On the Horizon

Editor: 0. Sami Saydjari, ssaydjari@cyberdefenseagency.com

Hiding Virtualization from
Attackers and Malware

irtual machine environments (VMEs) let a user or
administrator run one or more guest operating
systems on top of a host operating system—for

example, three or four instances of the Microsoft

Windows operating system could run as guest systems on a

MATTHEW
CARPENTER,
Tom LISTON,
AND ED
SKouDIS
Intelguardians

62

Linux host operating system on a sin-
gle PC orserver. Such environments
are widely used as clients or servers in
a variety of commercial, govern-
ment, and military organizations.
Beyond normal business operations,
security researchers and honeypot
technologies often leverage VMEs to
analyze malicious code discovered in
the wild to determine its functional-
ity, business model, origin, and au-
thor. Because VMEs offer useful
monitoring and isolation capabilities,
malware researchers are increasingly
reliant on these products to conduct
their trade. Furthermore, a malware
researcher can use the “snapshot” ca-
pabilities of some VMEs to create a
pristine uninfected picture, infect
that machine, observe the infection’s
impact, and restore the system to a
pristine state quickly and easily so
that the researcher can move on to
review another specimen. Indeed,
various malware researchers in an-
tivirus and antispyware companies
are automating malicious code ana-
lysis with large numbers of VMEs
that have such snapshot capabilities.
With security researchers relying
on VMEs in their analysis work, at-
tackers and their malicious code have
a significant stake in detecting the
presence of a virtual machine. Virtu-
alization, by its very nature, creates
systems that have different character-

PUBLISHED BY THE IEEE COMPUTER SOCIETY |

istics from real machines. From a the-
oretical perspective, any difference
between the virtual and the real could
lead to a fingerprinting opportunity
for attackers. This article focuses on
detection techniques and mitigation
options for the most widely deployed
VME product today, VMware.

Threats

Attackers often use VME detection
to confound security researchers. Be-
cause malicious code analysis experts
frequently use VMEs when dissect-
ing malicious programs, some of the
most cutting-edge malware speci-
mens can detect virtual machine con-
tainment and modify their behavior
to hide the code’s full functionality.
VME-detecting malware might even
behave in an entirely benign fashion
inside a VME, to the point thata mal-
ware researcher might not realize its
true destructive nature. When this
detection is coupled with existing
code-obfuscation techniques, it can
be very difficult for researchers to
identify the malicious code’s full be-
havior, thus causing costly delays for
antivirus vendors and leaving millions
of computer systems vulnerable.
VME detection could evolve into
a dangerous game of cat and mouse if
attackers can discover flaws in the un-
derlying VME code. Essentially,
VMEs are a complex layer of software

1540-7993/07/$25.00 © 2007 IEEE |

that usually tries to isolate the host
and guest operating systems. Software
developers know that any major,
complex software package often has
security flaws. Ifan attacker can find a
flaw in the VME-provided host/
guest isolation, virtual machine de-
tection could become a significant
security risk as a precursor to VME
escape—a procedure in which mali-
cious code running inside a guest ma-
chine can escape and begin running
on the host. Although no public
VME escape tools are available today,
such attacks are theoretically possible
and are an active area of research. In a
production server environment, at-
tackers who discovera VME can look
for exploits to escape the guest and at-
tempt to break into other guest or
host server systems. Likewise, mali-
cious code on a guest machine in a
production client environment could
try to infect other guest systems.

VME detection

techniques

The most popular VMEs today im-
plement virtualized x86 PC systems
as guest machines running on top of
x86 host systems. Each guest has a
view ofa virtualized processor and its
own virtualized hardware, which
makes the software running inside a
guest machine appear to run on a
completely separate machine from
the host. To detect VMware, mal-
ware typically relies on one of two
different aspects.

VMware

communications channel
VMware allows for communication
between host and guest operating
systems via a custom communica-
tions channel hard-coded into all

IEEE SECURITY & PRIVACY

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 16:16 from IEEE Xplore. Restrictions apply.

major VMware products. This chan-
nel lets the guest and host operating
systems interact for a variety of func-
tions, including improved GUI per-
formance, support for moving data
in and out of the host clipboard, and
dragging and dropping files between
guest and host.

As part of our research at Intel-
guardians, we've extensively studied
the protocol this communications
channel uses to understand how ma-
licious code interacts with the chan-
nel. Two years ago, in an incident
response engagement for a client in-
fected with malware, we discovered a
specimen with a small snippet of code
that checked for this communications
channel’s presence. We discovered
the code only because the executable
exhibited noticeably difterent behav-
ior than we expected when it ran in
the VME. The executable carrying
this code falls into a class of malicious
software known as cascading file drop-
pers. A file dropper 1s simply an exe-
cutable that carries another program
as encoded data and, when executed,
decodes that data, writes it to another
file, and (usually) executes it. In the
case of a cascading file dropper, the
dropped file itselfis also a file dropper,
a nice recursive twist often found in
modern malware.

