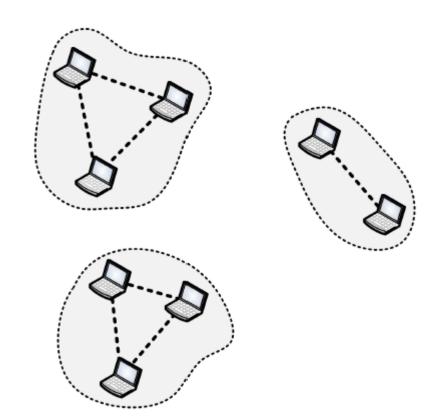
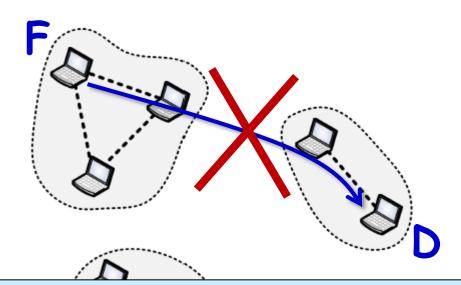
CPE710: Redes Móveis

Prof. Miguel Elias Mitre Campista

http://www.gta.ufrj.br/~miguel

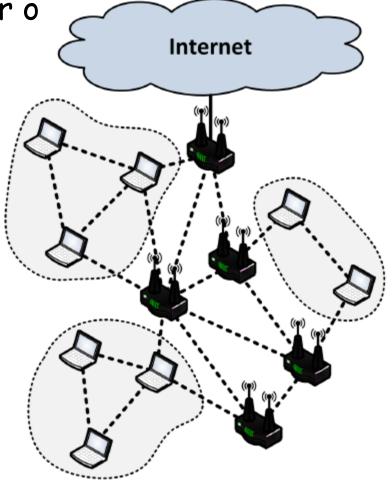

CPE710: Redes Móveis

REDES EM MALHA SEM-FIO

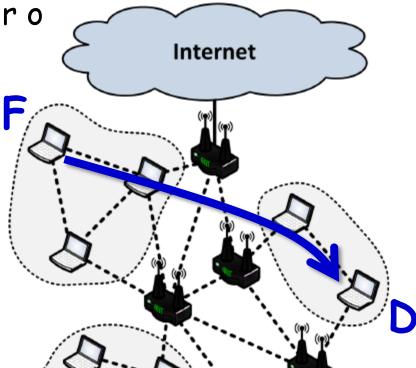

- · Alternativa de baixo custo para as redes de acesso
 - Aumentam o alcance da comunicação
 - Mantêm a conectividade da rede, apesar da dinamicidade do meio e da mobilidade dos usuários.
- Caracterizadas pela presença de um backbone composto por roteadores sem fio
 - Backbone é responsável por estender o alcance do acesso à rede cabeada além do alcance da transmissão de um único ponto de acesso
 - Backbone sem-fio realiza encaminhamento por múltiplos saltos

- Presença do backbone sem-fio
 - Faz com que as redes em malha tornem-se um híbrido entre:
 - Modo infraestruturado: Estações utilizam o backbone sem-fio para se comunicar
 - Modo ad hoc: Encaminhamento no backbone é realizado em múltiplos saltos
- · As redes em malha sem fio possuem custo reduzido
 - Evitam cabos de rede, reduzindo os custos em comparação a redes que exijam infraestrutura

 Rede com topologia particionada e sem acesso à Internet...



 Rede com topologia particionada e sem acesso à Internet...

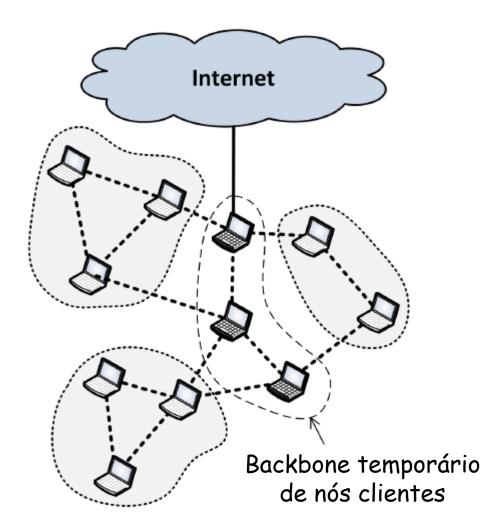


Não há infraestrutura interligando os nós F e D e nem tampouco caminho de múltiplos saltos...

 Ao introduzir o backbone...

