to the model with Pf = 50%.
Even though more clients presented problems during training,
the model converges faster and achieves better performance.

VI. CONCLUSION AND FUTURE SCOPE

This work studied mobile networks parameters and their
effect on federated learning performance. The data was dis-
tributed among the clients to simulate the random data collec-
tion process on real-world applications. The results show how
federated learning can help maintaining users’ privacy while
achieving comparable performance to centralized machine
learning approaches. Some mobile networks parameters were
found to have counter-intuitive impact on federated learning
performance, such as a higher fault probability in clients
improving a federated learning model’s performance. Addi-
tionally, traditional hyperparameters of deep neural networks,
such as batch size, also have slightly different behaviors
in a federated setting. Obtaining representative datasets of
real world federated learning applications is still a challenge.
To enable appropriate evaluations the datasets must contain
information regarding the origins of the data, i.e., the authors
of each sample.

As future work, we intend to explore more complex wireless
scenarios, such as when disconnection probabilities vary over
time. Additionally, we intend to explore more complex neural
network architectures to cover scenarios where devices have
more computational power and are constrained by extremely
low latency applications, such as those in vehicular and
industrial networks. Finally, we plan to research techniques to
improve federated performance through client clustering and
selection without using client metadata.
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