When we executed the program
in a virtual machine in our investiga-
tion, nothing appeared to happen.
But upon closer examination, we
found that when the second stage of
the cascade executed, the following
code snippet attempted to detect the
presence of VMware by invoking the
VMware communications channel:

MOV EAX, 564D5868 <—
“VMXh”

MOV EBX, 0

MOV ECX, O0A

MOV EDX, 5658 <— “VX”
IN EAX, DX <— Check for
VMWare

CMP EBX, 564D5868

In this machine language snippet,
the program first loads the hexadeci-

mal value 564D5868 into register
EAX. This value, which is the
equivalent of ASCII “VMXh”, is
hard-coded into VMware and rep-
resents the magical incantation
required to invoke the communica-
tions channel, acting rather like a
fixed password for the channel.
Next, the program loads the number
zero into register EBX, clearing out
the place where our result will be
stored later. Then, it loads the value
10 (hexadecimal 0A) into register
ECX, which will tell the VMware
communications channel what we
want to do. (The OA value indicates
that we want to perform a VMware
version check.) We then load into
register EDX a value of 5658 (which
is ASCII “VX?”), a specialized hard-
ware port associated with VMware.
After initializing our registers in this
way, the program is ready to test for
the presence of VMware by using
the IN instruction.

An x86 processor normally uses
the IN instruction to read data from
a hardware device such as a modem,
but VMware has extended the IN
instruction’s capabilities for guest
machines to implement its commu-
nications channel. When a program
calls the IN instruction to pull data
from port “VX” while register EAX
holds “VMXh,” for example,
VMuware traps the I/0 call. Instead
of really reading data from that port,
VMware moves the magic value
“VMXh” into register EBX. Thus,
a simple compare of register EBX
with “VMXh” can tell us whether

On the Horizon

VMware guest, these instructions
trigger
code, which is the actual payload of

will exception-handling
the malware itself.

The use of this type of detection
code in the wild shows that the com-
puter underground is well aware of
VMware’s widespread use in mali-
cious code research, and that easily
detectable VMEs are becoming a lia-
bility for malware researchers. An-
other publicly released tool called
Jerry.c by Tobias Klein also identifies
the presence ofa VME with the tech-
nique we just described (www.trap
kit.de/research/vmm/). In our re-
search, we’ve found that detecting the
VMware communications channel is
the single most popular method for
VME detection today.

Taking the Red Pill

Beyond measuring the IN com-
mand’s specialized behavior in
VMware, other methods for VME
detection exist. Because the guest
operating system 1s virtualized by
software running on the host operat-
ing system and shares the same phys-
icall memory, a VME typically
introduces some differences in the
location of mapped global items in
memory. In particular, as John
Robin and Cynthia Irvine originally
described
people/faculty/irvine/publications/
2000/VMM-usenix00-0611.pdf),
the locations of the Interrupt De-
scriptor Table (IDT), the Global
Descriptor Table (GDT), and the
Local Descriptor Table (LDT) pre-

(Www.cs.nps.navy.mil/

With security researchers relying on VMEs in

their analysis work, attackers and their

malicious code have a significant stake in
detecting the presence of a virtual machine.

our code is running in a VMware
guest. In a VMware guest machine,
our comparison will evaluate to pos-
itive, but in a machine that isn’t a

www.computer.org/security/ |

dictably vary between host operat-
ing systems and guest machines. By
looking at the memory locations of
these critical operating system ob-

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 16:16 from IEEE Xplore. Restrictions apply.

IEEE SECURITY & PRIVACY

64

On the Horizon

jects, an attacker or malicious code
could detect a virtual machine.

The first publicly released tool to
use this technique was the Red Pill,
which security researcher Joanna
Rutkowska released in November
2004 to inspect the contents of the
Interrupt Descriptor Table Register
(IDTR) via the SIDT (Store the In-
terrupt Descriptor Table) instruction.
Rutkowska observed that on
VMuware guest machines, the IDT is
typically located at OxffXXXXXX,
whereas for host operating systems,
it’s farlower in memory. The Red Pill
program deduces thatit’s runningina
guest machine if the IDTR is greater
than 0xd0000000. Our team found
that the results were highly accurate
for VMware running in a variety of
Linux and Windows operating sys-
tems. Likewise, Scoopy—another
program from Klein—looks at the lo-
cation of the Interrupt Descriptor
Table, the Global Descriptor Table,
and the Local Descriptor Table using
similar techniques to the Red Pill.