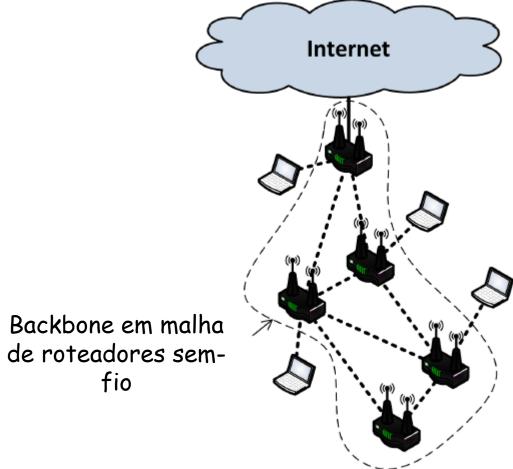
 Ao introduzir o backbone...

Nós F e D passam a se comunicar por múltiplos saltos...


 Ao introduzir o e um nó C qualquer Internet backbone... passa a ter acesso à Internet!

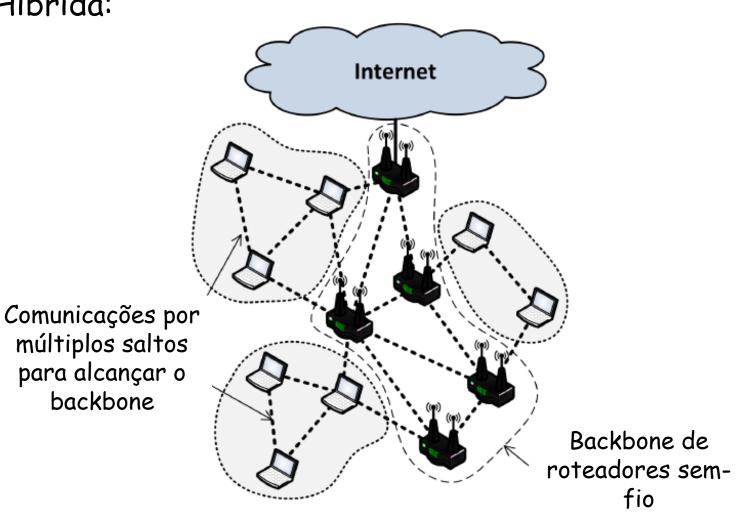
- Backbone não tem nenhum requisito de tecnologia sem fio para a sua comunicação
 - IEEE 802.11 e extensões são usados pois representam alternativa com boa relação custo-benefício
- Backbone deve ser auto-organizável, autoconfigurável e auto-curável
 - Como as redes ad hoc tradicionais
- Participação dos usuários define a arquitetura das redes em malha sem fio:
 - Arquitetura cliente, infraestruturada e híbrida

· Cliente:


- Usuários desempenham tarefas de roteadores
 - Nós podem ainda formar backbones temporários e oferecer acesso à Internet
- Semelhante ao modo de operação ad hoc convencional

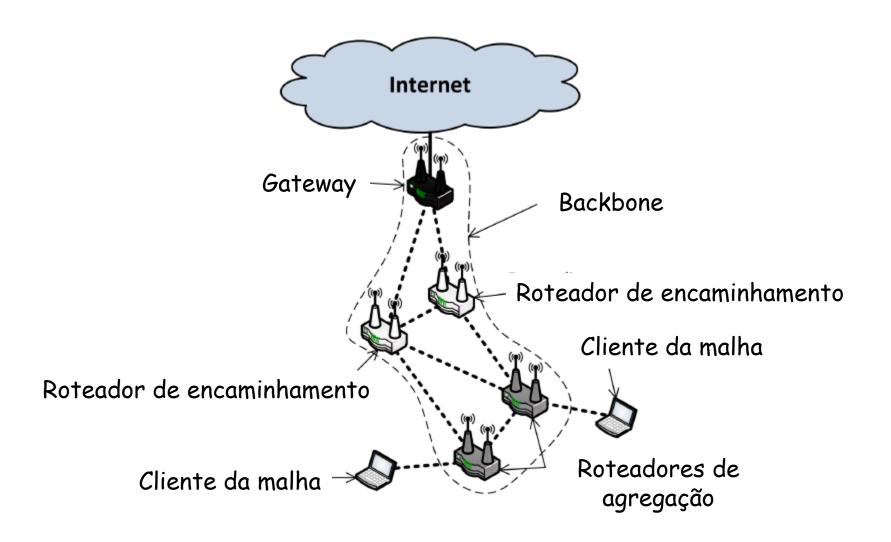
· Cliente:

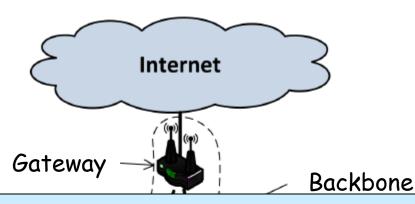
- Infraestruturada:
 - Usuários não desempenham tarefas de roteadores
 - Usuários não colaboram com a rede e se comportam como meros "consumidores de serviço"
 - Usuários não executam nenhum protocolo de roteamento de pacotes


· Infraestruturada:

· Híbrida:

- Usuários podem desempenhar ou não tarefas de rede
 - Usuários podem colaborar com a rede ou se comportar como meros "consumidores de serviço"
- Usuários podem participar do encaminhamento por múltiplos saltos de pacotes
 - Encaminhamento por múltiplos saltos é realizado por usuários quando há ainda desconexão com o backbone


· Híbrida:


Roteadores do Backbone

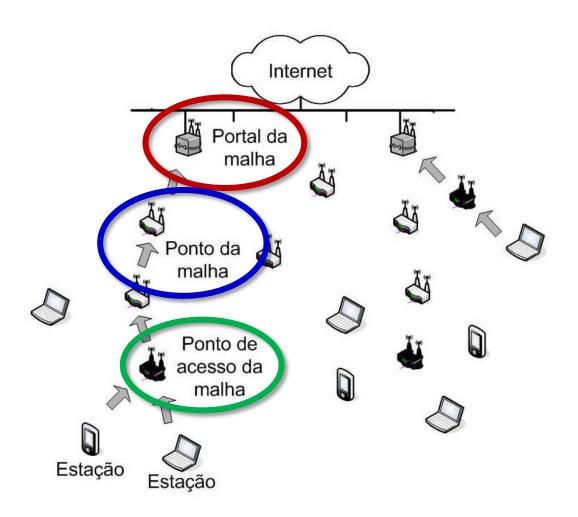
- Podem desempenhar funções distintas
 - Roteadores de agregação
 - Oferecem conectividade a clientes da malha dentro do seu raio de alcance
 - Agregam o tráfego recebido e encaminham para o destino desejado
 - Roteadores de encaminhamento
 - Encaminham o tráfego não recebido diretamente dos clientes
 - Gateways
 - Oferecem acesso à Internet para toda a rede em malha geralmente através de infraestrutura cabeada (Ethernet)

Roteadores do Backbone

Roteadores do Backbone

O papel dos roteadores e a operação dos nós da rede em malha são padronizados pelo IEEE 802.11s

Roteador de encaminhamento


Cliente da malha

Cliente da malha

- Define o encaminhamento de quadros em múltiplos saltos na camada de enlace
 - Nós que não pertencem à rede em malha sem fio, a enxergam como um único enlace
 - Ideia de enlace virtual
- Adota abordagem que vai contra o princípio de independência entre camadas
 - Mistura acesso ao meio com encaminhamento
 - Facilita a adoção já que todas as funcionalidades necessárias já estão disponíveis e préconfiguradas nos equipamento dos usuários

- Classifica os nós que compõem uma rede em malha sem-fio em quatro categorias:
 - Estações (STAtions STA)
 - Usuários que não participam do roteamento
 - Pontos da malha (Mesh Points MPs)
 - Nós que participam do roteamento, mas não oferecem conexão às estações participantes
 - Pontos de acesso da malha (Mesh Access Points MAPs)
 - Nós que participam do roteamento e ainda funcionam como pontos de acesso às estações.

- Classifica os nós que compõem uma rede em malha sem-fio em quatro categorias:
 - Portais da malha (Mesh Portal Points MPP)
 - Responsáveis pela interconexão da rede, ou seja, nós que funcionam como gateways ou pontes para redes externas
 - Possuem funcionalidades semelhantes aos pontos da malha e, portanto, não são utilizados como pontos de acesso para as estações

Redes em Malha Sem-fio Vs. Redes Ad Hoc

- · Matriz de tráfego
 - Aplicações principais requerem acesso à Internet
 - Tráfego flui primordialmente de/para os portais da arquitetura
 - Tráfego entre clientes da mesma rede em malha também é possível

Redes em Malha Sem-fio Vs. Redes Ad Hoc

- · Presença do backbone estacionário
 - Redes em malha usam tipicamente a arquitetura infraestruturada
 - · Aumenta a conectividade e o alcance da rede
 - Permite que os nós da infra estejam permanentemente ligados a uma fonte de energia
 - Aumenta os custos de instalação e manutenção
 - Redes ad hoc são mais apropriadas a ambientes onde a infra seja proibitiva ou inexistente
 - Mobilidade limitada a dos clientes da rede