It's worth noting that many of
these same memory anomalies ap-
pear in multiprocessor or multicore
environments as well. Therefore, as
multicore processors become in-
creasingly prevalent, this VME de-
tection method will become
increasingly inaccurate, possibly
forcing attackers to rely on the al-
ready popular VMware communica-
tions channel detection technique.

Mitigation techniques:

Proof of concept

To dodge VME-detecting malware,
researchers can rely on several differ-
ent methods to disguise a virtual ma-
chine. We've identified two
particularly useful approaches to foil
the most popular VME detection
mechanisms used by malware.

Undocumented
VMware options
VMware VMX configuration files
contain various parameters for a
guest machine that a VMware ad-

ministrator can change. This file is

IEEE SECURITY & PRIVACY B MAY/JUNE 2007

typically located in the host operat-
ing system, and it controls various
settings for the guest machine.

A long list of VMX configuration
parameters can be changed or added
to the VMX file. (See www.vmware.
com/community/thread.jspa?thread
ID=37190&tstart=0, www.vmts.
net/vmbkmanual.htm, and www.
easyvmx.com/expertform.shtml for
some well-documented features and
settings.) Through various sources
and experiments, we’ve also identi-
fied several undocumented con-
figuration options that can control
or eliminate behaviors that allow
VMware detection. For example,
setting the following parameters in
the VMX file will stop Jerry.c from de-
tecting VMware by tweaking the
behavior of the communications
channel version-check functionality:

isolation.tools.getPtrLoc
ation.disable = “TRUE”
isolation.tools.setPtrLoc
ation.disable = “TRUE”

isolation.tools.setVersio
n.disable = “TRUE”
isolation.tools.getVersio
n.disable = “TRUE”

Although the isolation.
tools.setVersion and get
Version configuration options
also prevent Jerry.c’s detection
method from working, they don’t
stop the IDT-based detection
method that the Red Pill and
Scoopy use. To prevent both from
detecting the presence of VMware,
we must change several additional
VMX configuration properties:

isolation.tools.getPtrLoc
ation.disable = “TRUE”
isolation.tools.setPtrLoc
ation.disable = “TRUE”
isolation.tools.setVersio
n.disable = “TRUE”
isolation.tools.getVersio
n.disable = “TRUE”

monitor_control.disable_d

irectexec = “TRUE”
monitor_ control.disable_c
hksimd = “TRUE”

monitor_control.disable_n
treloc = “TRUE”
monitor_control.disable_s
elfmod = “TRUE”
monitor_control.disable_r
eloc = “TRUE”

monitor_control.disable_b
tinout = “TRUE”
monitor_control.disable_b
tmemspace = “TRUE”
monitor_control.disable_b
tpriv = “TRUE”
monitor_control.disable_b
tseg = “TRUE”

These specific settings alter
VMware’s memory-relocation func-
tionality and also modify its binary
translation (BT) functionality. BT is
the method by which VMware vir-
tualizes systems—by altering some of
the guest’s machine language in-
structions before they have a chance
to execute in the host. Although set-
ting these configuration options will
stop local detection of VMware via
Red Pill and Scoopy, they’re neither
documented nor officially supported
by VMware, so the full impact on the
guest system’s functionality isn’t well
known. Furthermore, an organiza-
tion that uses guests with such con-
figurations won't likely be able to get
vendor support for their installations
using these options.

These VMX file-configuration
changes can block the most popular
detection techniques in current use,
but the guest machine configuration
severely restricts functionality, thus
degrading or disabling many of the
ease-of-use features VMware pro-
vides, such as drag-and-drop, cut-
and-paste via the clipboard, and
shared file directories. Fortunately,
malicious code researchers rarely re-
quire such functionality. A stealthy
guest is less useful for general-pur-
pose computing, but is adequate for
most malware researchers who sim-

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 16:16 from IEEE Xplore. Restrictions apply.

ply want to infect a machine to in-
spect malicious code functionality.

Altering the magic value
Because of the undesirable side ef-
fects caused when a researcher or
administrator uses the VMX file-
configuration options to mitigate
detection, we searched for an alter-
native method to thwart VMware
detection. Knowing that Jerry.c-style
detection of VMwares command
channelis the most prevalent attacker
method, our research focused on
blocking this technique.

One effective method we found
was to disable or change (by patching
the VMware binary executable file)
the magic value of VMXh associated
with the communications channel.
Perhaps the best-known implementa-
tion of binary patching for this
purpose is Kostya Kortchinsky’s
patch (http://
honeynet.rstack.org/reports/r2005_
2.html). This tool only disables the
command channel in the Linux ver-
sion of VMware Workstation 5.0, but
the concepts should apply to all ver-

Honey-VMware

sions of VMware and can be leveraged
to disable the command channel as
well as change its characteristics.
Unfortunately, both the host-side
VMware program itself and the guest
program’s VMware tools need modi-
fication to alter the VMXh value. Per-
haps future versions of VMware will
make this value adjustable in both the
guest and the host.