Redes em Malha Sem-fio Vs. Redes Ad Hoc

- · Presença do backbone estacionário
 - Redes em malha usam tipicamente a arquitetura infraestruturada

· Aumento a conectividade e a alcance da nada

Backbone estacionário permite que o roteamento utilize métricas mais elaboradas, por exemplo, usando as chamadas "métricas cientes da qualidade"

infra seja proibitiva ou inexistente

- Mobilidade limitada a dos clientes da rede

Métricas Cientes da Qualidade

- Utilizam abordagem "entre-camadas" (crosslayer)
 - Tentam capturar informações da camada física na camada de enlace
- · Contrastam com a ideia da métrica número de saltos
 - Requer conhecimento apenas de vizinhança

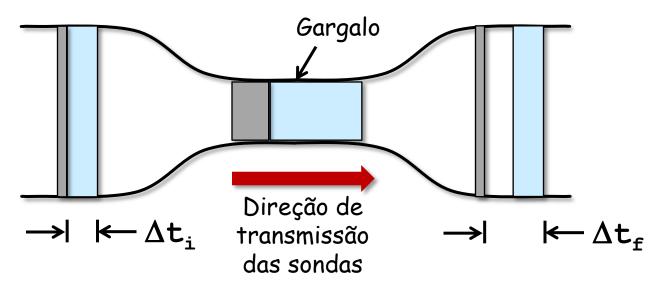
ETX (Expected Transmission Count)

- Número médio de transmissões de um pacote até a entrega com sucesso para o vizinho
 - Cada nó envia sondas periodicamente em broadcast contendo o número de sondas recebidas de cada vizinho
 - Número de sondas recebidas é calculado no último intervalo de tempo T em uma janela deslizante

$$ETX = \frac{1}{d_d \times d_r}$$

ETX (Expected Transmission Count)

- Problemas do ETX:
 - Envio de pacotes em broadcast é normalmente realizado na taxa básica de operação da rede
 - Tamanho das sondas é menor que o tamanho típico dos pacotes de dados


Métrica não distingue enlaces com diferentes larguras de banda, tampouco considera pacotes com tamanhos maiores, como podem ser os tamanhos dados

- Tempo médio que um pacote de dados precisa para ser entregue com sucesso para o vizinho
 - ETT ajusta o ETX levando em conta:
 - · Taxas de transmissão empregadas em cada enlace
 - Tamanho do pacote

- · Cálculo do ETT pode ser feito de duas formas:
 - 1. Produto entre o ETX e o tempo médio t que um único pacote de dados precisa para ser entregue com sucesso
 - t é calculado pela divisão de um tamanho fixo S do pacote pela largura de banda B estimada do enlace (t=S/B)

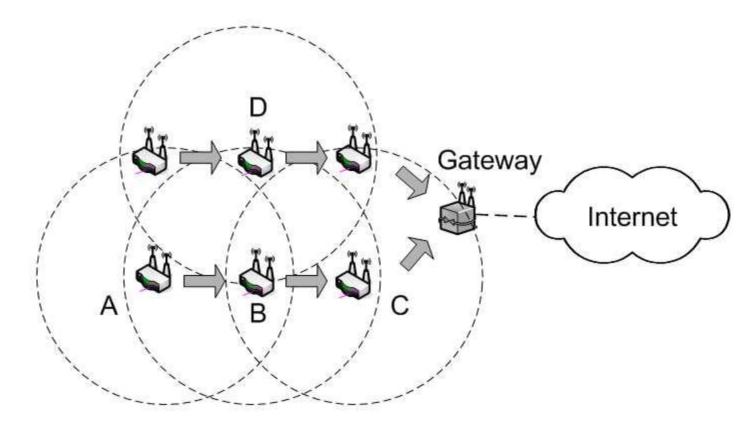
$$ETT = ETX \times t$$

- · Mas como calcular a largura de banda B?
 - Técnica de par de pacotes (packet pair)
 - Envio de dois pacotes de sonda em sequência com tamanhos diferentes (S é o tamanho do maior deles)
 - B = $S/\Delta t_f$, onde Δt_f é o atraso medido entre o início da recepção dos dois pacotes enviados

- · Cálculo do ETT pode ser feito de duas formas:
 - 2. Probabilidade de perda considera quadros de dados e de ACK (possibilidade alternativa)
 - Taxa de perda dos dados: Estimada pelo envio em broadcast de quadros com tamanhos típicos aos de dados em todas as taxas de dados definidas pelo IEEE 802.11 para cada vizinho
 - Taxa de perda de reconhecimentos positivos: Estimada enviando em broadcast pacotes do mesmo tamanho que quadros de ACK na taxa básica da rede no sentido reverso

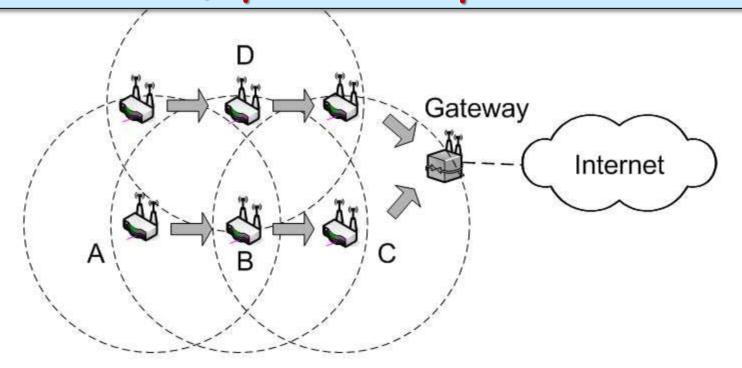
$$ETT = \frac{1}{v_{max} \times p_{ACK}}$$

Abordagens Cross-layer

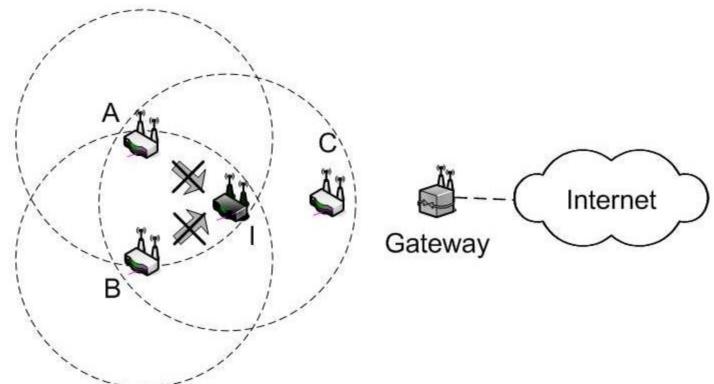

- · Recebem atenção especial em redes em malha sem fio
 - Dentre as técnicas disponíveis, o emprego de múltiplos canais é o mais comum
- · Uso de múltiplos canais não sobrepostos
 - Proporciona aumento de vazão...
 - Porém, deve lidar com dois problemas para se tornar efetiva, a interferência intra e interfluxos

Interferência Intra e Interfluxo

- Interferência intrafluxo
 - Nós transmitindo pacotes do mesmo fluxo interferem entre si
- · Interferência interfluxo
 - Nós transmitindo pacotes de fluxos diferentes interferem entre si


Interferência Intra e Interfluxo

- · Interferência intrafluxo: A, B e C
- · Interferência interfluxo: B e D


Interferência Intra e Interfluxo

Como resolver o problema da interferência?
Usar múltiplos canais resolveria?
Se sim, qual seria o problema?

Interferência Intra e Interfluxo

- · Caso A e B estejam em um canal diferente de I:
 - Há um problema de surdez e a rede passa a ser considerada desconectada...

WCETT (Weighted Cumulative ETT)

- Altera o ETT para também considerar interferência intrafluxo
- Métrica é a soma de dois componentes:
 - Atraso fim-a-fim e a diversidade de canais
 - Parâmetro ajustável é usado para combinar ambos os componentes ou priorizar um deles

WCETT (Weighted Cumulative ETT)

- Diferente do ETX e do ETT, o WCETT é uma métrica fim-a-fim
 - Resultado da métrica já representa o custo do caminho e não do enlace como o ETX e o ETT
 - Considera todos os canais utilizados ao longo da rota para levar em conta a interferência intrafluxo
 - Porém, não garante caminhos mais curtos e não evita interferência interfluxo
 - Pode utilizar caminhos em regiões congestionadas de qualquer forma

WCETT (Weighted Cumulative ETT)