As part of our research, we devel-
oped a tool called VMmutate, which
alters the VMware binary and searches
through a VMware disk image, selec-
tively modifying each instance of the
VMXh value to a user-defined alter-
native. In a file as large as most multi-
gigabyte VMware disk images, a
program like VMmutate will likely
find VMXh numerous times, simply
by chance and often having nothing to
do with the
nications channel. To avoid false

VMware commu-

positives that would alter noncommu-
nications channel VMXh instances,
VMmutate contains code thatlooks at

the value’s context before altering it.
Although VMmutate is still beta-level
software, modifying the command
channel is a feasible method for dis-
guising virtual machines.

Ithough we've successtully

blocked VME detection by using
VMware’s undocumented features
and modifying the VMware binary
program, both come with a price: a
loss of functionality. Furthermore,
VME detection is indeed an arms
race. Although the techniques cov-
ered 1n this article stop VME detec-
tion by most of today’s malware,
computerattackers are a clever bunch,
and they’ll surely raise the stakes by de-
vising other detection mechanisms.
Although VME detection is a bud-
ding area of research, we wholeheart-
edly expect malicious software and
attackers to continue to leverage this
information against their targets. O

On the Horizon

Homeland Security (DHS) Science and Tech-
nology (S&T) Directorate and the Air Force
Research Laboratory (AFRL) under contract
number FA 8750-05-C. Points of view ex-
pressed in this document are those of the au-
thors and do not represent the official position of
the DHS S&T Directorate or the AFRL.

Ed Skoudis is a senior security analyst
and founder of Intelguardians. His
research interests include virtual
machine security issues, malicious code
analysis, and the evolution of computer
attack tools. Skoudis has an MS in infor-
mation networking from Carnegie Mel-
lon University. Contact him at ed@intel
guardians.com.

Tom Liston is a senior security consultant
for Intelguardians. He serves as an inci-
dent handler for the SANS Institute’s
Internet Storm Center and has written
several computer security programs. Con-
tact him at tom@intelguardians.com.

Matthew Carpenter is a senior security
analyst at Intelguardians. His research
interests include security vulnerability
research, binary executable analysis, and
forensic analysis. Carpenter has a BA in
computer science from Anderson Univer-
sity. Contact him at mcarpenter@intel

guardians.com.

Acknowledgments

This work was supported by the US Dept. of
Advertiser Index
May | June 2007
Advertiser Page number
Black Hat 2007 Cover 2
CSINetSec 2007 Cover 4
(sc)? 71
LinuxWorld 2007 Cover 3
United Technologies 11
Usenix 2007 57

Advertising Personnel

Marion Delaney

|IEEE Media, Advertising Director
Phone: +1 415 863 4717

Email: md.ieeemedia@ieee.org

Marian Anderson | Advertising Coordinator
Phone: +1 714 821 8380 | Fax: +1 714 821
4010 | Email: manderson@computer.org

Sandy Brown | IEEE Computer Society |
Business Development Manager

Phone: +1 714 821 8380 | Fax: +1 714
821 4010 | Email: sb.ieeemedia@ieee.org

Advertising Sales
Representatives

Mid Atlantic
(product/recruitment)
Dawn Becker

Phone: +1 732 772 0160
Fax: +1732772 0164
Email: db.ieeemedia@
ieee.org

New England (product)
Jody Estabrook

Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@
ieee.org

New England
(recruitment)

John Restchack

Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@
ieee.org

Connecticut (product)
Stan Greenfield

Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@
optonline.net

Midwest (product)
Dave Jones

Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@
ieee.org

www.computer.org/security/

Will Hamilton

Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@
ieee.org

Joe DiNardo

Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@
ieee.org

Southeast (recruitment)
Thomas M. Flynn

Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@
mindspring.com

Southeast (product)

Bill Holland

Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@
yahoo.com

Midwest/Southwest
(recruitment)

Darcy Giovingo

Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@
ieee.org

Southwest (product)
Steve Loerch

Phone: +1 847 498 4520
Fax: +1 847 498 5911

Email: steve@didierand
broderick.com

Northwest (product)
Peter D. Scott

Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@
pscottassoc.com

Southern CA (product)
Marshall Rubin

Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@
ieee.org

Northwest/Southern CA
(recruitment)

Tim Matteson

Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Japan

Tim Matteson

Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@
ieee.org

Europe (product)

Hilary Turnbull

Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impress
media.com

B |[EEE SECURITY & PRIVACY 65

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 16:16 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