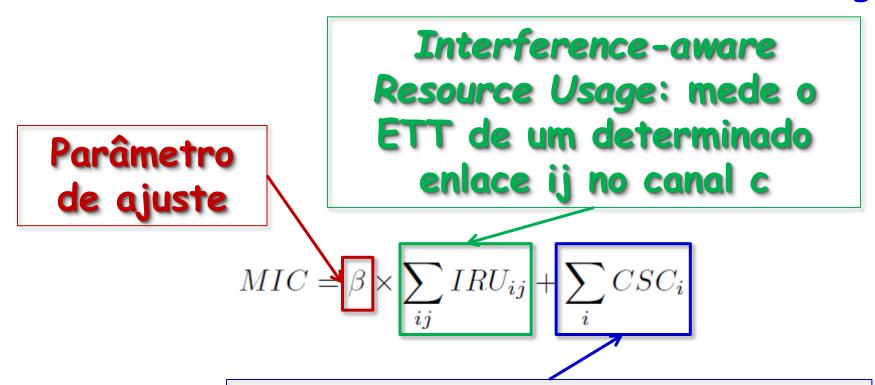
Componente com somatório do ETT do caminho

Parâmetro de ajuste

$$WCETT = (1 - \beta) \times \sum_{i=1}^{n} ETT_i + \beta \times \max_{1 \le j \le k} X_j$$

$$X_j = \sum_{\text{hop } i \text{ is on channel } j} ETT_i$$

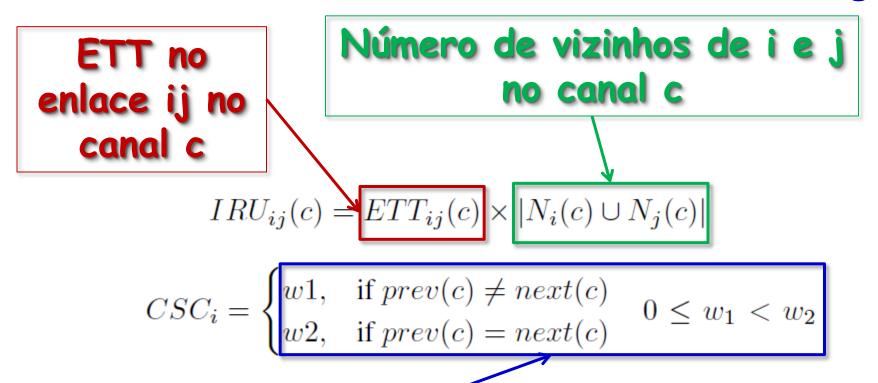
Componente de diversidade de canal - quanto maior o Xj, mais concentrado o caminho está em um único canal


MIC

(Metric of Interference and Channel-switching)

- · Considera a interferência intra e interfluxo
 - Cada nó estima a interferência intra e interfluxo considerando o número de nós da vizinhança
 - Interferência intra e interfluxo são provocadas por nós vizinhos no mesmo canal
- · Calcula seu valor a partir da ETT

MIC


(Metric of Interference and Channel-switching)

Channel Switching Cost: mede a diversidade de canal entre enlaces de um mesmo caminho

MIC

(Metric of Interference and Channel-switching)

Pesos diferentes, dependendo se os canais se conservam no mesmo canal no enlace ij e no anterior no mesmo caminho

Variação da Qualidade dos Enlaces

- Rápida variação da qualidade dos enlaces: Problema crítico em redes sem fio
 - Métricas baseadas em valores médios calculadas sobre janelas de tempo podem não capturar rápidas variações
 - Por exemplo, o ETX e o ETT
 - Caso tentem capturar, podem gerar uma sobrecarga de controle excessiva
- Solução: Considerar a variação da qualidade dos enlaces
 - Ideia por trás das métricas mETX (modified ETX) e ENT (Effective Number of Transmissions) ...

Variação da Qualidade dos Enlaces

- Tentam projetar as variações da qualidade do meio físico nas métricas de roteamento
 - mETX é também calculada com o envio de sondas em broadcast
 - Calcula a BER ao invés da taxa de perda de sondas (ETX)
 - Se o erro afetou múltiplos bits consecutivos ou se o erro afetou múltiplos pacotes consecutivos, é possível ter ideia da variação do erro
 - ENT é uma alternativa ao mETX
 - Limita o cálculo de rotas aos enlaces que mostram um número aceitável de retransmissões
 - Esse número depende dos requisitos das camadas superiores

Variação da Qualidade dos Enlaces

- Algumas tentam considerar simultaneamente desafios conhecidos:
 - iAWARE (Interference Aware Routing Metric)
 - Usa a relação sinal-ruído e a relação sinal-interferênciaruído (SINR) para continuamente avaliar a interferência da vizinhança nas métricas de roteamento
 - Estima o tempo médio que o meio sem-fio está ocupado devido à transmissão de cada vizinho com potencial de interferir
 - Quanto maior a interferência, maior é o valor da métrica
 - Considera interferência intra e interfluxo

Sumário das Métricas

Métrica	Ciente da qualidade	Taxa de dados	Tamanho do pacote	Interf. intrafluxo	Interf. interfluxo	Instabilidade do meio
Salto	NÃO	NÃO	NÃO	NÃO	NÃO	NÃO
ETX	SIM	NÃO	NÃO	NÃO	NÃO	NÃO
ML	SIM	NÃO	NÃO	NÃO	NÃO	NÃO
ETT	SIM	SIM	SIM	NÃO	NÃO	NÃO
WCETT	SIM	SIM	SIM	SIM	NÃO	NÃO
MIC	SIM	SIM	SIM	SIM	SIM	NÃO
mETX	SIM	SIM	SIM	NÃO	NÃO	SIM
ENT	SIM	SIM	SIM	NÃO	NÃO	SIM
DBETX	SIM	SIM	SIM	SIM	SIM	SIM
iAWARE	SIM	SIM	SIM	SIM	SIM	SIM

Protocolos de Roteamento

- Possuem estratégias semelhantes às usadas nas redes ad hoc sem-fio, porém...
 - Consideram as particularidades das redes em malha
 - Usam métricas cientes de qualidade
- Podem ser divididos em quatro classes:
 - Legados das redes ad hoc
 - Com controle de inundação
 - Cientes do tráfego
 - Oportunísticos

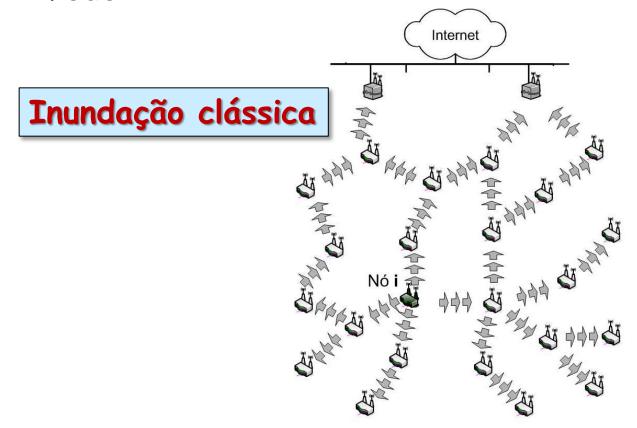
Protocolos Legados das Redes Ad Hoc

- Adaptam os protocolos de roteamento das redes ad hoc para o caso em malha
 - Utilizam métricas cientes da qualidade ao invés do número de saltos
 - Alteram os procedimentos de requisição e manutenção de rotas
 - Utilizam características das redes em malha sem fio

LQSR (Link Quality Source Routing)

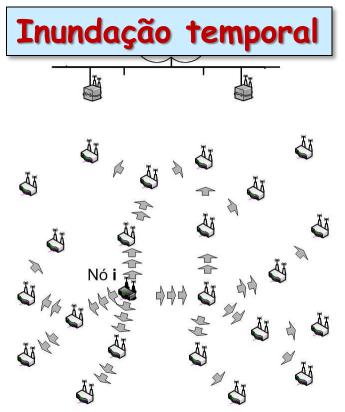
- Combina roteamento pró-ativo baseado em estado do enlace com a estratégia reativa das redes ad hoc
 - Fundamentalmente é um protocolo de roteamento baseado em estado do enlace
 - Usa visão completa da topologia para cálculo de menor caminho
 - Mantém cache de enlace ao invés de rota
 - Porém, usa procedimento de descoberta de rotas para redução da sobrecarga de roteamento
 - Descoberta de todas é feita para manter atualizadas as informações dos enlaces mais usados

LQSR (Link Quality Source Routing)


- Combina roteamento pró-ativo baseado em estado do enlace com a estratégia reativa das redes ad hoc
 - Maior parte do tráfego é encaminhada ao gateway
 - Novos procedimentos de descoberta de rotas só são realizados quando...
 - Rota até o gateway é perdida
 - Há necessidade de comunicação com outro nó do backbone
- Usa roteamento pela origem
 - Garante ausência de laços mesmo em caso de falta de sincronismo entre os nós do backbone

SRcRR

- O protocolo SRcRR é um outro exemplo de protocolo legado das redes ad hoc
 - Usa somente procedimento de descoberta de rotas semelhante ao dos protocolos reativos
 - Atualiza as informações de roteamento dos enlaces atravessados
 - Também mantém cache de enlaces ao invés de rotas e usa roteamento pela fonte para evitar laços de roteamento
 - Não há atualização pró-ativa como no LQSR
 - SrcRR reduz ainda mais a sobrecarga de controle
 - · Porém, pode calcular rotas com um visão reduzida da rede


Protocolos com Controle de Inundação

 Utiliza algoritmos que reduzem a carga de controle da rede

Protocolos com Controle de Inundação

 Utiliza algoritmos que reduzem a carga de controle da rede

Fisheye

- Um dos primeiros protocolos propostos para redes ad hoc que limita a disseminação dos pacotes de controle somente aos vizinhos
 - Ajusta o TTL das mensagens de controle conforme o número de nós da rede que se pretende alcançar
 - Quanto menor o TTL, menor é o número de nós que recebem a mensagem

LOLS (Localized On-demand Link State)

- · Segue o mesmo princípio do Fisheye
- Atribui um custo de longo-prazo e um custo de curtoprazo aos enlaces
 - Custos de longo-prazo e de curto-prazo são o custo médio e o custo instantâneo do enlace, respectivamente
- Reduz a sobrecarga de controle de roteamento enviando os custos de curto-prazo com uma frequência maior aos vizinhos
 - Custos de longo-prazo são enviados em menor frequência para toda a rede
- · Calcula rotas usando a ETX ou a ETT

OLSR

- Aplica mesma ideia de redes ad hoc em redes sem-fio em redes
 - Possível combinação com o Fisheye gera o OFLSR (Optimized Fisheye Link State Routing)

Protocolos Cientes de Tráfego

- Se beneficiam da matriz de tráfego recorrente em redes em malha sem fio
 - Assumem que o acesso à rede cabeada é a aplicação mais comum
 - Portanto, consideram que a topologia da rede é uma árvore com o gateway na raiz

Protocolos Cientes de Tráfego

- AODV-ST (Ad hoc On-demand Distance Vector-Spanning Tree)
 - Adaptação do AODV para redes em malha
 - Gateway periodicamente envia requisições de rota para todos os nós da rede para manter sua tabela de roteamento atualizada
 - Mantém uma árvore onde o gateway é a raiz
 - As comunicações que não incluem o gateway funcionam como no AODV original
 - Suporta tanto o ETX quanto o ETT

Protocolos Oportunísticos

- Exploram o fato de que as transmissões em radiofrequência são realizadas em difusão por natureza
 - Assim, eles escolhem sob demanda o próximo salto que oferece a melhor vazão, por exemplo
- · Protocolos de roteamento clássicos
 - Calculam uma sequência de saltos até o destino antes de enviar um pacote de dados, utilizando roteamento saltoa-salto ou pela fonte

Protocolos Oportunísticos

- No caso de falhas de enlaces, retransmissões sucessivas são realizadas
 - Na camada de enlace até que o pacote de dados seja corretamente encaminhado ao próximo salto ou até que o número máximo de retransmissões seja alcançado...
- Essa abordagem pode provocar um grande atraso e um desempenho pobre, pois os enlaces sem fio precisam de algum tempo para se recuperar de falhas
 - Protocolos oportunísticos garantem que os dados são sempre encaminhados já que pelo menos uma próximo vez que haja pelo menos um próximo salto disponível

Sumário dos Protocolos de Roteamento

Classe	Protocolo	Métrica		
	LQSR	ETX		
	SrcRR	ETX		
Legados das redes ad hoc	MR-LQRS	WCETT		
reacs ad noc	MeshDV	Saltos ou taxa física		
	DOLSR	Saltos ou ETX		
	LOLS	ETX ou ETT		
Controle de inundação	MMRP	Indefinido		
manaagao	OLSR	Saltos, ETX, ML ou ETT		
Cientes do	AODV-ST	ETX ou ETT		
tráfego	Raniwala et al.	Saltos ou métrica de balanceamento de carga		
Opentunisticas	ExOR	ETX unidirecional		
Oportunísticos	ROMER	Saltos ou atraso		

Referências

- · Capítulo 5 do livro
 - Miguel Elias M. Campista e Marcelo G. Rubinstein,
 "Advanced Routing Protocols for Wireless Networks",
 1º Edição, Wiley-Iste
- Miguel Elias Mitre Campista, "Um Novo Protocolo de Roteamento para Redes em Malha Sem Fio", Doctor of Science Thesis, COPPE/PEE/UFRJ, 2008